
Challenges and opportunities for hybrid systems in the automotive design flow

Andrea Balluchi
PARADES

Via S. Pantaleo, 66, 00186 Roma, Italy
balluchi@parades.rm.cnr.it

Luca Benvenuti
DIS, Università di Roma “La Sapienza”
Via Eudossiana 18, 00184 Roma, Italy

luca.benvenuti@uniroma1.it

Alberto L. Sangiovanni–Vincentelli
EECS Dept., Univ. of California at Berkeley,

CA 94720, USA
PARADES, Roma, Italy

alberto@eecs.berkeley.edu,alberto@parades.rm.cnr.it

First Draft - March 1, 2005

Abstract— Automotive is certainly one of the most attractive
and promising application domains for hybrid system tech-
niques. Indeed, hybrid models and algorithms have already been
successfully applied for automotive control designs. On the other
hand, despite the significant advances achieved in the past few
years, hybrid methods are in general still not mature enough
for their effective introduction in the automotive industry
design processes at large. In this report, we take a broad
view of the development process for embedded control systems
in the automotive industry with the purpose of identifying
challenges and opportunities for hybrid systems in the design
flow. We identify critical steps in the design flow and extract a
number of open problems where, in our opinion, hybrid system
technologies could play an important role.

I. INTRODUCTION

The lack of an overall understanding of the interplay of the

sub–systems and of the difficulties encountered in integrating

very complex parts, system integration has become a night-

mare in the automotive industry. Jurgen Hubbert, in charge

of the Mercedes-Benz passenger car division, publicly stated

in 2003: ”The industry is fighting to solve problems that

are coming from electronics and companies that introduce

new technologies face additional risks. We have experienced

blackouts on our cockpit management and navigation com-

mand system and there have been problems with telephone

connections and seat heating.” We believe that this state is the

rule, not the exception, for the leading Original Equipment

Manufacturers (OEMs) in today’s environment. The source

of these problems is clearly the increased complexity but

also the difficulty of the OEMs in managing the integra-

tion and maintenance process with subsystems that come

from different suppliers who use different design methods,

different software architecture, different hardware platforms,

different (and often proprietary) Real-Time Operating Sys-

tems. Therefore, the need for for standards in the software

and hardware domains that will allow plug-and-play of sub-

systems and their implementation are essential while the

competitive advantage of an OEM will increasingly reside

on essential functionalities (e.g. stability control).

To deliver more performing, less expensive, and safer cars

with increasingly tighter time-to-market constraints imposed

by worldwide competitiveness, the future development pro-

cess for automotive electronic systems must provide solutions

to:

• The design of complex functionality with tight require-

ments on safety and correctness;

• The design of distributed architectures consisting of

several subsystems with constraints on non functional

metrics such as cost, power consumption, weight, posi-

tion, and reliability;

• The mapping of the functionality (often implemented

as OEM application Software) onto the components

of a distributed architecture with tight real-time and

communication constraints.

Most of the car manufacturers outsource the design and

production of embedded controllers to suppliers (so–called

Tier–1 companies), which in turn buy IC components and

other devices by third parties (so–called Tier–2 companies).

Embedded controllers are often developed by different Tier–

1 companies and are requested to operate in coordination on

a same model of a car. Moreover, in the development of an

embedded controller, the supplier has to integrate some IPs

(Intellectual Properties) provided by the car manufacturer at

different levels of details (algorithms, legacy code) and, in

the near future, possibly by third parties.

To cope with this challenging context, the design flow has

to be significantly improved. Hybrid systems techniques can

have an important role in this respect.

Successful approaches to design of control algorithms

using hybrid system methodologies had been presented in

the literature, e.g. cut-off control [7], intake throttle valve

control [8], actual engaged gear identification [5], adaptive

cruise control [15]. However, despite the significant advances

1



of the past few years, hybrid system methodologies are not

mature yet for an effective introduction in the automotive

industry. On the other hand, hybrid system techniques may

have an important impact on several critical open problems in

the overall design flow that go beyond the classical controller

synthesis step. In this paper, we analyze the design flow

for embedded controllers in the automotive industry, with

the purpose of identifying challenges and opportunities for

hybrid system technologies. We present a detailed description

of the typical design flow for embedded controllers adopted

by the automotive industry with particular emphasis on the

Tier–1 supplier problems as they are more amenable to the

use of hybrid techniques. For each design step, we identify

critical phases and bottle-neck problems and we extract

relevant open problems that hybrid system technologies may

contribute to solve.

The rest of the paper is organized as follows. In Section II,

an overview of the automotive embedded controller design

scenario is presented, emphasizing constraints and bound-

aries. The design flow and the integration and validation

flow are respectively discussed in Section III and Section IV.

Some concluding remarks are given in Section V.

II. DESIGN SCENARIO AND DESIGN FLOW

In today cars, the electronic control system is a networked

system with a dedicated ECU (Electronic Control Unit) for

each subsystem: e.g. engine control unit, gear–box controller,

ABS (Anti–lock Braking System), ESP (Electronic Stability

Program), dashboard controller, and VDC (Vehicle Dynamic

Control). The ECUs are connected via a network specifically

designed for automotive applications, such as CAN, and

Flexray. In Section II-A, a standard design flow adopted by

Tier–1 companies for the development of each single ECU

is described. Due to the increased number of subsystems

equipped with electronic control, this one–to–one mapping of

functionalities to ECUs is no longer feasible. In Europe, the

AUTOSAR initiative has been established to define common

standards and methodologies to allow better mapping of

functionality on the embedded systems. The objectives of this

initiatives are briefly recalled in Section II-B. In Section II-

C, we describe the peculiarities of customer requirements for

automotive Tier–1 companies that are quite different with

respect to other application domains.

A. Tier–1 companies’ design flow

The standard design flow adopted by Tier–1 companies is the

so–called “V–cycle” shown in Figure 1. The top–down left

branch represents the synthesis flow. The bottom–up right

branch is the integration and validation flow.

The synthesis flow is articulated in the following steps:

• System specification: formalization of system specifi-

cation; coherence analysis; evaluation of feasibility;

systemsystem
specificationsspecifications

functionalfunctional
deploymentdeployment

controlcontrol
systemsystem

hw/hw/swsw
componentscomponents

componentscomponents
implementationimplementation

hw/hw/swsw
testingtesting

controlcontrol
validationvalidation

functionalfunctional
validationvalidation

systemsystem
integrationintegration

Fig. 1. Design and integration flow.

completion of underspecified behaviors; abstraction of

lower layers customer’s requirements.

• Functional deployment: system decomposition; defini-

tion of subsystems’ specifications; design of control

algorithm architecture; definition of specifications for

each control algorithm

• Control system: plant modeling (model development,

identification, validation); controller synthesis (plant

model and specifications analysis, algorithm develop-

ment, controller validation); fast prototyping.

• HW/SW components: formal specifications for imple-

mentation; design of hardware and software architec-

tures; hardware design; software development and au-

tomatic code generation; RTOS (Real–time Operating

System); etc1.

The synthesis flow terminates with the development of the

components (components implementation). From this point

starts the integration and validation flow that goes through

the following steps:

• HW/SW testing: emulation; software / processor /

hardware–in–the–loop testing.

• Control validation: in–vehicle validation of the control

algorithm integration.

• Functional validation: in–vehicle validation of the sub-

system behavior;

• System integration: validation with respect to system

specification; calibration (off–line and on–line DoE

screening, refinement and optimization, pre-calibration

and fine tuning); testing of integration with other em-

bedded controllers.

B. AUTOSAR

The rigid partition one subsystem — one ECU adopted

today in the automotive industry is by no means cost appeal-

1This layer is only sketched, since low relevant to hybrid systems
applications.

2



ing and often it is not efficient in terms of communication

and synchronization. There is a clear necessity to have, in

the near future, a more flexible approach that allows to map

more functionalities on a same ECU and distribute other

functionalities on several ones. The advantages of the new

approach are apparent: cost reduction, flexibility, redundancy,

etc. Moreover, the new approach should allow to support

functionalities developed by either different suppliers or by

the OEM, on a same ECU. In fact, currently electronic ar-

chitectures are based on proprietary solutions, which seldom

allow the exchange of applications between both automotive

OEMs and their suppliers.

The objective of the AUTOSAR initiative [13], [2], pro-

moted by leading OEMs and Tier–1 suppliers, is establishing

an open standard for automotive electric/electronic archi-

tectures. The standard will serve as a basic infrastructure

for the management of functionalities, within both future

applications and standard software modules, allowing col-

laboration between companies on the development of basic

functionalities while providing a platform that encourages

competition on innovative functionalities.

The scope of AUTOSAR includes all vehicle domains. Its

declared goals are:

• Implementation and standardization of basic system

functionalities as an OEM wide “Standard Core” so-

lution;

• Scalability to different vehicle and platform variants;

• Transferability of functionalities throughout network;

• Integration of functional modules from multiple suppli-

ers;

• Consideration of availability and safety requirements;

• Redundancy activation;

• Maintainability throughout the whole ”Product Life

Cycle”;

• Increased use of ”Commercial off the shelf hardware”;

• Software updates and upgrades over vehicle lifetime.

The AUTOSAR standard will serve as a platform upon which

future vehicle applications will be implemented and will also

serve to minimize the current barriers between functional

domains. It will, therefore, be possible to map functionalities

and functional networks to different ECUs in the system, al-

most independently from the associated hardware. To achieve

the technical goals modularity, scalability, transferability and

re-usability of functionalities, AUTOSAR will provide a

common software infrastructure for automotive systems of

all vehicle domains based on standardized interfaces for the

different layers. In addition to the technical question, there

are serious implications on IP exchange and protection to be

solved.

C. Customer requirements

The customer requirements, issued by the OEM, define the

desired behavior of the vehicle that should be achieved by

the design of the control system. The specifications regard

• performance and driveability - dynamic behavior of the

vehicle, driver assistance, detection and suppression of

critical dynamic vehicle states, comfort;

• fuel consumption;

• legal requirements - environment and safety.

Ideally, requirements should define what the controlled sys-

tem must, do, i.e. they should express at the system specifi-

cation level of the design flow the desired closed–loop speci-

fication. However, in the automotive industry, often customer

requirements define also in part how the requested behavior

has to be obtained. For instance, OEM requirements may

impose some details on the control algorithm architecture

at the functional level, some particular control algorithms at

the control system level, the use of OEM legacy code or

the choice of a particular micro-controller at the HW/SW

component level. In sum, customer requirements contain

specifications that are not only at the system specification

level, but are spread over all levels of the design flow. That is,

they are heterogeneous – because they are related to different

levels of abstraction – and often not complete. Customer

requirement management analyzes OEM requirements and

clearly identifies this heterogeneity to allocate and handle

each requirement at the correct phase of the design flow.

Heterogeneity of customer requirements is a critical issue

in the design flow for Tier–1 companies and it is peculiar to

the automotive industry. In the near future, Tier–1 companies

will be requested to integrate on a single ECU functionalities

and legacy code provided by OEMs and third parties. In our

opinion, handling this composition of IPs at different levels of

abstraction, developed independently by different companies,

is nearly impossible. In fact, software components can not

be composed with guaranteed closed–loop behavior if their

interaction is not represented, formalized and tested at the

algorithm level. Hence, the right level of composition is at

the control system level.

Due to the automotive design cycle and the demanding

constraints on ECU development time, at the beginning

of the design, only a draft of the customer requirements

is handed out to the Tier–1 companies. This first draft is

usually incomplete in many parts; it will be completed later

in parallel to the development of the ECU. To complicate

matters further, most of the requirements are given in natural

language and are not formally specified.

III. SYNTHESIS FLOW

The design of automotive ECUs is subject to very critical

constraints on cost and time–to–market. Successful designs,

in which costly and time consuming re–design cycles are

avoided, can only be achieved using efficient design method-

ologies that allow for component reuse and evaluation of

platform requirements at the early stages of the design flow.

Design methodologies must foster component reuse at all

layers of the design flow from system specification to control

3



algorithm and HW/SW components (see [1], [6]). To do so,

design methodologies should provide means for the:

• evaluation of the compliance of the reused component

with the new context requirements;

• correct integration with other (either reused or not)

components;

• cost evaluation.

Furthermore, to manage the complexity of the design and

obtain ECUs with guaranteed performances and reduced cost,

a model-based design approach has to be adopted at all

levels of the design flow. Specifications, functional architec-

tures, algorithms, and implementation architectures should

be represented formally by models. The complementary and

interoperability of tools supporting the model description at

the different levels of the design flow is a key issue. The

design chain should be refined to achieve higher degrees of

integration and standardization. In this section, we describe

the synthesis part of the automotive design flow covering

the levels of system specification, functional deployment,

control system and HW/SW components. The discussion

will focus on the design flow for an engine control unit,

which is taken as an example. Emphasis will be placed on

the aspects which we believe hybrid system techniques may

have relevant impact on, while details of the design with no

relation to hybrid systems will be slightly mentioned.

A. System specification

System specification are defined in terms of a number

of operation modes characterized by different controlled

variables and objectives. Specifications are given in terms of

requirements on performance, driveability, fuel consumption,

emissions and safety.

System specification regards both discrete and continu-

ous behaviors. Discrete specifications are often given in

natural language and only sometimes formalized in some

discrete modeling framework. The specifications defines

modes and switching conditions. Continuous specifications

are given following classical methodologies in terms of

steady-state/transient response, frequency domain, robustness

and parameter sensibility, disturbance rejection, control ef-

fort, cost functions, and constraints.

Operation modes are organized in a hierarchical structure.

Some of them are introduced to specify smooth transitions

between different operating conditions.

Often, for both discrete and continuous specifications,

requirements are given by specifying requested behaviors on

hybrid input/output evolutions. In addition, critical maneu-

vers for which the behavior requested by the specifications

should be guaranteed (possibly up to some allowed degrada-

tion) are also identified.

The degree of detail given by the OEMs in describing

system specifications is not uniform. Depending on the

importance placed by the OEM on each single behavior,

functionality or constraint, a different degree of accuracy

in describing the requirement itself is used. In particular,

some behaviors may result only vaguely specified: in this

case, under-specified system requirements are completed by

the Tier–1 supplier on the basis of its own experience while

trying to maximize reusability for future developments. On

the other hand, there are also behaviors that are very detailed

in the customer requirements to the the point that the OEM

imposes not only a system level requirement but also a

particular solution to satisfy it, resulting in an undesirable

(at least from an ideal point of view) over-specification. In

customer requirement analysis, these customer requirements

are inserted at the right level of abstraction as constraints

that limit the degrees of freedom of the designers active

at that level. Since these constraints are often the result of

decisions based on insufficient analysis, the feasible design

space may be empty thus causing unnecessary design cycles.

We do believe that care must be exercised when constraint

are entered at abstraction levels that are non appropriate with

respect to the role of the company that specifies them.

Hybrid system contributions. Hybrid methods have im-

pact in the following areas:

• Entering designs at the correct level of abstraction does

require the specification of models that contain both

continuous and discrete components as they often refer

to the properties of the closed loop system where the

model of the plant is continuous or hybrid itself.

• Tools for system specification, requirement management

and system design, validation and verification must be

developed to deal with hybrid models.

• Since customer requirements contains details regarding

several levels of the design flow, to achieve a complete

representation of the system at system specification

level, abstraction techniques that deal with hybrid sys-

tems for projecting lower–levels specifications back to

upper–levels must be developed.

• Hybrid techniques and supporting tools to perform co-

herence and feasibility analysis at system specification

levels have to be developed as well.

B. Functional deployment

In the first stage of the design, functional deployment, the

system is viewed as a collection of interacting components.

The decomposition is based on the understanding of the

physical process of interest. The decomposition process is

clearly a key step towards a good quality design, since it leads

to a design process that can be carried out as independently

as possible for each component (see [1] for more details).

A typical decomposition for engine control is shown in

Figure 2. The objectives and constraints that define the

system specification are distributed among the components

by the functional deployment process so that the composition

of the behaviors of the components is guaranteed to meet

the constraints and the objectives required for the overall

controlled system.

4



Ignition

Combustion

Exhaust Gas

Treatment

Motion 

Generation

Communication

Mixture

Composition

Air

Fuel

Management

Management

Fig. 2. Functional decomposition.

In the second stage of the functional deployment, the

control algorithms architecture is defined. Namely, the set of

control algorithms to be developed for each function and the

topology of interconnection are determined. Furthermore, for

each control algorithm, desired closed–loop specifications are

defined to achieve the requested behavior for each functional

component. This process is mainly guided by the experience

of system engineers, with little support of methodologies

and tools. Moreover, the sets of measurable and actuated

quantities, which will constitute the sets of, respectively,

inputs and outputs to the ECU, are often defined by the OEM

and are specified in the customer requirements. In fact, the

OEM often defines also sensors and actuators to be used,

since they have a major impact on the cost of the control

system. In addition, customer requirements include details

on the topology of the control algorithms architecture that

further constrains the functional deployment process.

The results of the functional deployment design stage are:

the control algorithms architecture and the desired closed–

loop specification for each control algorithm. The traceability

of customer requirements guarantees that each requirement

has been handled. Correct implementation of traceability dur-

ing functional deployment is fundamental, since it establishes

the relations between each customer requirement and the

specifications of the relevant control algorithms.

Hybrid system contributions. Hybrid techniques could

help addressing the following issues in functional deploy-

ment:

• Hybrid formalisms are required to support the descrip-

tion of

– the functional decomposition and the desired be-

havior for each functional component;

– the architecture of control algorithms, sensors and

actuators, for each functional component;

– the desired requirements for each control algorithm

obtained from the functional deployment process.

• Development of methodologies and tools for the eval-

uation, the exploration and possibly the synthesis of

functional behaviors from system specification and con-

trol algorithm requirements from desired functional

behaviors. The methodologies should foster re–use at

the functional level, obtained by exposing description

of existing solutions, characterized by appropriate cost

models that allow comparisons among different solu-

tions. The tools should be integrated with requirement

management and system engineering tools.

• Methodologies and tools for the validation of selected

functional behaviors against system specification and

control algorithm specifications against desired func-

tional behaviors should also be developed.

C. Control system

At the control system level, the algorithms to be imple-

mented in the architecture defined at the functional level are

designed. All control algorithms have to meet the assigned

specification, so that their composition within a functional

component exhibits the required behavior defined during

functional deployment.

In general, the design process for each control algorithm

involves

• Plant modeling:

– model development;

– identification;

– validation;

• Controller synthesis:

– plant model and specifications analysis;

– algorithm development;

– controller validation;

• Fast prototyping.

However, if part of the algorithms are re–used from previous

designs, the entire three–step flow is often only partially

performed.

Models of the plant interacting with the control algo-

rithm under design may already be available from previews

designs. In this case, only some adjustment of sensitive

parameters, along with a coarse validation, could be sufficient

to obtain reliable models. If not, rigorous identification and

validation has to be performed. The complete plant modeling

phase is necessary for the refinement of un-satisfactory

existing models, when major changes in the plant have been

made or for the development of new functionalities.

Model–based design is universally recognized to be a good

approach to control algorithm synthesis and is increasingly

used in the automotive industry. Using block diagram–based

modeling tools, such as Matlab/Simulink, control algorithms

are designed and initial validation in off–line simulation is

performed. Then, models of the control algorithms are the

basis for all subsequent development stages. The advantages

are obvious:

• sharing models reduces the risk of mistakes and shortens

the development cycles;

• design choices can be explored and evaluated much

faster and more reliably;

• the result of a model–based development process is an

optimized and fully tested system.

5



In addition, model–based design allows efficient, time-saving

and cost-effective reuse of control algorithms. Re–use cannot

be based on paper documentation of software; it does require

executable models of the control algorithms. In fact, in

many applications, most of the control algorithms are re–

used from past designs. Modularization and standardization

of control algorithms and their interfaces are essential here.

In the plant model and specifications analysis stage, we

first analyze whether an available algorithm can meet the

specification or a new design is needed. If the algorithm is

obtained from designs done in the past, then the algorithm

development stage may involve some minor changes to the

re–used algorithm in order to completely cover the new

specification. In these cases, the controller validation stage is

the most important step to ensure that re–use was successful.

Design of new control algorithms, necessary when re–use

cannot be applied due to major changes in the specification

or when new functionalities have to be developed, require

the performance of the entire three-step flow for controller

synthesis.

Fast prototyping is adopted when either control algorithms

are designed for new functionalities or major redesigned has

occurred to meet more stringent specifications.

In the following sections, each design step is discussed in

details.

1) plant modeling: In this section, the three steps of the

plant modeling phase, namely model development, identi-

fication, and validation, are illustrated. Aspects relevant to

the introduction of hybrid system modeling techniques in

automotive applications are outlined.

a) model development: Traditionally, control engineers

adopt mean–value models to represent the behavior of au-

tomotive subsystems. However, the need for hybrid system

formalisms to model the behavior of systems in automotive

applications is apparent in many cases.

To demonstrate that this is indeed the case, let us con-

sider for instance the behavior of an internal combustion

engine, and the one of the fuel–injection and spark–ignition

subsystems. An accurate model of the engine has a natural

hybrid representation because the cylinders have four modes

of operation corresponding to the stroke they are in (which

can be represented by a finite-state model) while power–train

and air dynamics are continuous-time processes. In addition,

these processes interact tightly. In fact, the timing of the

transitions between two phases of the cylinders is determined

by the continuous motion of the power–train, which, in turn,

depends on the torque produced by each piston. In [3], we

showed that the engine can be modeled using a hybrid system

composed of interacting finite–state machines, discrete–event

systems and continuous–time systems. The hybrid nature of

the behaviors is also evident if we look at the different

types of input and output signals for the internal combustion

engine, and the fuel injection and spark ignition systems,

summarized in Table I. The hybrid nature of the behaviors is

not limited to the input–output interfaces of the models. For

instance, the model of an automotive drive line has several

internal discrete–continuous interactions. In [4], a detailed

model with up to 6048 discrete state combinations and 12

continuous state variables was presented. The hybrid model

accurately represents discontinuities distributed along the

drive line due to engine suspension, clutch, gear, elastic tor-

sional characteristic, tires, frictions and backlashes. Finally,

models of automotive subsystems are often highly nonlinear.

In engine modeling, nonlinearities arise from fluid–dynamics

and thermodynamics phenomena (e.g. volumetric efficiency,

engine torque, emissions) and are usually represented by

piece–wise affine maps.

To conclude this brief discussion, we mention the in-

creasing importance of human factors in automotive control

design. Since the closed–loop system is a man–in–the–loop

system, to design and validate correctly control algorithms

that interacts with the driver, it is necessary to understand

and model the behavior of the driver. This approach will

become increasingly important with the expansion of x–by–

wire applications (driving, steering, braking) that require a

fine design of man–machine interfaces. The models of the

driver must include perception (interesting also for passen-

gers in some applications), actuation, open-loop and closed-

loop control actions. As described in [14], the behavior

of the driver in the longitudinal control of the car can be

characterized using 13 main operation modes, such as idle,

tip in, acceleration, and pedal steering control. The driver’s

behavior in each operation mode is further decoupled in a

number of tasks, which define about one hundred operation

sub–modes. For instance, the idle mode is split in after cut

off, after highway run, after vehicle stop, after hot start,

after air-conditioning switching on. As far as the longitudinal

motion of the car is concerned, the driver and the passengers

are sensitive to vehicle shuffle, pedal response, oscillations

of engine speed and torque. Performance and driveability of

the car in each operation mode are assessed by experienced

test drivers that quote on a scale from 1 to 10 the driving

feeling. Driver’s models are then used to represent

• the behavior of the driver in open–loop and closed–loop

control for the design of the man–machine interface in

x–by–wire control systems;

• driveability perception to obtain analytical and repeat-

able specifications for driveability controllers design.

The development of models for car driveability perception

requires intensive study of human perception and assessment

criteria, different vehicles and different drivers, driver inter-

views (during and after driving), data recording and analysis.

Plant models and driver models have to be characterized

by expressing both their nominal behaviors and main un-

certainties due to parameter and time-varying perturbations,

representing production diversity and aging. Relevant distur-

bances should also be modeled. Depending on the context,

either deterministic or statistic/stochastic approaches could

6



Internal Combustion Engine Hybrid Model
discrete time continuous time

discrete value continuous value discrete value continuous value

inputs spark ignition
injected fuel

air charge
exhaust gas conc.

engine speed

outputs crankshaft events air-to-fuel ratio

engine torque engine
temperature engine

exhaust gas

Direct Injection Fuel System Hybrid Model
discrete time continuous time

discrete value continuous value discrete value continuous value

inputs pressure valve cmd injection signal

outputs injected fuel
rail pressure

fuel temperature

Spark Ignition Hybrid Model
discrete time continuous time

discrete value continuous value discrete value continuous value

inputs spark command ignition coil cmd

outputs spark ignition

TABLE I

TIME DOMAIN AND VALUE DOMAIN CLASSIFICATION OF SIGNALS FOR INTERNAL COMBUSTION ENGINE MODELING.

be employed.

Hybrid system contributions. Plant model development

requires extensive use of hybrid modeling techniques:

• Hybrid deterministic and stochastic formalisms, includ-

ing FSM, DES, DT, CT, PDA, for representing interact-

ing behaviors of different nature are essential.

• Such hybrid formalisms should be supported by appro-

priate tools for hybrid model description and simulation.

b) identification: In current practice, parameter identi-

fication is mostly based on steady–state measurements, ob-

tained using either manually defined set–points or automatic

on–line screening. More details on these approaches are

given below in the description of the calibration process. Dy-

namic parameters are often either obtained analytically (e.g.

intake manifold model) or from step responses. However,

step response and other classical identification methods can

be used to identify models representing standard continuous

evolutions only, such as those exhibited by mean–value

models. When applied to hybrid models, classical techniques

can only be used to identify the plant model separately

in each discrete mode. They hardly succeed in identifying

parameters related to switching conditions and cannot be

applied to black–box hybrid model identification. A major

drawback of this approach to identification is that it requires

a relevant amount of experimental data. Hence, it is very

time–consuming and costly.

A common problem in engine control is the representation

of nonlinearities. Nonlinearities are usually represented by

piece–wise affine functions, with the following limitations:

• the partition of the domain is based on non-uniform

grids (independent breakpoints for each axis);

• parameter identification is obtained from steady-state

experimental data only;

• only R → R and R
2
→ R nonlinearities are expressed

(higher dimension nonlinearities are modeled as their

products).

Hybrid system contributions. Among the many open

problems in hybrid system identification, the following ones

are the most relevant to automotive applications:

• The availability of hybrid system identification tech-

niques using transient data, including mode switching,

would allow to increase identification accuracy, reduce

the amount of experimental data needed and identify

all parameters in hybrid models. Efficient identification

techniques for hybrid systems will also give the op-

portunity for modeling more complex hybrid behaviors

that are currently abstracted due to the difficulties in the

identification process.

• Efficient hybrid techniques for the representation and

identification of nonlinearities, as either piece–wise

affine functions (see [10]) or piece–wise polynomial

functions, would produce majors impact in the design:

– domain partition could be optimized (possibly not

grid-based), achieving increased accuracy and re-

ducing model complexity;

– parameter identification accuracy could be im-

proved;

– higher dimension nonlinearities R
p
→ R could be

7



represented and identified.

c) validation: The selection of test patterns for model

validation is a crucial issue in the validation process. Clas-

sical techniques allow to assess the richness of sets of

test patterns for the validation of continuous models. These

techniques can be used in automotive applications to assess

richness of validation patterns for continuous evolutions of

the plant. However, the problem remains open for hybrid

model validations. This topic is further discussed in Sec-

tion III-C.2.c, where automatic test pattern generation for

controller validation is analyzed.

Hybrid system contributions. Validation of hybrid mod-

els is a very complex task not sufficiently investigated in the

literature. In particular, the following open problems must be

addressed:

• Methodologies for automatic generation of extensive

validation patterns for hybrid models;

• Techniques for the assessment of the completeness of

validation patterns. This problem can be formalized

in the framework of reachability analysis. Interesting

approaches have been proposed using the concepts of

structural coverage and data coverage []

– condition coverage: how many transition guards

have been tested?

– decision coverage: how many locations have been

tested?

– modified condition/decision coverage: how many

input combinations of guard conditions have been

tested?

2) controller synthesis: In this section, the activities re-

lated to controller synthesis are presented by discussing: the

analysis of experimental data, plant model and specifications;

algorithms development; controller validation.

a) analysis of experimental data, plant model and spec-

ifications: Typically the design process of a control algorithm

for a new application starts with the analysis of some

experimental data obtained either with open–loop control or

with some very elementary closed–loop algorithm. Open loop

simulation of the plant model is also very useful in this phase.

Often the model represents a partially controlled plant and

contains the effect of some inner–loop controllers. Open–

loop simulation of hybrid models requires the definition of

discrete-time, event-based and continuous time input actions,

representing either hybrid inputs and references or perturba-

tions. The assessment of classical structural properties, such

as reachability, observability, stabilizability, passivity [9], on

the open–loop plant model is of interest in this phase. In

addition, quantitative analysis is very useful to understand the

strengths and weaknesses of the design. It is interesting to ob-

tain by performance and perturbations/uncertainties analysis

an evaluation of quantities such as stability margins, most

critical perturbations/uncertainties, robust stability margins,

reachability and observability measures in the state space.

Hybrid system contributions. Classical concepts and

techniques for system analysis cannot be applied to hybrid

systems (e.g. switching systems stability has no direct re-

lation with subsystems poles). Unfortunately hybrid system

theory has not been developed to a point to be trusted for

model analysis:

• Some fundamental properties have not been formally

defined yet and tests are not available for verifying most

of the properties.

• Efficient implementation of tests will be necessary for

automatic evaluation, since often manual testing is pro-

hibitively expensive for hybrid system properties.

• Analysis tools must be integrated with standard system

engineering tools.

b) algorithms development: We begin by illustrating

some general characteristics of the algorithms implemented

in automotive ECUs. For example, consider engine control

units. These ECUs have usually more than one hundred I/O

signals, implement up to two hundreds algorithms, share with

the other related ECUs approximately fifty signals. Typically,

an ECU for automotive applications is not a stand–alone

system controlling a mechanical subsystem in the car, but

interacts with other ECUs by asynchronous communication

over a communication network. Sometimes this interaction

is very tight, as in the case of gear–box controllers and the

engine controllers. Each ECU is a multirate control system

composed of nested control loops, with frequency and phase

drifts between fixed sampling–time actions and even driven

actions. The controller performs both continuous and discrete

computations, where the discrete part is often more impor-

tant than the continuous one. Often control algorithms are

characterized by many operation modes, that are conceived

to cover the entire life–time of the product: starting from in–

factory operations before car installation, configuration, first

power–on, power–on, functioning, power–off, connection to

diagnostic tools. During standard functioning, control strate-

gies can be either at the nominal operation mode or at one of

several recovery modes. A significant number of algorithms

are dedicated to the computation of switching conditions and

controller initializations.

A short and by no–means exhaustive list of control actions

for which hybrid system design is particularly interesting

is as follows: fuel injection, spark ignition, throttle valve

control (especially with stepper motor), electromechanical

intake/exhaust valve control, engine start-up and stroke de-

tection, crankshaft sensor management, VGT and EGR actu-

ation (hysteresis management), emission control (cold start-

up, lambda on/off sensor feedback), longitudinal oscillations

control (backlash and elasticity discontinuities), gear–box

control (servo-actuation in traditional gear shift systems),

cruise control and adaptive cruise control, diagnosis algo-

rithms (signals and functionalities on-line monitoring), algo-

rithms for fault-tolerance and safety and recovery (degraded

mode activation). Automotive applications are characterized

8



by challenging aspects. For example:

• highly non–linear behaviors;

• input functions vanishing at the equilibrium points pre-

venting the use of linearization techniques;

• adaptation with lack of persistence of excitation;

• control loops affected by long delays that are often

uncertain and/or time-varying;

• lack of direct feedback of many significant physical

signals that have to be estimated.

A special discussion should be devoted to diagnostic

algorithms, since they represent a major part of the strategies

implemented in automotive ECUs. For engine control, the

implementation of diagnosis algorithms is enforced by the

legislation: OBDII (On Board Diagnosis II) in USA and

EOBD (European On Board Diagnosis) in EU. In general,

these requirements specify that every fault, malfunction

or simple component degradation that leads to pollutant

emissions over given thresholds should be diagnosed and

signaled to the driver. This requirement has a significant

impact on ECU design, since it implies the development of

many on–line diagnostic algorithms [12]. Failures in on–line

diagnosis have serious consequences. If an engine failure is

present and is not detected according to what is imposed by

the legislation, then the car may not receive the necessary

authorization to be offered on the market. On the other

hand, excess of false alarms in diagnosis may result in very

annoying situations for the driver, such as engine lock even

when everything is working properly. Next-generation x-by-

wire vehicle systems (e.g. brake-by-wire and steer-by-wire)

will require additional design efforts to achieve the requested

levels of fault tolerance and safety.

Both specifications and accurate models of the plant are

often hybrid in automotive applications. The methodology

currently adopted for algorithm development is rather crude

and can be summarized as follows. The continuous func-

tionalities to be implemented in the controller are designed

based on mean–value models of the plant, with some ad

hoc solutions to manage hybrid system issues (such as

synchronization with event–based behaviors). If the resulting

behavior is not satisfactory under some specific conditions,

then the controller is modified to detect critical behaviors and

operate consequently (introducing further control switching).

The discrete functionalities of the controller are designed

by direct implementation of non–formalized specifications.

Design methodologies and corresponding tools for the syn-

thesis of discrete systems (FSM, DES, etc) are usually not

employed. The discrete behavior of the controller is not

obtained from automatic synthesis of a formalized speci-

fication, as for instance it is done in hardware design. If

the algorithm is not designed from scratch, but is obtained

by elaborating existing solutions, as is often the case, then

additional operation modes may be introduced to comply

with the new specification. This results in a non–optimized

controller structure. Structured approaches to the integrated

design of the controller that allow to satisfy hybrid specifica-

tions considering hybrid models of the plant are not adopted

as yet even though they have obvious advantages over the

heuristics that permeate the present approaches.

The disadvantages of the current methodology can be

summarized as follows:

• long development time due to redesign cycles;

• un-satisfactory performances;

• extensive testing needed;

• time-consuming and expensive calibration;

• no guaranteed behavior and low reliability (testing

can never reach complete coverage; the more frequent

malfunctioning and the ones with more serious conse-

quences are related to the discrete functionalities);

• low or non guaranteed robustness with respect to prod-

uct diversity, aging, perturbations;

• complex solutions with high implementation cost.

Hybrid system contributions. Hybrid system techniques

can significantly contribute to the improvement of control al-

gorithm design in automotive applications. The introduction

of hybrid synthesis techniques should be aimed to:

• shorten the algorithm development time;

• reduce testing effort;

• reduce calibration parameters and provide automatic

calibration techniques;

• improve closed–loop performances;

• guarantee correct closed–loop behavior and reliability;

• achieve and guarantee desired robustness;

• reduce implementation cost.

Most of the analytical approaches so far proposed for

controller design using hybrid system techniques are quite

complex. Usually, the application of these techniques re-

quires designers that are trained in hybrid systems and

necessitates long development times. As a consequence, the

hybrid system design process results too expensive for the

human resources commonly deployed in automotive system

engineering. Hence, for a profitable introduction of hybrid

system design techniques, it is essential that methodologies

be supported by efficient tools that allow fast and easy

designs. Hybrid model predictive control is a good example

in hybrid system research where the development of the

methodology was supported by a good effort in design tool

development [11]. Efficient tools for both validation (possibly

verification) and calibration are also mandatory as discussed

below.

c) controller validation: Control algorithms are vali-

dated in extensive simulations of the closed–loop models.

The Mathworks Inc. tool–suite is widely used in the au-

tomotive industry for simulation purposes. However, since

the semantic of the Simulink–Stateflow simulation environ-

ment is not well–defined and documented, the simulation of

hybrid models may be problematic at times. Validation via

extensive simulation is time–consuming and hence expensive.

9



The designers, based on their experience, devise critical

trajectories to test the behavior of the closed–loop system

in the perceived worst–case conditions. Some of the critical

maneuvers may be provided by the system specifications.

Furthermore, a rough investigation on the robustness proper-

ties of control algorithms is obtained by screening the most

critical parameters and uncertainties and applying critical

perturbations. In the current design flow, there is no automatic

approach to the validation of performance specifications.

Some approaches for automatic test patterns generation are

under investigation. To the best of our knowledge, there is no

tool available in the market for performance analysis, robust

stability and robust performance analysis. Formal verification

for both continuous and for discrete specification is not

adopted.

Hybrid system contributions. Due to complexity of the

plant–controller interactions, the non negligible effects of the

implementation, the large uncertainties in the plant given by

product diversity and aging, validation of control algorithms

is one of the hottest topics in automotive industry. Today,

the quality of the validation step is not satisfactory and

important improvements in validation will be necessary to

cope with the safety issues that will be raised by next

generation x–by–wire systems. Ideally, validation and formal

verification should be completely automatic. Hybrid system

techniques can contribute significantly to the improvement

of the validation process:

• Validation has to be supported by tools for

– efficient simulations of hybrid closed–loop models;

– stability and performance analysis;

– robust stability and robust performance analysis;

– invariant set and robust invariant set computations.

• Methodologies and tools should be developed for

– automatic validation against formalized hybrid per-

formance specifications;

– automatic validation of safety relevant conditions;

– automatic optimized test patterns generation reach-

ing specified level of coverage.

• Interesting validation problems are related to the com-

putation of conservative approximations for the largest

sets of

– parameter uncertainties,

– calibration parameters,

– implementation parameters (e.g. sampling–period,

latency, jitter, computation precision, etc.),

for which the desired performances are achieved.

• Some classes of algorithms that require intensive and

complex validation are

– diagnosis algorithms;

– safety critical algorithms;

– algorithms preventing the system to stall (e.g. idle

speed control).

3) fast prototyping: Control algorithms either significantly

redesigned or developed for the first time are usually tested

using fast prototyping. Fast prototyping equipments allow

to perform in–vehicle experiments with minor configuration

efforts using a bypass method. The software implementing

the algorithm under development is off–loaded from the

production ECU to the fast prototyping unit that is connected

to the ECU. The flow of data is diverted from the ECU to the

prototyping system and back, while the ECU runs the legacy

code. The bypass method is ideally suited to replace, step–

by–step, obsolete ECU code by new one. Completely new

developments also benefit from the bypass method, as the

I/O interfaces of an existing ECU can be used. Connecting

the fast prototyping unit to a notebook enables the control

engineer to control the experiment from the passenger seat.

D. HW/SW components

The design of HW/SW implementation of ECUs follows

the standard methodologies for hardware and software de-

velopment. It is interesting to discuss the phase of definition

of the specifications for the HW/SW implementation of the

control algorithms, because hybrid formalisms may have

interesting applications in this regard. This phase of the

design flow is very critical since it is located at the boundary

between different disciplines, namely control engineering

and software/hardware design. The methodologies and the

design tools in the control domain and the HW and SW

implementation domains are often not very well integrated

and this is often the cause of many design errors. The

specifications for the HW/SW implementation must include

all details necessary for a correct implementation of the

algorithms i.e., they must provide:

• complete description of the algorithm;

• specification of the computation accuracy

– in the value domain: precision for each computation

chain (for fixed–point arithmetic implementation),

threshold detection bounds, etc;

– in the time domain: bounds for latency, jitter, delay

in event detection, etc.

• execution order and synchronization;

• priorities in case of resource sharing (cpu, communica-

tion, etc);

• communication specifications;

• data storage requirements (e.g. variables in EEPROM).

In addition, the specifications for the HW/SW implementa-

tion have to be derived from executable models, according to

the model–based design approach. These models should be

integrated with tools for automatic code generation. Finally,

the specifications for the HW/SW implementation should

ideally provide executable acceptance tests that can guaran-

tee that the computation accuracy obtained in the HW/SW

implementation is good enough.

Hybrid system contributions. Hybrid formalisms can

successfully support specifications for the HW/SW imple-

10



mentation:

• Hybrid tools suitable for the description of the imple-

mentation requirements of the algorithms have to:

– support the specification of the algorithm behavior,

the computation accuracy and the other imple-

mentation requirements and constraints mentioned

above;

– support description of implementation acceptance

tests;

– to be efficiently integrated with software and hard-

ware development tools and tools for automatic

code generation.

• Methodologies and tools for defining and validating

implementation constraints should be developed:

– the degradation of the execution of control al-

gorithms due to the implementation on bounded

resource platforms has to be exported and modeled

at the control system level to obtain constraints for

the implementation;

– these constraints should be formally specified in the

HW/SW implementation requirements along with

executable acceptance tests;

– tools should support the validation of the HW/SW

implementation by running the acceptance tests.

IV. INTEGRATION AND TESTING

[...]

V. CONCLUDING REMARKS

Assuming the design methodology and the infrastructure

for design chain integration are all in place, what will be

the implication on the industrial segment structure? Today,

the roles of car makers, Tier 1 and 2 Suppliers are relatively

stable but they are undergoing a period of stress due to the

increased importance of electronics and its added value. We

mention the desire of car makers to gain a stronger grip on the

integration process and on the critical parts of the electronics

subsystems. At the same time, there is evidence that sharing

IPs among car makers and Tier 1 suppliers could improve

substantially time-to-market, development and maintenance

costs. The essential technical problem to solve for this vision

is the establishment of standards for interoperability among

IPs and tools. AUTOSAR has this goal very clear in mind.

However, there are technical and business challenges to over-

come. In particular, from the technical point of view, while

sharing algorithms and functional designs seems feasible

at this time once the semantic platform issues are squared

away, the sharing of real-time software is difficult even

assuming substantial improvements in design methods and

technology, if run-time efficiency has to be retained. The

issues are related to the interplay that different tasks can have

at the RTOS level. The timing of the software tasks depend

on the presence or absence of other tasks. A scheduling

policy that could prevent timing variability in presence of

dynamical changing task characteristics can be conceived

but it will carry heavy overhead thus requiring powerful

microprocessors even when they are not strictly needed. This

is the standard trade-off between efficiency and reliability but

it has more important business implications than usual. In

fact, if software from different sources has to be integrated

on a common hardware platform who will be responsible for

the correct functioning of the final product?

Whoever will take on this responsibility would need a

very strong methodology and an iron fist to make suppliers

and partners comply with it. This may not be enough, in

the sense that software characteristics are hard to pin down

and with the best intentions of this world, one may not be

able to guarantee functional AND timing behavior in the

presence of foreign components. The ideal approach would

be a tool that could map automatically the set of tasks

onto the platform guaranteeing the correct functionality and

timing with optimal resource utilization. This tool should

take the design description at the pure functional level with

performance and other constraints and the architecture of

the platform and produce correct settings for the RTOS and

optimized code. We are still far from this ideal. It is likely,

then, that the responsibility for subsystem integration will

still rest with the car manufacturers but the responsibility for

integrating software components onto ECUs will be assigned

to Tier 1 suppliers. In this case, the burden of Tier 1 suppliers

will be increased at a possibly reduced premium because of

the perceived reduction in added value. This is likely to be

an unstable model and major attention should be devoted to

find a common ground where both car makers and suppliers

find their economic return.

If the strategy followed by car makers in AUTOSAR

succeeds, then it is likely that a global restructuring of the

industry will take place by creating an environment where

Tier 1 plevels with small market share will find themselves

in a difficult position unless they find a way of competing on

a more leveled ground with the major stake holders. In this

scenario, Tier 2 suppliers including IP providers may find

themselves in a better position to entertain business relations

directly with the car manufacturer. Tool providers will be

in a more strategic position as providers of mapping tools

that make the business model feasible. Hence, it is likely

that a shift of recognized value will take place from Tier 1

suppliers towards tool providers and Tier 2 suppliers. The

redistribution of wealth in the design chain may or may

not be a positive outcome for the health of the industrial

sector. If the discontinuities are sharp, then there may be

a period of instability where much effort will be required

to keep the products coming out with quality and reliability

problems that may be larger than the ones observed lately.

However, if it is well managed, then a natural shake-up

with stronger plevels emerging will have a double positive:

more quality in the products at lower cost. An additional

benefit from a real plug-and-play environment will be the

11



acceleration of the rate of innovation. Today, the automo-

tive sector is considered conservative and the innovations

in design methods and electronic components are slow to

come. For example, if a well-oiled mechanism existed to

migrate from one hardware platform to another, the “optimal”

solutions would be selected instead of the ones that have been

traditionally used. In this case, the Tier 2 market place will

also be rationalized and the rate of innovation will likely be

increased.

As a final consequence, the introduction of new function-

alities will be a matter of algorithm and architecture rather

than detailed software and hardware selection. The trend in

electronics is clear: less customization, more standardization.

This is indeed the reason why platform-based design and

supporting tools [16] has appealed to a wide variety of

electronic industry plevels. For a subsystem supplier, the

choice will be richer in terms of platforms but it will not

require heavy investment in IC design or RTOS development.

For a car manufacturer, the granularity of its choices will

be also richer because of interoperability. He will have the

choice of selecting entire macro systems or components that

could be integrated in a large automotive platform. The

choice will be guided by cost, quality and product innovation.

The final goal of the strategy is rather clear. The way of

getting there is not as clear and the road has many bumps and

turns that are difficult to negotiate. A positive outcome will

have to come from a process of deep business and technical

cooperation among all plevels in the design chain as well

as the research community. It is a unique opportunity and a

great challenge.

VI. ACKNOWLEDGMENTS

We wish to thank Alberto Ferrari and Pierpaolo Murri-

eri from PARADES; Gabriele Serra, Giacomo Gentile and

Walter Nesci, from Magneti Marelli Powertrain (Bologna,

I); Paolo Ferracin from CNH (Modena, I); Gilberto Burgio

from Ford Forschungszentrum (Aachen, G) for the many

discussions on the topic. This work has been partially sup-

ported by the E.C. Project IST-2001-33520 CC (Control and

Computation). A. Balluchi and A. Sangiovanni–Vincentelli

are members of the “HyCon” Network of Excellence, EC

grant IST-511368.

VII. REFERENCES

[1] M. Antoniotti, A. Balluchi, L. Benvenuti, A. Ferrari,

C. Pinello, A. L. Sangiovanni-Vincentelli, R. Flora,

W. Nesci, C. Rossi, G. Serra, and M. Tabaro. A

top-down constraints-driven design methodology for

powertrain control system. In Proc. GPC98, Global

Powertrain Congress, volume Emissions, Testing and

Controls, pages 74–84, Detroit, Michigan, USA, Octo-

ber 1998.

[2] AUTOSAR. www.autosar.org.

[3] A. Balluchi, L. Benvenuti, M. D. Di Benedetto,

C. Pinello, and A. L. Sangiovanni-Vincentelli. Automo-

tive engine control and hybrid systems: Challenges and

opportunities. Proceedings of the IEEE, 88, ”Special

Issue on Hybrid Systems” (invited paper)(7):888–912,

July 2000.

[4] A. Balluchi, L. Benvenuti, C. Lemma, P. Murrieri, and

A. L. Sangiovanni-Vincentelli. Hybrid models of an

automotive driveline. Tech. rep., PARADES, Rome, I,

December 2004.

[5] A. Balluchi, L. Benvenuti, C. Lemma, A. L.

Sangiovanni-Vincentelli, and G. Serra. Actual engaged

gear identification: a hybrid observer approach. In to be

presented at 16th IFAC World Congress, Prague (CZ),

July 2005.

[6] A. Balluchi, M. D. Di Benedetto, A. Ferrari, G. Gaviani,

G. Girasole, C. Grossi, W. Nesci, M. Pennese, and A. L.

Sangiovanni-Vincentelli. Design of a motorcycle engine

control unit using an integrated control-implementation

approach. In Proc. 1st IFAC Workshop on ”Advances

in Automatic Control”, pages 218–225, Salerno, Italy,

April 2004.

[7] A. Balluchi, M. D. Di Benedetto, C. Pinello, C. Rossi,

and A. L. Sangiovanni-Vincentelli. Hybrid control

in automotive applications: the cut-off control. Auto-

matica, 35, Special Issue on Hybrid Systems:519–535,

March 1999.

[8] M. Baotic, M. Vasak, M. Morari, and N. Peric. Hybrid

theory based optimal control of electronic throttle. In

Proc. of the IEEE American Control Conference, ACC

2003, pages 5209–5214, Denver, Colorado, USA, June

2003.

[9] A. Bemporad, G. Bianchini, F. Brogi, and F. Barbagli.

Passivity analysis and passification of discrete-time

hybrid systems. 2005. Submitted.

[10] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino.

A bounded-error approach to piecewise affine system

identification. IEEE Trans. Automatic Control, 2004.

Accepted for publication as a regular paper.

[11] A. Bemporad, M. Morari, and N. L. Ricker.

Model Predictive Control Toolbox for Matlab

– User’s Guide. The Mathworks, Inc., 2004.

http://www.mathworks.com/access/helpdesk/help/toolbox/mpc/.

[12] J. Chen and R.J. Patton. Robust Model-Based Fault

Diagnosis for Dynamic Systems. Number 3 in Series

on Asian Studies in Computer and Information Science.

Kluwer International, 1999.

[13] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi,

L. Lundh, J. Leflour, J.-L. Mat/’e, K. Nishikawa, and

T. Scharnhorst. Automotive open system architecture

- an industry-wide initiative to manage the complexity

of emerging automotive e/e-architectures. In Proc. of

Convergence 2004, number 2004-21-0042, Detroit, MI,

October 2004.

12



[14] H.O. List and P. Schoeggl. Objective evaluation of

vehicle driveability. Technical Report 980204, SAE,

1998.

[15] R. M obus, M. Baotic, and M. Morari. Multi-object

adaptive cruise control. In O. Maler and Eds. A. Pnueli,

editors, Hybrid Systems: Computation and Control,

HSCC 2003, volume 2623 of Lecture Notes in Com-

puter Science, pages 359–374. Springer Verlag, 2003.

[16] A. Sangiovanni-Vincentelli. Defining platform-

based design. EEdesign, February 2002.

http://www.eedesign.com/.

13


