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Abstract- In sub-100-nm processes, many physical 

phenomena have become critical issues in the 

development of processes, devices, and circuits. To 

achieve reasonable compromise in ASIC design, device- 

and process-level characterization of physical designs is a 

fundamental requirement. In this paper, we address topics 

regarding "design for variability", which are increasingly 

important in the 65- to 90-nm technology era. We have 

developed a new test-structure to precisely measure the 

on-chip variation of key LSI components (MOST, R, C, 

and circuit-delay). Statistical analysis of the experimental 

results revealed that the 3  variation of MOS 

drive-current within a chip was 30%, which led to equal 

variation in the circuit propagation delay (Tpd). We found 

that variation can be suppressed due to its randomness 

features in multi-stage circuitry and high-performance, 

large-gate-area driver CMOS devices. 

  

1.  INTRODUCTION 

 

In scaled LSIs below the 100-nm technology node, 

physical problems have once again become of major 

interest to circuit designers. Signal integrity problems due 

to capacitive crosstalk[1] and power-line bounce noise[2] 

are known to degrade design quality. Inductive crosstalk 

and noise[3] may limit circuits operating at gigahertz 

speeds even on a chip. Another emerging issue is 

increasing variability problems, which are amplified by 

the required low power and low Vdd operation. 

Traditionally, to cope with variability (process, 

environmental, and time-dependent variation), we have 

used techniques such as guard-banding (worst-casing) 

and setting design margins. Figure 1 illustrates the widely 

expected performance crisis regarding 65- to 90-nm 

technologies[4]. First, the performance improvement 

achievable through scaled technology will level off since 

the MOS driving capability will be limited because of 

low Vdd and carrier velocity saturation, and interconnect 

signal propagation will be degraded by narrow and 

densely pitched interconnect structures. Second, relative 

critical dimension (CD) control will be reduced and 

on-chip variation significantly increased due to 

photolithographic problems (e.g., concerning optical 

proximity control (OPC) and phase-shift mask (PSM)), 

CMP dummy problems, and impurity and line-edge 

fluctuations. These problems were predicted in ITRS 

2003 (Fig. 2). Gate CD variation and line edge roughness 

(LER) will be difficult to control for below-65-nm 

technology. This will lead to a sharp increase in CMOS 

Vth variation (Fig. 3)[5] and drive current variation 

within the die distribution. 

In this paper, we describe our activities aimed at 

suppressing variability in 65- to 90-nm process 

technologies. First, we look at ways to precisely measure 

the variation within a die. We introduce a sophisticated 

test structure (DMA-TEG) and show that it provides 

reliable regarding MOS Ids, C, and R variation[6-7]. 

Second, we derive a robust analysis methodology which 

categorizes measurement data into systematic and random 

components[8]. We have applied this methodology to 

various cases of characterization and modeling to 

determine the actual features of variation in 90-nm 

devices. We also assess the propagation delay (Tpd) 

variability by measuring the frequency variation of 

ring-oscillator circuits implemented in the DMA-TEG. 

We have found that the relative Tpd variation can be 

reduced with number of stages which form the 

ring-oscillators. 

 

2.  MEASURING VARIABILITY 

 

A. Test structure 

Variation is hard to measure with reliable precision 

within a reasonable time. Special care must be taken 

concerning the test structure and measurement jig to 

obtain meaningful variation data. We have developed a 

special purpose test-structure, the device matrix array-test 

element group (DMA-TEG), which features on-chip 

measurement circuits and matrix unit decoder access. A 

chip photograph is shown in Fig. 4. The die size is 5 x 5 

mm, and the 4.2 x 4.4 mm DMA-TEG is located at the 

upper-right of the die. Individual CMOS devices, the R 

and C of metal layers, and so on can be measured using 

test-structures laid out at the upper-left on the chip. The 

DMA design architecture is shown in Fig. 5. The basic 

idea of the architecture is to use 16 x 16 matrix array 
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units (MAUs) to measure the on-chip variation of circuit 

components. As shown in the MAU cell details, in the 

MAU densely packed CMOS and interconnect 

components are manually designed and on-chip 

measurement circuits for R, C, and the down-countered 

frequency with low leakage bus lines are carefully 

designed. Figure 6 shows the main features of the 

DMA-TEG and compares the second-generation 90-nm 

DMA to the first-generation DMA designed for 130-nm 

technology. Key improvements are (1) 1.3X MAU size, 

(2) a 140% increase in the number of components, and 

(3) additional 90
o
 rotated patterns. The on-chip 

measurement circuits and test jig were carefully studied 

in terms of measurement precision and time. The results 

are listed in Fig. 7, and compared with those for the 

130-nm DMA. As shown, minimal error in the 

measurement system was achieved with regard to R, C, 

Ids (Vth), and ring oscillator frequency. The measurement 

time of the DMA was 2.5 hr/chip (since improved to 1.0 

hr/chip). Several on-chip circuits contribute to this highly 

precise measurement:  

 R measurement: Kelvin circuit 

 C measurement: CBCM circuit 

Ids measurement: leakage control circuit 

 Frequency measurement: down-counter 

Based on these techniques, we have been able to 

conduct within die variability measurements in a reliable 

manner for the first time. 

 

B. Measurement results  

The test system automatically measures the 

DMA-TEG using a special PC controlled test-program. 

Collected data are displayed as a chip-map, wafer-map, 

correlation-map, and histogram. Basic characteristic 

quantities, such as mean ( ) and standard deviation ( ), 

are calculated after outliers are detected and eliminated. 

Figure 8 shows an example of experimental data showing 

within-die variation: experimental within-die variation is 

shown as chip-maps for two types of ring-oscillator 

frequency, N and PMOS drain current, contact resistance 

on the N+ diffusion layer, via resistance between metal 2 

and 3, and the interconnect wire resistance and 

capacitance of narrow-pitch metal 2. The relative on-chip 

variation of the N and PMOS drain current is dominant, 

whereas there is much less fluctuation in the interconnect 

wire resistance and capacitance. Figure 9 shows an 

example of the die-to-die distribution of the NMOS Ids 

variability (a systematic component). Note that the 

on-chip variation within a wafer does not show a uniform 

tendency; e.g., some chips have a negative slope in the 

horizontal direction while others have a positive slope in 

the vertical direction. In Fig. 10, we summarized the 

relative variation ( as a percentage) for typical 

components used in 90-nm process technology. The 

on-chip variation was the average for the 71 dies/wafer. 

The Ids variation of smaller scale N and PMOS 

technologies will clearly be crucial, and will have to be 

carefully considered in process and design development. 

Estimation of the variation ( ) is the most important 

task in the measurement. If we assume the variation is 

normally distributed (usually a valid assumption), the 

values obtained from the DMA-TEG will be within a 

10% error with a 98% level of confidence. This also 

depends on the number of MAUs, though, and accurate 

assessment of within-die variation needs over 200 MAUs 

per chip [9]. 

 

3.   VARIABILITY ANALYSIS 

 

On-chip variation is a problem which increasingly 

arises in 65- to 90-nm technologies. It can be 

characterized as having two components – systematic and 

random [10] – and we need to reliably decompose 

measurement data into these two components. A 

technique developed for such decomposition is shown in 

Fig. 11. To extract systematic components, the raw data is 

fitted with a fourth-order polynomial in a 

two-dimensional space (x,y). The extracted 2D 

polynomial equation is assumed to exhibit a curved 

surface for the systematic component of on-chip variation. 

Residual amounts (equal to the raw data less the 2D 

polynomial value) show the effective random component 

of on-chip variation. In this way, the raw data are divided 

into systematic and random components.  

We tested the validity of this algorithm by applying it 

to NMOS Vth and Ids variation data (Fig. 12). The 

extracted random component showed how random the 

variation was. The random component histogram in Fig. 

12 shows +/- 4  accuracy in fitting to a normal 

distribution. Therefore, the extracted random component 

appears to be purely random in nature.  

The systematic component can be characterized by its 

correlation length. This metric represents the distance 

along which the on-chip slope is correlated. Figure 13 

shows a correlation length histogram for an on-chip 

NMOS Ids systematic component. This histogram shows 

that the correlation length was close to normal in its 

distribution, with a range of 1.2 to 3.0 mm. In other 

words, NMOSs closely laid out (within 1 mm in distance) 

are well correlated with respect to systematic component 

variation.  

Figures 14 and 15 show Pelgrom plots [11] of the Vth 

and Ids on-chip variation ( ) for NMOS devices with 

various length and width (L&W) dimensions. As 

expected, on-chip variation was linearly related to the 

square root of the MOS gate-area. The interconnect 
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resistance of the metal wire was also dependent on the 

width and length, which reflects the LER and 

metal-dishing effect of the CMP process. Figure 16 shows 

experimental data regarding the effect of L&W 

dimensions on the variability of M2 wire resistance in 

NMOS devices. Again smaller dimensions led to greater 

on-chip variation.  

A simple question regarding the MOS Vth variability 

is what happens when the technology generation 

changes? Figure 17 compares experimental data on 

90-nm and 130-nm Ids on-chip variation presented as 

Pelgrom plots. (Circles show the minimum-dimension 

MOS used in a standard cell library.) This data shows that 

the Ids variation doubled for each technology node 

enhancement below 100-nm processes. The data for Vth 

variation versus the technology node curve (Fig. 3) 

showed a similarly increasing trend. 

 

4.  DELAY VARIABILITY 

 

We can use ring-oscillators in DMA-TEG to evaluate 

the circuit-delay variability. Various types of 

ring-oscillator circuit are implemented in the DMA (Fig. 

18). We can use inverter, 2NAND, 2NOR, 3NAND, and 

3NOR circuit components. Oscillators have a seven-stage 

circuit chain. To evaluate the output loading effect of each 

circuit, we used a fan-out 1 and 4 and M2 and 3 

interconnect loading with Capacitance and  Resistance.  

The resulting 3 variation of the propagation delay 

(Tpd/stage) ranged from 11 to 22%. We measured the 

maximum variability with an inverter-type ring-oscillator 

with minimum-size transistors. Output loading lowered 

on-chip variation, but did not significantly reduce Tpd 

variation. This is because both the on-chip variation and 

the performance of the oscillators are determined solely 

by the N and PMOS Ids and its variation. Note that if we 

used 10X gate-width devices in the inverter circuit, the 

Tpd variation would be significantly improved, as has 

been shown experimentally. The physical reason for this 

result is clear from the Ids-variation vs. gate-area 

relationship shown in Fig. 17. As explained, good 

correlation between the Tpd variation and Ids variation 

has been found experimentally. This was confirmed by 

the correlation between the on-chip Ids and the 

ring-oscillator frequency data (Fig. 19). Figure 20 shows 

the gate-area effect on the Tpd variation; up to a 

three-fold improvement was realized by using a larger 

(10X) gate-area CMOS in the oscillator. 

In addition, the large random variation in MOS Ids 

and Vth can be suppressed through the well known 

multi-stage effect. 

 

CONCLUSION 

 

The "design for variability" approach is increasingly 

important in the 65- to 90-nm technology era. 

Accordingly, we have developed the DMA-TEG 

test-structure which enables precise measurement of 

on-chip variation in key LSI components (MOST, R, C, 

and circuit-delay). Statistical analysis of experimental 

data has revealed that the 3  variation of the MOS 

drive-current reaches 30% within a chip, and this leads to 

significant variation in a circuit's per-stage Tpd. We 

confirmed that the variation can be suppressed due to its 

randomness features in multi-stage circuitry and 

high-performance, large-gate-area driver CMOS devices. 
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Fig. 1 Performance crisis in 65- to 90-nm technologies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Technology trend of CMOS Vth variation with 

experimental data for 130-nm and 90-nm technologies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 ITRS 2003 on gate CD variation and line edge 

roughness (LER) control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Chip photograph of 90-nm DMA-TEG 
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Fig. 5 DMA design architecture: 16x16 MAU array and decoders 
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Fig. 6 Main features of the DMA-TEG: comparison of 

the second-generation 90-nm DMA and the 

first-generation 130-nm DMA technology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 DMA-TEG measurement precision and 

measurement time 
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Fig. 9 An example of the die-to-die distribution of NMOS Ids variability (systematic component)
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Fig. 10 Summary of relative variation ( in %) for 

typical components used in a 90-nm process technology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 A new technique for decomposing systematic 

and random components [NOTE: In the top line, change 

‘date’ to ‘data’.] 
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Fig. 13 Correlation-length histogram for the on-chip NMOS Ids systematic component 
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Fig. 14 Experimental data showing the dimension effect 

on NMOS Vth variability 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 Experimental data showing the dimension effect 

on the variability of M2 wire resistance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 Gate-area effect on Tpd variation: three-fold 

improvement was achieved by using a larger (10X) 

gate-area CMOS in the oscillator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Experimental data showing the dimension effect 

on NMOS Ids variability 

 

 

 

 

 

 

 

 

 

 

Fig.17 Experimental data for 90-nm and 130-nm Ids 

on-chip variation in the form of Pelgrom plots 

 

 

 

 

 

 

 

 

 

Fig. 18 Various types of ring-oscillator circuit are 

implemented in the DMA 

 

 

 

 

 

 

 

 

 

 

Fig. 19 On-chip correlation data between Ids and 

ring-oscillator frequency 
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