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Abstract Chalcone synthase (CHS, EC 2.3.1.74) is

a key enzyme of the flavonoid/isoflavonoid biosyn-

thesis pathway. Besides being part of the plant

developmental program the CHS gene expression is

induced in plants under stress conditions such as UV

light, bacterial or fungal infection. CHS expression

causes accumulation of flavonoid and isoflavonoid

phytoalexins and is involved in the salicylic acid

defense pathway. This review will discuss CHS and

its function in plant resistance.
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Introduction

During their life cycle, plants respond actively to

stress by producing phytoalexins and other stress

metabolites. Such stress can result from injuries

caused by the attack of insects and microbes or by

mechanical wounding, and can induce many distinc-

tive biochemical changes. These include the produc-

tion of protective compounds either at the site of

injury, or systemically in distant unwounded tissues

(Kuhn 1988; Bowles 1990; Ryan 1990). In plants,

phenylalanine is derived from the precursor choris-

mate and leads to the flavonoid, phenylpropanoid and

stilbenoid biosynthetic pathways. All are interesting

in connection with plant defense but in this review we

will focus on the flavonoid biosynthesis pathway and

its key enzyme chalcone synthase (CHS).

CHS is a member of the plant polyketide synthase

superfamily, which also includes stilbene synthase

(STS), acridone synthase, pyrone synthase, bibenzyl

synthase, and p-coumaroyltriacetic acid synthase (San-

chez 2008). Chalcone synthases, the most well known

representatives of this family, provide the starting

materials for a diverse set of metabolites (flavonoids)

which have different and important roles in flowering

plants, such as providing floral pigments, antibiotics,

UV protectants and insect repellents (Hahlbrock and

Scheel 1989). Flavonoids also have benefits for human

health, as they exhibit amongst others cancer chemo-

preventive (Jang et al. 1997), antimitotic (Edwards

et al. 1990), estrogenic (Gehm et al. 1997) antimalarial

(Li et al. 1995) antioxidant (Jang et al. 1997) and

antiasthmatic (Zwaagstra et al. 1997) activities.

Flavonoids are synthesized via the phenylpropa-

noid and polyketide pathway, which starts with the
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condensation of one molecule of CoA-ester of

cinnamic acid or derivatives such as coumaric or

ferulic acid, and three molecules of malonyl-CoA,

yielding a naringenin chalcone as major product. This

reaction is carried out by the enzyme chalcone

synthase (CHS). The chalcone is isomerised to a

flavanone by the enzyme chalcone flavanone isom-

erase (CHI). From these central intermediates, the

pathway diverges into several branches, each result-

ing in a different class of flavonoids. Flavanone

3-hydroxylase (F3H) catalyzes the stereospecific 3ß-

hydroxylation of (2S)-flavanones to dihydroflavonols.

For the biosynthesis of anthocyanins, dihydroflavonol

reductase (DFR) catalyzes the reduction of dihydrofl-

avonols to flavan-3,4-diols (leucoanthocyanins),

which are converted to anthocyanidins by anthocy-

anidin synthase (ANS). The formation of glucosides

is catalyzed by UDP glucose-flavonoid 3-O-glucosyl

transferase (UFGT), which stabilizes the anthocyani-

dins by 3-O-glucosylation (Harborne and Grayer

1994; Bohm 1998). An overview of the flavonoid

pathway is presented in Fig. 1. Flavonoids play an

important role in plant defense, and CHS as the

gatekeeper of flavonoid biosynthesis plays an impor-

tant role in regulating the pathway. In fact CHS gene

expression is influenced by many stress and environ-

mental factors such as UV, wounding or pathogen

attack (Dixon and Paiva 1995; Gläßgen et al. 1998;

Ito et al. 1997).

In this review we will evaluate the present

understanding about CHS and its regulation in plant

resistance.

Structure and mechanism of chalcone synthase

The chalcone synthase (CHS) enzyme—known as a

type III polyketide synthase enzyme (PKS) is struc-

turally and mechanistically the simplest PKS (Schrö-

der 1997; Sanchez 2008). These enzymes function as

homodimeric iterative PKS (monomer size of

42–45 kDa) with two independent active sites that

catalyze a series of decarboxylation, condensation,

and cyclization reactions (Tropf et al. 1995). The

three dimensional structure of alfalfa CHS2 was

studied intensively by Ferrer et al. (1999). The study

revealed that each alfalfa CHS2 monomer consists of

two structural domains. In the upper domain, there

are four amino acids (Cys164, Phe215, His303, and

Asn336) are present at the active site were defined as

the catalytic machinery of CHS. The lower domain of

CHS has a large active site providing space for the

tetraketide required for chalcone formation (i.e.,

naringenin and resveratrol) from one p-coumaroyl-

CoA and three malonyl-CoA (Fig. 2) (Jez et al.

2001a, b). Production of chalcone requires the

condensation of one molecule of p-coumaroyl-CoA

and three malonyl-CoA molecules which is catalyzed

by CHS. It starts with the transfer of a coumaroyl

moiety from a p-coumaroyl-CoA starter molecule to

an active site cysteine (Cys164) (Lanz et al. 1991).

Next, a series of condensation reactions of three

acetate units derived from three malonyl-CoA mol-

ecules, each proceeding through an acetyl-CoA

carbanion derived from malonyl-CoA decarboxyl-

ation, extends the polyketide intermediate. Following

generation of the thioester-linked tetraketide, a reg-

iospecific intramolecular Claisen condensation forms

a new ring system to yield chalcone. In plants,

chalcone isomerase (CHI) will convert the chalcone

to (2S)-5,7,40-trihydroxyflavanone (naringenin); how-

ever, spontaneous ring closure in vitro results in

mixed enantiomers of naringenin (Hahlbrock et al.

1970; Jez et al. 2000). In vivo chalcone can convert

to narigenin without need of CHI. Four amino acids

(Cys164, Phe215, His303, and Asn336) situated at

the intersection of the CoA-binding tunnel and the

active site cavity play an essential and distinct role

during malonyl-CoA decarboxylation and chalcone

formation. Cys164 plays role as the active-site

nucleophile in polyketide formation and elucidate

the importance of His303 and Asn336 in the malonyl-

CoA decarboxylation reaction. Phe215 may help

orient substrates at the active site during elongation

of the polyketide intermediate. (Jez et al. 2000). The

general reaction mechanism of CHS is presented in

Fig. 2.

Several other cyclization reactions are possible

besides the one yielding a chalcone. In addition to the

starter molecule p-coumaroyl-CoA, in vitro alfalfa

CHS accepts other CoA-linked thioesters as alternate

starter molecules to generate corresponding chal-

cones, tetraketide lactone, and triketide lactone

products (Fig. 3). The substrates can be feruloyl-CoA,

hexanoyl-CoA, phenylacetyl-CoA, benzoyl-CoA,

butyryl-CoA, isobutyryl-CoA and isovaleryl-CoA.

With the starter substrates p-coumaroyl-CoA and

malonyl-CoA, CHS catalyzes an intramolecular
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Claisen condensation yielding the chalcone naringe-

nin. Alfalfa CHS2 and parsley CHS (Hrazdina et al.

1976), accept feruloyl-CoA as a starter molecule and

produce the tetraketide lactone (1b) and methylpy-

rone as the major products with the triketide lactone

(1c) generated as a minor product. With hexanoyl-

CoA, alfalfa CHS2 yields the tetraketide lactone (4b)

as the major product, triketide lactone (4c) and

methylpyrone are minor products (Jez et al. 2001a).

Parsley CHS accepts butyryl-CoA and hexanoyl-CoA

as substrates in vitro, which yield, respectively, the

chalcone analogues, phlorobutyrophenone (5b) and

phlorocaprophenone (4b) at pH 6.5 (Schuez et al.

1983). Medicago sativa CHS2 accepts phenylacetyl-

CoA as a starter molecule yielding a phlorobenzyl

ketone (2a), the chalcone-like product, accounts for

less than 10% and others like tetraketide lactone (2b),

triketide lactone (2c), and methylpyrone comprise the

other products. The overall product distribution with

phenylacetyl-CoA is similar to Scutellaria baicalen-

sis CHS (Morita et al. 2000). With benzoyl-CoA

as the starter molecule, alfalfa CHS2 generates
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Fig. 1 Flavonoid

biosynthetic pathway. ANS
anthocyanidin synthase; AS
aureusidin synthase; C4H
cinnamate-4-hydroxylase;

CHR chalcone reductase;

DFR dihydroflavonol

4-reductase; DMID 7,20-
dihydroxy, 40-
methoxyisoflavanol

dehydratase; F3H flavanone

3-hydroxylase; F30H
flavonoid 30 hydroxylase;

F3050H flavonoid 3050

hydroxylase; FS1/FS2
flavone synthase; I20H
isoflavone 20-hydroxylase;

IFR isoflavone reductase;

IFS isoflavone synthase;

IOMT isoflavone

O-methyltransferase; LCR
leucoanthocyanidin

reductase; LDOX
leucoanthocyanidin

dioxygenase; OMT
O-methyltransferase; PAL
phenylalanine ammonia-

lyase; RT rhamnosyl

transferase; UFGT UDP

flavonoid glucosyl

transferase; VR vestitone

reductase; STS stilbene

synthase; FLS flavanol

synthase. (Winkel 1999;

Yamaguchi et al. 1999;

KEGG pathways)
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phlorobenzophenone (3a) and methylpyrone as the

major product, and tetraketide lactone (3b) and

triketide lactone (3c) as minor products (Jez et al.

2001a). The recombinant hop CHS1 expressed in

E. coli showed activity with isobutyryl-CoA and

isovaleryl-CoA substrates, which produced as main

products phloroisobutyrophenone (6b) and phloroiso-

valerophenone (7b) (Zuurbier et al. 1998; Novák

et al. 2006).

The steady-state kinetic parameters of Medicago

sativa CHS2 for p-coumaroyl-CoA, malonyl-CoA,

feruloyl-CoA, hexanoyl-CoA, phenylacetyl-CoA and

benzoyl-CoA have been determined, these are pre-

sented in Table 1 (Jez et al. 2001a; Novák et al. 2006).

Control of CHS activity

In plants, CHS is activated by a wide range of

environmental and developmental stimuli. Theoreti-

cally, there are many ways to regulate CHS activity in

vivo, from metabolic control to the control of initiation

of transcription of the CHS gene (Martin 1993).

Metabolic control

There are many studies showing that CHS is inhibited

noncompetitively by flavonoid pathway products like

naringenin, chalcone naringenin and the other end

products of CoA esters. For example, the parsley

CHS is 50% inhibited by 100 lM naringenin and

10 lM CoA esters (Hinderer and Seitz 1985; Kreuz-

aler and Hahlbrock 1975), the flavonoids luteolin and

apigenin are inhibitory to rye CHS in vitro (Peters

et al. 1988), whereas in carrot, among the range of

flavonoids tested, only naringenin and chalcone

narigenin can inhibit CHS at 100 lM (Hinderer and

Seitz 1985). It seems that flavonoids accumulate in

the cytosol to a level that blocks CHS activity to

avoid toxic levels for the plant (Whitehead and Dixon

1983), though there is no direct evidence that this

inhibition happens in vivo.

Fig. 2 Reaction catalyzed by chalcone synthase (CHS). In

CHS, three amino acids play key roles in the catalytic functions

of type III PKS: Cys164: active site, covalent binding site of

starter residues and intermediates, His303 and Asn336:

stabilization/activation of both starter (e.g. 4-coumarate) and

extender units (malonyl-/acetyl-residues) (Ferrer et al. 1999;

Bomati et al. 2005; modified by Schröder 2008)
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Control of CHS turnover

In plants, CHS may always be present in the cells but

is only activated under certain specific conditions.

The statement ‘‘CHS may always be present in the

cells but is only activated under certain specific

conditions’’ means that CHS is activated at the

protein level. However, it has been shown that UV

light and biotic elicitors induce the flavonoid biosyn-

thetic pathway at the transcriptional level and that

CHS is not detectable before the onset of the various

stress situations. Studies on parsley cell cultures

showed that the induction of CHS activity by UV

light was the result of de novo synthesis and active

enzyme subsequently decayed with a half-life of 6 h,

whereas inactive enzyme decayed more slowly with a

half-life of 18 h (Schröder and Schäafer 1980).

Inactive CHS could be detected by CHS antibodies

and the size of the protein was not changed. In

another study about accumulation of CHS during UV

induction, Chappell and Hahlbrock (1984) concluded

that the accumulation of flavonoid end products is

presumably determined by activity of the rate-limit-

ing step(s) in flavonoid biosynthesis and may not

precisely reflect the dynamics of CHS activity in

vivo.

Control of CHS through trans-genes

The activity of CHS can be controlled by antisense

or sense genes. The studies on expression of

antisense genes in Petunia (e.g. Van der Krol

et al. 1988; Van der Meer et al. 1993), tobacco

(Wang et al. 2006), Gerbera hybrida (Elomaa et al.

1996) and Arabidopsis (Le Gall et al. 2005) have

shown that the presence of antisense CHS could

inhibit the expression of the endogenous CHS in

plants. In flowers of antisense CHS transgenic

Petunia, the antisense construct was able to inhibit

expression of the endogenous CHS genes to varying

degrees, which is observed phenotypically as an

inhibition of anthocyanin production to give com-

pletely acyanic or patterned flowers. In the cyanic

sectors and flowers, transcripts of the endogenous

CHS genes were under the detection limit, but the

antisense transcripts were also barely detectable

(Van der Krol et al. 1990b). The antisense effect

most likely involves homologous pairing between

the transcripts of endogenous CHS genes and

transcripts of the introduced antisense CHS gene

to form double stranded RNA that is very rapidly

degraded, thus inhibiting CHS transcript accumula-

tion and hence CHS activity.
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Fig. 3 Alternate starter

molecules and their in vitro

reaction products catalyzed

by CHS
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Introducing a heterologous CHS gene in sense

orientation can inhibit CHS activity in transgenic

plants. This phenomenon is called co-suppression

since it involves the reduction of transcriptional

level of both endogenous and introduced genes in

tissues where the endogenous gene is normally

expressed (Napoli et al. 1990; Jorgensen 1995). This

is known as gene silencing in which the transgene

triggered not only its own silencing but also the

endogenous chalcone synthase gene (Hammond

et al. 2001). But on the other hand the introduced

CHS gene may be expressed to high levels in tissue

where the endogenous CHS genes are not expressed,

such as in leaves of Petunia (Van der Krol et al.

1990a). Some studies have shown that co-suppres-

sion correlates with DNA methylation of the

silenced sequences, presumably leading to a block-

ade at the transcriptional level or/and failure of

transcript to accumulate in the cytoplasm resulting in

a lack of enzyme activity (Ingelbrecht et al. 1994;

Furner et al. 1998; Amedeo et al. 2000). Nowadays,

the molecular mechanism of co-suppression of gene

expression is thought to be related to the RNAi

mechanism (Hannon 2002).

CHS localization and dynamics

The CHS protein in buckwheat (Fagopyrum esculen-

tum) hypocotyls is located in the cytosol and

associates with the cytoplasmic face of the rough

endoplasmic reticulum (rER), but not with nuclei,

plastids, mitochondria, Golgi, or tonoplasts (Hrazdina

and Jensen 1992). Saslowsky and Winkel (2001)

examined the subcellular location of CHS and CHI in

Arabidopsis roots. High levels of both enzymes were

found in the epidermal and cortex cells of the

elongation zone and the root tip, consistent with the

accumulation of flavonoid endproducts at these sites.

Co-localization of CHS and CHI was observed at the

endoplasmic reticulum and tonoplast in these cells.

However, there is evidence that flavonoids located

in the nucleus may be synthesized in situ (Saslowsky

and Winkel 2001). Several recent reports describe the

accumulation of flavonoids in the nucleus in such

diverse species as Arabidopsis thaliana, Brassica

napus, Flaveria chloraefolia, Picea abies, Tsuga

canadensis, and Taxus baccata (Buer and Muday

2004; Feucht et al. 2004; Grandmaison and Ibrahim

1996; Hutzler et al. 1998; Kuras et al. 1999; Peer

et al. 2001). For the enzymes of the flavonoid

pathway, several mechanisms may be involved. In the

cytoplasm, flavonoid enzyme complexes are believed

to assemble at the ER and in electron dense particles

through the association of operationally-soluble

enzymes such as CHS and CHI with the membrane-

bound P450 hydroxylase, flavonoid 30-hydroxylase

(Saslowsky and Winkel 2001; Hrazdina and Wagner

1985). CHS possesses sequences resembling a classic

nuclear localization signal (NLS). This signal is

located on the surface, on the opposite side of the

protein from the dimerization interface and could

function to direct CHS, and perhaps associated

enzymes into the nucleus. The localization of end

products such as flavonol sulfate esters and flavan-3-

ols to the nucleus suggests that additional flavonoid

enzymes are also present in the nucleus (Grandmai-

son and Ibrahim 1996; Feucht et al. 2004).

There is an immuno gold-labeling study in grape

berry showing that CHS was localized in rough

endoplasmic reticulum (ER) and cytoplasm of the

skin cells, while few gold particles were found on the

cell wall. Besides, two novel sites of CHS were

observed within cells of developing grape berry, one

is in the plastids which remain unchanged throughout

all stages of berry development. At the ripening stage

of grape berry, CHS is present in the vacuole and in

the vacuole membrane (tonoplast) (Tian et al. 2008).

It is suggested that in grape berries, the synthesis of

flavonoids in the ripening stage may occur in the

vacuole.

Table 1 Steady-state kinetic constants of Medicago
sativa CHS2 with different starter substrates (Jez et al. 2001a;

Novák et al. 2006)

kcat (min-1) Km (lM)

p-Coumaroyl-CoA 5.14 ± 0.30 6.1 ± 1.3

Malonyl-CoA 4.58 ± 0.24 4.7 ± 1.1

Feruloyl-CoA 1.04 ± 0.17 5.2 ± 0.9

Hexanoyl-CoA 2.52 ± 0.22 4.1 ± 1.2

Phenylacetyl-CoA 2.17 ± 0.35 5.1 ± 0.7

Benzoyl-CoA 1.73 ± 0.21 2.2 ± 0.2

Isobutyryl-CoA – 14.9 ± 0.2

Isovaleryl-CoA – 8.0 ± 0.2

402 Phytochem Rev (2011) 10:397–412

123



Control of CHS gene expression

In Arabidopsis, parsley, and snapdragon only a single

copy of the CHS gene has been found. In most

angiosperms CHS has been shown to be encoded by a

multigene family, such as in petunia (violet 30) (Koes

et al. 1987), morning glories (Ipomoea) (Durbin et al.

2000), Gerbera (Helariutta et al. 1996), leguminous

plants (Ryder et al. 1987; Wingender et al. 1989; Ito

et al. 1997), and Cannabis sativa (Sanchez 2008).

Regulation of CHS gene expression

Many studies have shown that the CHS gene is

constitutively expressed in flowers, but also its

expression can be induced by light/UV light and in

response to phytopathogens, elicitors or wounding in

different parts of the plant, resulting in enhanced

production of flavonoids (Koes et al. 1987; Ryder

et al. 1984, 1987; Bell et al. 1986; Burbulis et al.

1996). CHS expression is also regulated by the

circadian clock (Thain et al. 2002).

The level of CHS gene expression is reflected by

the level of the CHS transcripts in plant cells. In order

for transcription to take place, the RNA polymerase II

must attach to specific DNA sequences in the CHS

promoter in the vicinity of the TATA box and must

be activated by specific DNA-binding proteins (tran-

scription factors) binding to response elements fur-

ther upstream in the promoter. The CHS promoter

was studied extensively in Phaseolus vulgaris,

Antirrhinum, Arabidopsis, and parsley (Dixon et al.

1994; Faktor 1997; Feinbaum et al. 1991; Lipphardt

et al. 1988).

The CHS promoter contains the nucleotide

sequence CACGTG regulatory motif known as

G-box, which has been found to be important in the

response to light/UV light (Kaulen et al. 1986;

Staiger et al. 1989; Dixon et al. 1994; Schulze et al.

1989). Besides the G-box there are other domains in

the CHS promoter involved in the light activation of

CHS transcription. Those domains have been identi-

fied in the parsley CHS promoter as Box I, Box II,

Box III, Box IV or three copies of H-box (CCTACC)

in the Phaseolus vulgaris CHS15 promoter. These

boxes play a role as core promoter together with the

G-box and all are required for light inducibility

(Block et al. 1990; Lawton et al. 1990; Weisshaar

et al. 1991).

The environmental and developmental control of

CHS transcription has been investigated for the

CHS15 bean gene (Fig. 4) (Dixon et al. 1994;

Harrison et al. 1991). The sequence elements required

for transcriptional activation of the CHS15 gene in

response to fungal elicitors and glutathione are

contained in a 130 bp region of the promoter

(Choudhary et al. 1990; Dron et al. 1988; Harrison

et al. 1991]). This region contains a G-box and H-box

III. There is a silencer element located between

positions -326 and -173 of the CHS15 promoter

(Dron et al. 1988). No trans-acting factors were

found that could bind to cis elements in this region

SBF HI  HII  HIII  G  TATA 

-326 -173 -130 -72 -66 -53 -29 +1

CHS1 CHS2 CHS3 CHS8 CHS9 CHS15

Development Light / UV light
Fungal elicitors / 
glutathione

Flowers Root Leaves Cell culture

a & a2 a or a2 a2

Fig. 4 Bean CHS15 promoter and regulators. SBF silencer binding factor, H H-Box (CCTACC), G G-Box (CACGTG), a/a2

regulation loci

Phytochem Rev (2011) 10:397–412 403

123



but the region reduced expression of CHS (Harrison

et al. 1991). An enhancer element was found in the

Antirrhinum CHS promoter. It is located in the region

between -564 and -647 and increased CHS gene

expression in roots, stems, leaves, and seeds but not

in petal tissue (Fritze et al. 1991).

The Petunia CHSA promoter was studied by van

der Meer et al. (1990, 1993) to understand the role of

the promoter in tissue-specific CHS expression. The

studies showed that the promoter sequence between

?1 and -67 confers flower specific CHS gene

expression. Another study on the Antirrhinum CHS

promoter has shown that the sequences between ?1

and -39 allow CHS expression in root and stems,

whereas sequences between -39 and -197 are

required for expression in petals and seeds (Fritze

et al. 1991).

The regulators of CHS in plants are controlled by

some specific loci. In maize, there are four loci, cl, r,

vp, and clf, involved in the regulation of CHS

expression (Dooner 1983). Multiple regulatory loci

for CHS expression have also been described for the

petunia regulatory mutant Red Star. The phenotype

of this mutant of red and white sectors in the flower

petals is thought to depend on at least four

regulatory genes, all of which regulate CHS expres-

sion in trans (Mol et al. 1983). In the CHS gene

family of Phaseolus vulgaris, the regulation is via

the a and a2 loci though they regulate different CHS

members in different ways. The CHS genes might

have different combinations of cis elements that

determine their response to the products of these

regulatory loci. The expression of CHSl in flower

tissue has an absolute requirement for the products

of both the a and a2 loci, whereas, in root tissue, the

products of these loci are not required. It is possible

that the CHSl gene interacts with one or more factors

present in roots, which are absent in flowers, that can

substitute for the products of the a and a2 loci.

CHS3 expression in flower tissue is more compli-

cated: it requires the product of the a2 locus, but has

a lower level of expression in a mutants compared

with wild type. This suggests that CHS3 interacts

with both the a2 and a locus products, but, unlike

the CHSl gene, it may also interact with other

products, allowing transcription at a low level in

a mutants. CHS2 is expressed in roots but not in

petal tissue, suggesting that it may not be able to

interact with the products of a and a2 loci in petal

tissue (Harker et al. 1990).

Transcription factors involved in of CHS gene

expression

Trans-acting factors of bean CHS15 that bind to two

short sequences centered on the G-box and H-box also

make major contributions to the in vivo transcription

of the promoter (Arias et al. 1993; Yu et al. 1993).

Trans activation required both a MYB-binding site

and a G-box like element (Sablowski et al. 1994).

MYB305, one of the MYB-like proteins that have

been implicated in the transcriptional control of

tissue-specific CHS gene expression, is also recog-

nized by a cis element of the light-regulatory unit 1

(LRUI) of CHS in parsley (Feldbrügge et al. 1997).

G-box/H-box binding factor 1(G/HBF-1), a basic

leucine zipper (bZIP) protein, that binds to both the

G-box and the adjacent H-box in the proximal region

of the CHS15 bean promoter, is rapidly phosphory-

lated in elicited soybean cells, this happen also to the

CHS15, CHS7, and CHS1 promoter (Dröge et al.

1997; Yoshida et al. 2008). Protein and mRNA levels

of G/HBF-l do not change during the induction of

CHS genes following pathogen attack (Yoshida et al.

2008) but CHS gene expression is strongly stimulated

following phosphorylation responding to fungal elic-

itor treatment in vitro (Dröge et al. 1997).

CHS activity in plant resistance

In nature plants are exposed to a variety of biotic and

abiotic stresses. Viruses, bacteria, fungi, nematodes

and other pests attacking plants are biotic stresses,

while light, temperature, wounding, drought, etc. are

abiotic stresses. During stress conditions a plant is

expressing a number of genes as part of its defense.

Among these genes, CHS is quite commonly induced

in different plant species under different forms of

stress like UV, wounding, herbivory and microbial

pathogens resulting in the production of compounds

that have e.g. antimicrobial activity (phytoalexins),

insecticidal activity, and antioxidant activity or

quench UV light directly or indirectly. The current

knowledge about regulation of CHS in plant pathogen

resistance is presented in Table 2.
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Table 2 Chalcone synthase expression in plant under stress conditions

No. Host Pathogen/stresses Metabolites References

1 Petroselinum
crispum

Parsley UV Flavonoids Schmelzer et al. (1988), Schulze

et al. (1989)

2 Phaseolus
vulgaris cells

French bean Colletotrichum
lindemuthianu

Ryder et al. (1984)

3 Arabidopsis cells UV-B and UV-A/blue light Christie and Jenkins (1996)

4 Arabidopsis
thaliana

Low temperature Anthocyanins Leyva et al. (1995)

UV-B, UV-A, and blue

Light

Fuglevand et al. (1996), Hartmann

et al. (1998), Wade et al. (2001)

High-intensity lights Anthocyanins Feinbaum and Ausubel (1988)

SA, ethylene, methyl

jasmonate Alternaria
brassicicola

Schenk et al. (2000)

Pseudomonas syringae Phenolic compounds Soylu (2006)

5 Petunia hybrida UV Koes et al. (1989)

Low temperature Anthocyanin Shvarts et al. (1997)

6 Petroselinum
hortense cells

UV Kreuzaler et al. (1983)

7 Pinus sylvestris Scots pine UV-B Phenolic compounds,

flavonoids, catechin

Schnitzler et al. (1996)

8 Picea abies Norway spruce Ceratocystis polonica Nagy et al. (2004)

Ophiostoma polonicum and

wounding

Catechin Brignolas et al. (1995)

9 Secale cereale UV Haussuehl et al. (1996)

10 Hordeum
vulgare

Barley Blumeria graminis Christensen et al. (1998)

Erysiphe graminis

UV

11 Medicago
truncatula

Alfalfa Glomus versiforme Isoflavonoid Harrison and Dixon (1993)

Medicago sativa

12 Antirrhinum
majus

Snapdragon Erwinia chrysanthemi Junghans et al. (1993)

Rhizobium meliloti

CuCl2

Wounding

Phoma medicaginis

Colletotrichum
lindemuthianum

Dalkin et al. (1990)

UV Lipphardt et al. (1988)

Staiger et al. (1989)

13 Lycopersicon
esculentum

Tomato

14 Glycine max Soybean Pseudomonas syringae pv

glycinea
Dhawale et al. (1989)

Phytophthora megasperma
f. sp. Glycinea

15 Picea glauca White Spruce Wounding, JA, MeJ Richard et al. (2000)

16 Daucus carota Carrot cell UV, Pythium
aphanidermatum

Anthocyanin Gläßgen et al. (1998)
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Phytoalexins

Phytoalexins are antimicrobial metabolites produced

by plants in response to microbial attack (or biotic

and abiotic elicitors) (Dixon 1986). Phytoalexins

come from many different metabolite classes such as

flavonoids, stilbenoids, sesquiterpenoids, steroids and

alkaloids. CHS can help the plant to produce more

flavonoids, isoflavonoid-type phytoalexins and other

related metabolites to protect it against stress. Accu-

mulation of flavonoids and isoflavonoids in response

to pathogen attack is seen in many plant species, and

their importance as antimicrobial phytoalexins is well

established (Matthews and Matthews 1989; Van

Etten and Pueppke 1976). Flavonoid phytoalexins

have been described in legumes, cereals, sorghum,

rice, Cephalocereus senilis, Beta vulgaris (Hipskind

et al. 1990; Johnson et al. 1976; Kodama et al. 1992;

Pare et al. 1992). Some isoflavonoids were increased

in Lupin luteus after infection with Fusarium oxy-

sporum such as genistein, wighteone and luteon

(Morkunas et al. 2005). The isoflavones, daidzein,

genistein and glycitein, in soybean were strongly

increased after infection by Sclerotinia sclerotiorum

(Wegulo et al. 2005). Stilbenes are known as the

phytoalexins in peanut (Ingham 1976) and grapes

(Langcake and Pryce 1977a, b). There is also

evidence that stilbene synthase (STS) has developed

from CHS several times in the evolution (Tropf et al.

1994).

Phytoanticipins

Van Etten et al. (1995) defined phytoanticipins as low

molecular weight, antimicrobial compounds that are

constitutively expressed in plants without the need for

infection with fungal pathogens or are produced after

infection solely from preexisting constituents. The

distinction between phytoalexins and phytoanticipins

is not always clear as some compounds may be

phytoalexins in one species and phytoanticipins in

another species. Phytoanticipins also are classed into

several chemical groups such as flavonoids, terpe-

noids, steroids, glucosinolates, and alkaloids.

The flavonoid epicatechin plays an important role

as phytoanticipin in avocado fruits (Guetsky et al.

2005) and antimicrobial isoflavones desmodianones

A, B and C have been isolated from Desmodium

canum (Monache et al. 1996). Anthocyanins as

products of the flavonoid metabolism are, for exam-

ple responsible for the red to purple and blue colors

of many fruits, vegetables, flowers, and cereal grains.

In plants they serve as attractants for pollination and

seed dispersal, give constitutive protection against the

harmful effects of UV irradiation, and as phytoantic-

ipins provide antiviral and antimicrobial activities in

plants (Wrolstad 2000). Genotypes of Ipomoea

purpurea with nonfunctional copies of chalcone

synthase (CHS) received greater herbivore damage

and twice the intensity of infection by the fungal

pathogen Rhizoctonia solani than the wild type

(Zufall and Rausher 2001).

Light protection

Phenolic compounds like flavonoids strongly absorb

UV light and thus are able to protect plants from

DNA damage caused by UV. Anthocyanins belong to

a class of flavonoids that accumulate in leaves and

stems as plant sunscreen in response to light intensity

(Leyva et al. 1995). Expression of CHS genes is

known to be regulated by light through a photore-

ceptor-mediated mechanism (Koes et al. 1989). In

several cases, it was found that the photoregulated

production of flavonoids is at least in part due to the

transcriptional induction of CHS (Chappell and

Table 2 continued

No. Host Pathogen/stresses Metabolites References

17 Brassica rapa Turnip UV Anthocyanin Zhou et al. (2007)

18 Sorghum bicolor Sorghum

mesocotyl,

juvenile

sorghum

tissues

Colletotrichum graminicola 3-Deoxyanthocyanidins,

apigeninidin

luteolinidin

Lue et al. (1989),

Nicholson et al. (1987)Helminthosporium maydis
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Hahlbrock 1984; Feinbaum and Ausubel 1988; van

Tunen et al. 1988; Taylor and Briggs 1990). Exam-

ination of CHS expression in parsley cell culture

suggested that a UV-B light receptor, a blue light

receptor and phytochrome may all play a role in light-

induced CHS expression (Bruns et al. 1986; Ohl et al.

1989).

High intensity light and UV-A were found to

regulate expression of chimeric chalcone synthase

genes in transgenic Arabidopsis thaliana plants

(Feinbaum et al. 1991). High-intensity light treatment

of A. thaliana plants for 24 h caused a 50-fold

increase in CHS enzyme activity and an accumula-

tion of visibly detectable levels of anthocyanin

pigments in the vegetative structures of these plants

(Feinbaum and Ausubel 1988). The expression of

CHS genes was increased with time during a 24 h

exposure to UV-A on swollen hypocotyls of the red

turnip ‘Tsuda’ and induced anthocyanin accumula-

tion (Zhou et al. 2007). The flavonoids accumulate in

epidermal cells of the leaves and it is specifically in

these cells that CHS gene expression is induced by

light stimuli (Schmelzer et al. 1988). However, in

mustard the expression of two CHS genes is induced

coordinately in seedlings grown in a dark environ-

ment for 36–42 h, though this induction is enhanced

by supplying red or far red light (Ehmann et al.

1991).

Auxin and jasmonic acid signaling

In plant increase of CHS activity causes a high

accumulation flavonoid level that inhibit polar auxin

transport (Brown et al. 2001; Faulkner and Rubery

1992; Jacobs and Rubery 1988). Inhibitors of auxin

transport could increase the resistance of tomato plants

to Fusarium oxysporum (Davis 1954). Also other

research showed that CHS is expressed in the nodule

primordium and later primarily in uninfected cells of

the nodule apex in Rhizobium infected legumes. This

may explain the induction of nodule on infected

legume roots, higher accumulation of flavonoids

blocks auxin transport, causing a local accumulation

of auxin, a growth hormone, which caused the

induction of nodule growth and development (Esta-

brook and Sengupta 1991; Yang et al. 1992).

Jasmonic acid and its esters, such as methyl

jasmonate (MeJA) are a group of plant hormones

having a signaling role in insect and disease

resistance (Xu et al. 1994). They could activate

CHS in soybean and parsley cell cultures (Creelman

et al. 1992) and Picea glauca (Richard et al. 2000). It

is thought that volatile jasmonates are released from

wounded tissue; thus elicitating plants to activate

CHS which cause a production of phytoalexins in

advance to resist an infection.

Conclusion

CHS is known as the key entry enzyme commited to

the production of the polyketide phenylpropanoids in

plants. It seems that all plants contain at least one

CHS gene and often CHS gene families in plant with

different expression patterns. In certain cases evolu-

tion into genes that encode enzymes with different

substrate specificity, particularly for the starter mol-

ecule (e.g. aliphatic CoA ester instead of cinamic acid

derivative) give different ring closure such as in

stilbenes. The flavonoid pathway genes are highly

diverted and have been found to be present from the

earliest plants on land (the bryophytes, liverworts and

hornworts) to the highly evolved flowering plants.

Chalcones, flavonols and flavones were found in the

earliest plants. Those flavonoids function as sun-

screen protecting against UV radiation as plants

began colonizing land and also play a regulation

auxin transport (Markham, 1988; Shirley, 1996; Li

et al. 1993; Brown et al. 2001). Later stage of plants

such as the ferns and allies are known as oldest group

of plants producing proanthocyanidins, procyanidin,

prodelphinidin and flavanols. Anthocyanidin, a fla-

vonoid, plays an important role in plant pigment

action and is found in gymnosperms and angio-

sperms. These flavonoids serve diverse functions in

different plant species, e.g. as pigments, phytoalex-

ins, UV protectants, signal molecules in plant-

microbe interactions, antioxidants, and pollinator

attractants or feeding deterrents. In other words these

unique plant compounds play a major role in the

interaction of plants with their environment (De

Bruyne et al. 1999; Kong et al. 2003: Marles et al.

2003; Yilmaz and Toledo 2004).
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JP (2000) Structural control of polyketide formation in

plant-specific polyketide synthases. Chem Biol 40:1–12

Jez JM, Bowman ME, Noel JP (2001a) Structure-guided pro-

gramming of polyketide chain-length determination in

chalcone synthase. Biochemistry 40:14829–14838

Jez JM, Ferrer JL, Bowman ME, Austin MB, Schröder J, Dixon
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