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ABSTRACT

The integration of artificial intelligence systems into daily applications like speech recognition and autonomous driving rapidly increases the
amount of data generated and processed. However, satisfying the hardware requirements with the conventional von Neumann architecture
remains challenging due to the von Neumann bottleneck. Therefore, new architectures inspired by the working principles of the human
brain are developed, and they are called neuromorphic computing. The key principles of neuromorphic computing are in-memory comput-
ing to reduce data shuffling and parallelization to decrease computation time. One promising framework for neuromorphic computing is
phase-change photonics. By switching to the optical domain, parallelization is inherently possible by wavelength division multiplexing, and
high modulation speeds can be deployed. Non-volatile phase-change materials are used to perform multiplications and non-linear
operations in an energetically efficient manner. Here, we present two prototypes of neuromorphic photonic computation units based on
chalcogenide phase-change materials. First is a neuromorphic hardware accelerator designed to carry out matrix vector multiplication in
convolutional neural networks. Due to the neuromorphic architecture, this prototype can already operate at tera-multiply-accumulate per
second speeds. Second is an all-optical spiking neuron, which can serve as a building block for large-scale artificial neural networks. Here,
the whole computation is carried out in the optical domain, and the device only needs an electrical interface for data input and readout.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0042549

INTRODUCTION

In 2016, the computer program “Alpha Go” developed by the
British company Google DeepMind beat one of the world’s top

players (Lee Sedol) 4:1 at the strategy game GO. Unlike chess, GO

cannot be solved deterministically by today’s computers due to

the complexity of the game and the fact that a suitable heuristic

method to evaluate specific situations does not exist. Therefore,

Alpha Go relies on artificial neural networks (ANNs) to play the

game GO.1 Its successor, AlphaZero, just needs the ruleset to learn

the game without any additional human input,2 indicating that

computer programs can find solutions and strategies for non-trivial

problems on their own. Naturally, artificial neural networks are not

only capable of solving well-defined problems in strategic board

games but are also heavily deployed in daily life in a wide range of

different applications such as image- and speech recognition,
autonomous driving, or medical diagnostics, among others.3–5

Even though artificial neural networks (ANNs) lie at the heart
of many problem-solving algorithms, providing sufficiently powerful
hardware to run them remains challenging due to the large amount
of data being processed.6 In the conventional von Neumann archi-
tecture that most processors are based on today, the processing unit
is separated from the memory. Consequently, the data need to be
shuffled back and forth between both, which leads to a speed barrier
known as the von Neumann bottleneck. Moreover, this computing
architecture is designed for serial computing, such that the com-
mands are carried out consecutively.7 Thus, the von Neumann archi-
tecture is not optimal to solve data-heavy tasks.

Therefore, new hardware and architectures tailored to ANNs
need to be developed. One option is to design application-specific
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integrated circuits (ASICs), as, for example, Googles tensor process-
ing unit optimized for matrix vector multiplication (MVM).
MVMs are the computational expensive tasks in many AI applica-
tions. Another approach is to build integrated circuits inspired by
the working principle of the brain, called neuromorphic computing
architectures,8–12 as biological brains outperform conventional pro-
cessors in cognitive tasks as speech- and pattern recognition by
many orders of magnitude. For example, the simulation of a
mouse-scale cortex with 2.5 × 106 neurons on a personal computer
is 9000 times slower and requires 40 000 times more power than its
biological counterpart.13 Neuromorphic processors aim to work in
a highly parallel way and process data directly in memory. Besides
several implementations in CMOS electronics, another promising
route to building neuromorphic computing systems is to switch to
the optical domain. This does not only allow a high degree of paral-
lelization by wavelength division multiplexing but also enables
operation speeds up to 100 GHz.14 This article gives an introduc-
tion to photonic approaches to neuromorphic computing.

In the following, we will first provide an overview of artificial
neural networks and explain the working principle of convolutional
neural networks (CNNs), which are crucial for image classification.
Then, we explain how to implement energy-efficient in-memory
computing with phase-change devices in photonic integrated cir-
cuits. Based on the principles of phase-change photonics, we
present a neuromorphic hardware accelerator that is designed to
perform the time demanding task of matrix vector multiplication.
Finally, we show an all-optical neuron, which can serve as a build-
ing block for large-scale neuromorphic artificial neural networks.

ARTIFICIAL NEURAL NETWORKS

From a mathematical point of view, an ANN is a function
hP:R

m
! Rn, which is defined via a set of free parameters P.

Depending on how P is chosen, the neural network can solve a
specific problem. In this context, solving means that it assigns
the “correct” output activation Aout to an input activation
Ain, i:e:, hP(Ain) ¼ Aout.

Figure 1(a) shows how a (fully connected) ANN is con-
structed. It consists of several layers, where each layer contains at
least one neuron with an associated neuron activation. Each neuron
of the nth layer is connected with all neurons of the (n + 1)th layer.
The input layer is the interface to the real world, and the output
layer presents the computational result of the neural network. The
elementary building blocks of ANNs are the neurons [see
Fig. 1(b)]. First, all the inputs (i.e., the output signals from the
neurons in the previous layer) of the jth neuron are individually
weighted by weights w1j to wnj and then added together to obtain
the activation energy. Afterward, a non-linear function, for
example, a rectified linear unit (ReLu) or Sigmoid, is applied to the
weighted sum.15,16 It is important that the activation function of
the neurons is non-linear; otherwise, all layers could be condensed
to a single layer. The weights are the free parameters P of the
neural network and need to be chosen such that the neural
network fulfills the intended function. The process of appropriately
choosing the weights is called training. There are several types of
trainings, which can be categorized on a basic level into supervised
and unsupervised learning. In supervised learning, a training

dataset with several pairs {Ain:Aout} must exist and the ANN is
fitted to the training dataset. This is typically a very time-
demanding task, often implemented with a backpropagation algo-
rithm.17 Unsupervised learning is applied, when no training set
exists and a pattern from an unknown data stream needs to be
extracted. This is achieved by implementing a learning rule: for
example, inspired by the biological neurons, the Hebbian learning
rule “What fires together wires together” can be used.18

A main issue of fully connected ANNs is that the number of
free parameters tends to be huge. For example, an ANN designed
for image classification that takes input images with 1 × 106 pixels
and has 1000 neurons in the first hidden layer would already have
1 × 109 free parameters. Moreover, many hidden layers are
deployed in deep neural networks to implement complex function-
alities that further increase the number of free parameters.19 To
overcome this challenge and reduce computational complexity,
special classes of ANNs have been developed as the aforementioned
convolutional neural networks (CNNs). CNNs reduce the number
of parameters by introducing a preprocessing step to detect local
features between neighboring pixels in the input images. In this
step, the image is convolved with several filters, as shown in
Fig. 1(c). Those filters are the free parameters of a convolutional
layer and are determined during the training process. In the follow-
ing, we will elucidate how these elementary concepts can be real-
ized with integrated optical or nanophotonic devices in which
non-linearity and the capability for learning are implemented with
phase-change materials.

PHASE-CHANGE PHOTONICS

Phase-change photonics is the conjunction between phase-
change materials and nanophotonics, which enables integrated
photonic circuits (PICs) with novel functionalities. Phase-change
materials (PCMs) are materials that can be rapidly switched
between an (unordered) amorphous and (ordered) crystalline state
and thereby exhibit stark contrast in the optical properties between
both phases of matter. The transition between the states is reversible
and can be induced via optical or electrical heating. Figure 2(a) sche-
matically shows the switching dynamics of a PCM. If the material is
heated (and kept) above the glass transition temperature but below
the melting point, the atoms have enough energy to arrange them-
selves in the energetically preferred crystalline order. If the material
is instead further heated above the melting temperature and subse-
quently rapidly cooled down below the glass transition temperature
without giving it time to crystallize, the unordered amorphous state
is obtained. Typically, the PCM needs to be cooled down with a rate
of 1–100 K/ns to be switched to the amorphous state.20,21 In the
amorphous state, no long-range order is present and covalent bonds
between the atoms are dominant.22 Therefore, the electrons are
strongly localized leading to low conductivity. In contrast, resonant
bonds between several atoms are formed in the crystalline state
leading to highly delocalized electrons and enabling high conductiv-
ity.23,24 Similarly, depending on the stoichiometry, the refractive
index also varies greatly. Therefore, PCMs are already used in the
field of rewritable optical data storage for decades.25

Integrated with photonic circuits, phase-change materials
enable active control over phase and amplitude of light propagating
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through optical waveguides when evanescently coupled to the
PCM. The following devices are based on the well-studied PCM
Ge2Sb2Te5 (GST),

26 which belongs to the popular group of chalco-
genide solids based on germanium (Ge)–antimony (Sb)–tellurium
(Te) alloys. Due to its non-volatility, no static energy supply is
required to maintain the PCMs state. In combination with switch-
ing energies below 20 pJ, GST enables energy-efficient computa-
tion.27 However, it should be noted that a wide range of PCMs can
be found especially in the ternary phase-diagram of Ge:Sb:Te with
different properties in terms of switching energies and stability.
Also monatomic phase-change materials are developed
recently,28,29 potentially leading to very high switching speeds.

In the telecom wavelength regime at 1550 nm, the refractive
indices of the two different GST states are as follows:30

naGST ¼ 3:94þ i0:045, ncGST ¼ 6:11þ i0:83: (1)

Therefore, a thin layer of a PCM is deposited on the top of the
waveguide and covered with indium tin oxide (ITO) to prevent oxi-
dation of the PCM. Figures 2(b) and 2(c) show the TE00 mode
profile of 330 nm thick silicon nitride (SiN) on silicon oxide (SiO2)
waveguide with 10 nm GST covered by 10 nm ITO. In the amor-
phous state, the imaginary part of the effective index is significantly
lower than in the crystalline state, leading to a large absorption

FIG. 1. (a) Structure of a fully connected artificial neural network. The neural network consists of several layers, where each layer contains at least one neuron. The input
layer is the interface to real world and the output layer presents the computational result of the neural network. (b) Structure of a single neuron. Each neuron has an activa-
tion assigned to it, which is calculated from all neurons in the previous layer. First, the activations from the previous layer are individual weighted and then added together.
From the sum, a non-linear function f determines the neuron’s activation output. (c) For image classification tasks, convolutional layers are usually applied to the input
image first. Those layers convolve the input image with a filter kernel to highlight specific features like edges.
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contrast between both modes,

αSiN-aGST ¼ �0:07
dB

μm
, αSiN-cGST ¼ �2:96

dB

μm
: (2)

Using standard lithography processes, the PCM can be selec-
tively deposited in specific areas of the waveguide, enabling two
functionalities: first, the transmission of the waveguide can be
locally varied by partially switching the GST patch between the
amorphous and highly absorptive crystalline state. This can either
be done electrically using external heater structures31 or optically
since the light absorbed in the GST will heat it up.32,33 For optical
switching, up to 64 intermediate transmission states in a GST patch
have been demonstrated.34 Second, the GST can be used as a non-
linear element inside a photonic circuit, due to the threshold
behavior of the switching process.

Overall, phase-change photonics enable the realization of non-
volatile memory cells and non-linear power-dependent elements
inside an integrated photonic circuit. The low energy consumption
and passive interaction behavior between a light pulse and the
PCM make phase-change photonics an ideal building block for
high-speed neuromorphic computing.

NEUROMORPHIC HARDWARE ACCELERATOR

A first step to true neuromorphic computing is to build neu-
romorphic photonic integrated circuits for mathematical operations
that are time demanding in the conventional von Neumann archi-
tecture. In a fully connected layer of an ANN, the activations from
the previous layer need to be weighted with various weights and

accumulated. In a convolutional layer, the activation from the pre-
vious layer is convolved with several filters. Both operations can be
written in the form of matrix vector multiplications, which are
therefore often a bottleneck for computing ANNs.

In order to perform MVMs with a PIC, several multiply and
accumulate (MAC) operations need to be carried out. Figure 3(a)
shows how the multiplication of an (fast modulated) input pulse
with power P in and a (tunable) matrix element is carried out with
phase-change material cells. Depending on the phase state, trans-
mission T through the PCM cell can be set; consequently, the
power of the transmitted pulse is P out ¼ Tx P in. Since the PCM is
only evanescently coupled to the waveguide leading to absorption,
the multiplication time is just the time the pulse needs to propagate
through the PCM cell.

In order to add the power of several pulses (multiplication
results) together, they are overlapped in a single waveguide.
However, two coherent laser beams with frequency w1 and w2

propagating in the same direction with same polarization will inter-
fere with each other,

Esin(w1t)þ Esin(w2t) ¼ 2Esin
w1 þ w2

2
t

� �

cos
w1-w2

2
t

� �

: (3)

The beat term consists of two parts, the fast oscillating one
with frequency (w1 þ w2)/2 and a slow oscillating one with
frequency (w1 � w2)/2. The fast oscillating one will be averaged out
by a photodetector. However, the slow oscillating one can be
visible, depending on the detuning and detector bandwidth.
Therefore, in order to avoid oscillations, the accumulated laser

FIG. 2. (a) Switching dynamics of phase change materials. If the material is heated above the glass transition temperature but not melted, the atoms have sufficient
energy to rearrange in a crystal lattice. The PCM becomes amorphous instead, if it is first melted and then cooled down rapidly, to freeze the atoms in the unordered
(amorphous) state. (b) and (c) Optical mode profiles of a silicon nitride waveguide (330 nm height) with a 10 nm layer of GST and a 10 nm ITO capping layer on top. Due
to the refractive index difference between the amorphous and crystalline state, also the effective index of the guided mode can be varied.
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pulses need different wavelengths with sufficient detuning. In the
following, this approach to add two coherent lasers is called “inco-
herent” accumulation. The opposing way would be to use two
lasers at the exact same wavelength and add them together “coher-
ently” by fixing the phase relation between both.

There are several approaches to add two signals incoherently.
One way is using multiplexing techniques, such as wavelength-
division multiplexing (WDM) or mode multiplexing. The advan-
tage of this approach is that it is theoretically lossless. However,
multiplexing requires very precise fabrication and potentially a way
to actively tune the devices afterwards, due to the sensitivity of, e.g.,
ring resonators and Bragg filters used for WDM.35 Moreover, espe-
cially narrow band Bragg filters are large, increasing the footprint
of the PIC. Another option is to combine two different signals with
directional couplers. While this method relaxes the requirements
for the fabrication, it unavoidably leads to optical losses.

Figure 3(c) shows a PIC that is designed to carry out MVMs as
described in Fig. 3(b). The multiplication is carried out by choosing
the pulse height and the PCM’s transmission state, and the pulses
are added together onto a common waveguide with directional cou-
plers. The different inputs X1 to Xi have different wavelengths λ1 to
λi leading to j outputs. A fixed fraction of the input light in the
input rows is transferred to each coupling waveguide that connects
the horizontal input waveguides to the vertical output waveguides.
After a fraction of the incoming pulse is transferred to the coupling
waveguide, it is partially absorbed by the PCM cell to carry out the

multiplication. Finally, light is coupled from the coupling waveguide
into the vertical output waveguide. In order to ensure that all matrix
cells contribute equally to the final power in the output waveguide,
the coupling fraction for the different cells has to be chosen properly.
Therefore, only 1/ij of the input power of the first waveguide will
reach the output waveguide. Here, 1/i is attributed to losses caused
by the directional couplers and 1/j to the number of columns. We
term this architecture photonic tensor core (PTC).

The advantage of a PTC is that it is a completely passive
device (PCM is non-volatile) and therefore does not require any
energy to preserve the matrix state. The calculation is carried out in
a transmission measurement. Figure 4 shows the experimental
result of four different convolution operations [see Fig. 1(c)] calcu-
lated with the neuromorphic hardware accelerator. As designed, it
clearly detects the upper/lower and left/right edges of the input
picture. This basic hardware accelerator was then used as a part of
a convolutional network and tested with the MNIST database of
handwritten digits. For the chosen CNN, the optimal prediction
efficiency is 96.1%. When using the hardware accelerator instead of
a conventional PC to carry out convolution, the efficiency only
slightly drops to 95.3%.36

By employing a second tier of multiplexing, several matrix
vector multiplications can be carried out in parallel without chang-
ing the PTC itself. In this case, the first vector uses the wavelengths
λ1 to λi and the second λiþ1 to λ2i and so on. By demultiplexing
the signal at the output of the PTC accordingly, the results of the

FIG. 3. (a) Scalar multiplication carried out using a PCM cell. Here, the first factor is encoded in the power of the light pulse and the second factor in the transmission
level of the PCM. The product of both factors can be obtained from the amplitude of the output signal. (b) Mathematical operation carried out by the PIC shown in (c).
Each component of the matrix is encoded in a different PCM cell, whereas the input vector is modulated on the power of the incoming light. (c) Sketch of the PIC used for
matrix-vector multiplication. The components of the input vector are sent into different rows. With directional couplers, the signal is equally split between the columns and
individually weighted by the corresponding PCM cell. In the output waveguide, the signals from the different rows are added incoherently.
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individual MVMs can be obtained in parallel. The total bandwidth
is only limited by the wavelength dependency of the directional
couplers. In the experiments, the photonic neuromorphic hardware
accelerator was able to operate at a rate up to 2 TMAC/s.

ALL OPTICAL SPIKING NEURONS

A further step toward all-optical neuromorphic computing is
to perform the entire data processing in a photonic integrated

circuit. In order to calculate an ANN, several MAC operations
must be carried out first to weight and accumulate the input from
the previous layer. Afterward, a non-linear activation function
determines the neurons’ activation.

Figure 5(a) shows a photonic circuit designed to mimic a
single neuron with four inputs. The same principles as in the pho-
tonic hardware accelerator are used for carrying out the MAC oper-
ations: multiplication is achieved with PCM cells and afterward
incoherent addition of the weighted inputs is carried out. In this

FIG. 4. Convolution operations calculated with a photonic neuromorphic hardware accelerator. The input image (a) is convolved with four different filters (b)–(e) that detect
edges to the upper/lower and left/right side. The 9 × 4 filter kernel needed to carry out all convolutions in parallel is then written into the neuromorphic hardware accelerator
and the input image subsequently passed to it.36

FIG. 5. (a) The photonic implementation of an artificial neural network with four inputs and one output neuron. The inputs In 1–In 4 are weighted with the weights w1–w4

via PCM cells. Afterward, the input signals are added together via a ring multiplexer. Finally, the activation unit determines the output neuron activation. (b) SEM image of
the deployed activation unit. Initially, the PCM cell is in the crystalline state and the probe signal absorbed in the ring resonator. If the weighted sum of all inputs exceeds a
power threshold, which is set by the melting temperature of the GST, the PCM becomes amorphous. Now, the probe pulse is mainly transmitted. (c) and (d) The neuron is
trained to detect different pattern sent into the neuron via laser pulses. The ANN can clearly distinguish between the trained pattern and random patterns.37
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alternative WDM framework, here ring resonators are deployed
instead of directional couplers to add the weighted inputs. The
obtained weighted input power is sent to the activation unit that is
shown in Fig. 5(b). The activation unit consists of a ring resonator
with an integrated PCM cell and a probe waveguide (fixed wave-
length). In the beginning, the PCM cell is crystalline and the probe
pulse on resonance is mainly absorbed in the ring resonator. If the
total weighted input power exceeds the threshold set by the melting
temperature of the PCM, the PCM amorphizes. This reduces the
losses inside the ring resonator and therefore the maximal extinc-
tion ratio and shifts the resonance frequency because of the change
in both the real and imaginary parts of the refractive index. Now
the probe pulse that previously was on resonance with the resonator
is mainly transmitted. A switching contrast of up to 10 dB can be
achieved in this way.37 Figures 5(c) and 5(d) show the experimental
result of measurements performed with this type of artificial pho-
tonic neuron. In both cases, the neuron is trained to detect a specific
pattern, and in both cases, it can clearly distinguish between the
desired and various different patterns. The shown neuron design
can serve as a building block for larger multilayer neural networks.
In this case, the output pulse of the neuron in Fig. 5(a) can serve as
an input to the neurons in the next layer. Moreover, unsupervised
learning according to a Hebbian-like learning rule is possible by
overlapping the output pulse with the input pulse in the PCM
weights. By doing so, the weights will change depending on whether
the neuron fires together with an input pulse or not.37

Since the PCM in the activation unit is switched continuously,
cycle-to-cycle variations are present like in the electrical counter-
part.38 However, for the operation of the optical neuron, a certain
degree of noise can even be beneficial to avoid local minima in the
training process and are also present in biochemical neural net-
works.39 Additionally, neuromorphic circuits are comparably toler-
ant to small variations of the weights and inputs, allowing for the
precision of the calculations to be reduced significantly.40 After
training the neuron, the PCM weights are stable over months27

since the transmission of the PCM cell does not depend on con-
ductive filaments in the PCM but results from the evanescent cou-
pling between the waveguide and the PCM. Therefore, spatial
variations in the PCM state, which are small in comparison to the
optical wavelength, are averaged and therefore have a small impact
on the overall transmission.

CHALLENGES AND OUTLOOK

Recent work on neuromorphic computing demonstrates pros-
pects of building brain inspired photonic integrated circuits.
Nevertheless, there are several challenges to overcome before they
can commercially challenge conventional architectures in the field
of artificial intelligence.

Even though a photonic hardware accelerator can theoretically
reach unprecedented performance in the PMAC/s range for a single
matrix,36 the device footprint is substantially larger than electronic
hardware. The silicon nitride waveguides deployed in both presented
PICs have a width of 1.2 μm, and thus, the total device size is on the
order of square millimeters to square centimeters. In comparison,
nowadays electric circuits can be fabricated in a 5 nm process.
However, this is the result of decades of commercial optimization,

starting from 10 μm MOSFET processes in the 1970s. There are
several approaches of how to reduce the footprint of PICs. First, one
can use another platform with a higher refractive index contrast
than SiN on SiO2 leading to smaller waveguides and smaller possi-
ble bend radii as, for example, silicon on insulator (SOI).41

Moreover, one could build the PIC not only in a plane but use mul-
tilayer processes to move toward 3D architectures.42 The larger foot-
print of photonic circuits compared to electronics can also be
compensated by the ability to multiplex signals on different wave-
lengths (a feature that is not available in electronics). This way the
same circuit can be used for different computations at the same
time increasing the computational density and parallelism.

Furthermore, for a fully functional system, various optical
components need to be integrated on chip and a sufficient interface
needs to be provided before it can be used commercially. In the
examples outlined above, only the computational unit itself is inte-
grated on the chip, whereas the required laser sources, multiplexer,
modulators, and detectors remain off chip. This makes it challeng-
ing to scale and is unfeasible to use outside laboratories. Switching
to a different platform, for example, InP or SOI, is a promising
route to integrate all components on the chip. Finally, both designs
need an electrical interface, in order to make it compatible with
existing technology. Since the PIC works in the analog domain and
conventional electronics is digital, digital to analog converters play
a crucial role.

Overall, neuromorphic computing implemented in photonic
integrated circuits using phase-change devices is a promising way
to satisfy the rapidly growing computational demands of artificial
intelligence. Due to the high modulation speeds achievable in the
optical domain and the inherent capability for parallelization via
multiplexing, it is well suited to process the large amount of data in
artificial neural networks. In-memory computing with non-volatile
phase-change materials also enables an overall energy-efficient
process. The next step will be to move the experimental designs
from the laboratories to commercial applications.
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