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Many viruses, including the clinically relevant RNA viruses HIV (human immunodeficiency
virus) and HCV (hepatitis C virus), exist in large populations and display high genetic
heterogeneity within and between infected hosts. Assessing intra-patient viral genetic
diversity is essential for understanding the evolutionary dynamics of viruses, for designing
effective vaccines, and for the success of antiviral therapy. Next-generation sequencing
(NGS) technologies allow the rapid and cost-effective acquisition of thousands to millions
of short DNA sequences from a single sample. However, this approach entails several
challenges in experimental design and computational data analysis. Here, we review the
entire process of inferring viral diversity from sample collection to computing measures
of genetic diversity. We discuss sample preparation, including reverse transcription and
amplification, and the effect of experimental conditions on diversity estimates due to
in vitro base substitutions, insertions, deletions, and recombination. The use of different
NGS platforms and their sequencing error profiles are compared in the context of various
applications of diversity estimation, ranging from the detection of single nucleotide
variants (SNVs) to the reconstruction of whole-genome haplotypes. We describe the
statistical and computational challenges arising from these technical artifacts, and we
review existing approaches, including available software, for their solution. Finally, we
discuss open problems, and highlight successful biomedical applications and potential
future clinical use of NGS to estimate viral diversity.
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INTRODUCTION
Many viruses, in particular RNA or single-stranded DNA viruses,
exhibit extreme evolutionary dynamics. They have very high
mutation rates, up to six orders of magnitude higher than
in humans, short generation times, and large population sizes
(Duffy et al., 2008). Under these conditions, genetic variants
are produced constantly, and in each infected host, the virus
population displays a high degree of genetic diversity. Rapidly
evolving viruses are not only ideal systems for studying evolu-
tionary mechanisms (Drummond et al., 2003), but many of them
are significant pathogens of vital medical interest, including HIV,
HCV, and Influenza (WHO, 2012).

Because of their diversity, intra-host virus populations are
often referred to as mutant clouds, swarms, or viral quasispecies.
The latter terms were originally introduced in the context of
self-replicating macromolecules (Eigen, 1971; Eigen and Schuster,
1977) and have a precise mathematical meaning. A quasispecies is
the equilibrium distribution of mutants in a mathematical model
that accounts for mutation and selection (Eigen et al., 1988,
1989). In the framework of classical population genetics, it can be
regarded as a coupled mutation-selection balance (Wilke, 2005).
The main prediction of the quasispecies model is that selection
acts on the population as a whole and hence the population

dynamics cannot be understood from the fittest strain alone (Van
Nimwegen et al., 1999; Wilke et al., 2001). The quasispecies model
has later been applied to RNA viruses (Nowak, 1992; Domingo
and Holland, 1997), hence the term viral quasispecies. The impact
of the quasispecies model is not only due to its mathematical fea-
sibility, but also its conceptual focus on the population as the
target of natural selection (Burch and Chao, 2000).

The diversity of virus populations has repeatedly been shown
to provide a selective advantage. For example, decreasing the
mutation rate of poliovirus artificially, while maintaining its repli-
cation rate, resulted in reduced genomic diversity and in failure
to adapt to adverse growth conditions (Vignuzzi et al., 2006).
Similarly, pre-existing minority drug-resistant variants of HIV-1
have been shown to facilitate rapid viral adaptation leading to
failure of antiretroviral therapy (Metzner et al., 2009; Li et al.,
2011). In general, viral diversity is advantageous when the virus
faces different selection pressures that need to be overcome by
evolutionary escape (Iwasa et al., 2003, 2004). Changing selection
pressures are common in the life of viruses, for example, after
infecting a new host with a different immune response (Pybus
and Rambaut, 2009), when infecting different cell types, while
being exposed to different chemical agents, or due to changing
multiplicity of infection (Ojosnegros et al., 2010). Understanding
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and modeling the escape dynamics of these processes is of direct
relevance for clinical and public health decisions.

With the introduction of next-generation sequencing (NGS)
technologies, the experimental analysis of viral genetic diver-
sity has changed dramatically. Rather than using labor-intensive
limiting dilution and individual cloning of viruses followed by
traditional Sanger sequencing, NGS now allows for sampling the
virus population in a highly parallel fashion in a single experi-
ment. However, the novel high-throughput approach has several
pitfalls associated with both the experimental protocol and the
statistical analysis of the data. We address both aspects in this
review and discuss several successful applications of NGS to viral
diversity studies, including drug resistance, immune escape, and
epidemiology.

SAMPLE PREPARATION
The usefulness of NGS for viral diversity estimation depends
crucially on the quality of the sample and on the procedure to
prepare the sample. NGS sequence reads mirror the accumulation
of errors, some of them preventable others unavoidable. To min-
imize the error rate, each step requires careful handling, starting
with biological sample retrieval and storage up to the last steps of
the NGS procedure itself (Figure 1).

Viral genomes are usually protected by the viral capsid and
some of them additionally by an envelope, for instance, HIV
and HCV. However, retrieval and storage conditions of biological
specimens are especially important when studying RNA viruses
due to the fragility of RNA (Holodniy et al., 1995; Jose et al.,
2005), because degraded RNA will jeopardize all further steps of

virus specimen
(blood, �ssue, stool, ..)

RNA extrac�on DNA extrac�on

reverse transcrip�on

genome amplifica�on

next- genera�on sequencing

data analysis

FIGURE 1 | Flow chart of sample processing for next-generation

sequencing (NGS) of virus samples.

the analysis. Before starting the extraction of viral genomes, the
viral load of the specimen should be considered. The final number
of genome copies sequenced provides the basis for assessing viral
diversity from the sequence reads (Metzner et al., 2003; Casbon
et al., 2011). Low amounts might require a concentrating step, for
instance, ultracentrifugation of plasma.

The choice of protocols used for genome extraction and elim-
ination of contaminating RNA and DNA from other sources
like host cells depends on the intended downstream procedures.
Numerous kits are offered to extract viral DNA or RNA whose
pros and cons will not be discussed here. A more critical point
is the enrichment of viral genomes in the context of sample com-
plexity. Three scenarios can be envisioned. (1) The virus is known
and an amplicon approach is chosen for NGS. Here, the speci-
ficity of the primers might allow for amplifying the viral genome
without any upstream enrichment. Nevertheless, it is often ben-
eficial to eliminate contaminating DNA or RNA by DNase or
RNase treatment. For instance, investigating HIV RNA genomes
requires the elimination of proviral DNA genomes (Fischer et al.,
2002). (2) The virus is known, but a random approach is cho-
sen for NGS. Due to the high heterogeneity of some viruses, it
might be disadvantageous to use virus-specific primers for ampli-
fication due to potential primer bias or even complete failure
of amplification (Metzner et al., 2003). In contrast, any random
approach, including amplification using degenerated or random
primers as well as non-specific adaptor ligation and subsequent
amplification using adaptor-specific primers, cannot differenti-
ate between the viral genome and any other nucleic acid (Reyes
and Kim, 1991; Chang et al., 1992). Thus, the elimination of
contaminating nucleic acids is mandatory when a high coverage
of viral genomes is required, as for studying diversity, since the
viral genomes represent only a low-abundant fraction in almost
all biological specimens (Daly et al., 2011). DNase and RNase
treatment, filtration, density gradient centrifugation, and their
combinations are commonly used procedures. Enrichment strate-
gies based on hybridization capture might also be suitable (Turner
et al., 2009; Althaus et al., 2012) and, potentially, freeze thaw
nuclease digestion protocols may also be beneficial to minimize
contaminating RNA or DNA (Fischer et al., 2002) (3). The virus
in unknown, therefore, random approaches have to be applied.
The enrichment of viral genomes is an even greater challenge in
this set-up. In this review, we focus on estimating viral diver-
sity from NGS data, a second step after virus discovery (Lipkin,
2010).

After viral genome extraction, an amplification procedure has
to be performed, because the current NGS technologies require
a high input DNA amount and the viral genome amount is
several orders of magnitude lower. Furthermore, RNA genomes
have to be reverse transcribed prior to PCR. Every amplification
process introduces errors. Reverse transcriptases (RTs) are error-
prone enzymes, because of the lack of any proof-reading activity
(Preston et al., 1988; Roberts et al., 1988). Some RTs are less error-
prone than others, but, in general, RT errors are unavoidable and
very difficult to distinguish from real mutations since they are
introduced in the first step of amplification. Another important
but often ignored problem with reverse transcription is that short,
incomplete cDNA fragments can act as primers in subsequent
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PCRs and lead to in vitro recombination. This phenomenon has
been considered only for RT-PCRs amplifying several kilobases
(kb) long fragments (Fang et al., 1998). We have recently shown
that this effect also occurs very frequently when amplifying short
cDNA fragments of a size of only 0.6 kb and can be minimized by
using an RNaseH-negative RT (Di Giallonardo et al., submitted).

Four main types of errors can occur during PCR and are
relevant for NGS data: (i) biased amplification due to primer
mismatches, (ii) in vitro recombination due to premature termi-
nation of strand elongation and subsequent false hybridization of
short DNA fragments acting as primers or, less frequently, due
to template switching, (iii) nucleotide misincorporation due to
the inaccuracy of DNA polymerases, and (iv) resampling due to,
for instance, too low amounts of input DNA copies (Eckert and
Kunkel, 1991; Liu et al., 1996; Kanagawa, 2003). Several precau-
tions can be taken to minimize these errors. Primer mismatches
can be diminished by choosing primer binding sites in conserved
regions of the viral genome or by using degenerated primers.
Chimera formation can be reduced by several improvements of
PCR conditions such as increasing the elongation time, decreas-
ing the number of cycles, and deleting the final extension step
(Meyerhans et al., 1990; Judo et al., 1998). Nucleotide misincor-
poration can be lowered by using high-fidelity DNA polymerases,
and resampling can be reduced, for instance, by optimizing the
input copy number. Even when applying all these precautions, it
is currently not possible to completely avoid these PCR errors.
Furthermore, the discrimination between artificial and real viral
variants can be very difficult if not impossible. One possibility
is to perform several independent PCRs assuming that most of
the errors occur randomly with regard to the sequence position
and the timing of the error, i.e., in which PCR cycle the error
occurs, resulting in different variants of different frequencies in
the replicates. A recently described method uses primer identi-
fiers (IDs) to uniquely label each cDNA molecule (Jabara et al.,
2011). This is an elegant procedure to reduce or even eliminate
PCR errors, although errors induced during the reverse transcrip-
tion cannot be addressed in this manner. In addition, the method
is only applicable to amplicon-based approaches and a high num-
ber of sequence reads are required to obtain a sufficient number
of consensus sequences, each of which has to be derived from at
least three reads with the same primer ID. Thus, all unique or
twice occurring reads, which represent the majority of sequence
reads, cannot be considered in the analysis.

Overall, sample preparation is a critical issue in the process
of NGS. If unrecognized, errors during sample preparation can
lead to an artificially increased diversity of the investigated virus
population. To avoid such misinterpretation, the pitfalls of sample
preparation need to be identified and properly addressed.

NEXT-GENERATION SEQUENCING
In the last decade, many NGS technologies have been devel-
oped and several are commercially available today or about to
become available in the near future (Mardis, 2008b; Metzker,
2010). Due to its massively parallel approach, NGS allows for
generating much larger volumes of sequencing data in a cost-
effective manner as compared to conventional sequencing meth-
ods. The increase in throughput has been so far-reaching that

NGS is considered revolutionary, because it facilitates many new
sequencing applications that had been out of reach (Mardis,
2008a; Schuster, 2008). One of these novel applications is the
inference of viral genetic diversity from a single deep-coverage
NGS experiment.

All NGS technologies involve the steps of template prepara-
tion, sequencing, and imaging, followed by data analysis, but they
differ in the realization of each step. 454/Roche pyrosequencing
has been the first NGS method commercially available and until
today it is the most commonly used technology for the analy-
sis of viruses (Margulies et al., 2005). For pyrosequencing, DNA
is isolated, amplified and/or fragmented, adaptor-annealed, and
amplified on beads in a micro-droplet emulsion PCR. DNA and
beads have to be used in a ratio allowing the hybridization of only
one DNA molecule to one bead, i.e., the majority of beads do
not contain any DNA molecule. Thus, on each DNA-hybridized
bead, a single template gives rise to several thousand copies. These
beads are separated from the empty beads and loaded into 1.6
million wells of a picotiter plate, one bead per well, and enzymes
for pyrophosphate sequencing are added. Sequencing by synthe-
sis proceeds by adding the four bases in a cyclic order. In each
cycle, the light emission associated with base incorporation is
detected and remaining chemicals are washed out. The intensity
of the light signal is approximately proportional to the number of
nucleotides that have been incorporated. All generated signals are
recorded as a series of peaks, called a flowgram, from which DNA
bases are eventually called (Margulies et al., 2005).

The Illumina Genome Analyzer and HiSeq systems are cur-
rently dominating the NGS market (Bentley et al., 2008). Rather
than emulsion PCR, Illumina relies on solid-phase amplification,
which consists of initial priming and extending of single-stranded
templates, followed by bridge amplification of each immobilized
template with adjacent primers. In multiple cycles of annealing,
extension, and denaturation, around 200 million molecular clus-
ters are formed. For sequencing, all four nucleotides are added
simultaneously. Each nucleotide is labeled with a different dye and
they are modified to terminate DNA synthesis after incorpora-
tion. Color imaging is used to detect the incorporated nucleotide.
In a cleavage step, the fluorescent dye is removed and termination
is reversed by regenerating the 3′-OH group. Bases are called from
the resulting four-color images.

We focus here on the 454/Roche and Illumina platforms,
because the vast majority of reported virus sequencing appli-
cations have used these systems, but several other technologies
can, and are likely to, be used as well, including ABI SOLiD,
Ion Torrent, PacBio RS, and Polonator. The technical details in
which platforms differ can have important consequences for their
applicability to viral sequencing studies. Among other aspects,
NGS platforms differ in throughput, runtime, costs, read lengths,
and error patterns (Metzker, 2010). The currently most powerful
454/Roche sequencer GS FLX Titanium XL+ can produce up to 1
million reads per run of 700 bp average length, while Illumina’s
largest machine, HiSeq 2500, can generate up to 1.2 billion
paired-end reads of 2 × 150 bp length. Both companies also offer
smaller benchtop devices of their platforms that may be preferable
in certain diagnostic and clinical settings. The Roche/454 Junior
produces up to 100,000 reads of 400 bp average length in a single
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10-h run, and the Illumina MiSeq generates up to 30 million
paired-end reads of 2 × 150 bp length in 24 h. Thus, longer reads
can be produced with the 454/Roche technology, but ultra-deep
coverage is easier to obtain with Illumina (Loman et al., 2012).

In addition to the various errors that can occur during sam-
ple preparation, as discussed in “Sample Preparation”, all NGS
platforms introduce sequencing errors. With 454/Roche pyrose-
quencing, insertions and deletions (indels) are the most common
type of errors. They occur predominantly in homopolymeric
regions of the target sequence, where the linear relationship
between signal intensity and number of incorporated nucleotides
starts to fail. Remaining nucleotides after washing can give rise
to insertions or carry forward errors, while deletion errors can
result from incomplete extension (Margulies et al., 2005; Balzer
et al., 2011). The error rate has been shown to increase with read
length and to depend on several other biological and technical
factors, including the organism and genomic region to be ana-
lyzed and the position on the picotiter plate with respect to the
flow of chemicals and the position of the camera (Gilles et al.,
2011).

Illumina reads are not as susceptible to indel errors in
homopolymeric regions, but artificial indels outside these regions
and substitutions have similar frequencies (Archer et al., 2012).
The Illumina mismatch rate also increases with read length and
it further depends on the sequence context and the substitution
type (Dohm et al., 2008; Kircher et al., 2009; Nakamura et al.,
2011). Illumina reads are generated in forward and reverse direc-
tion, and errors predominantly occur on one of the two strands
(Chapman et al., 2011; Varela et al., 2011). All NGS platforms
report quality scores, defined as Q = −10 log10 p, where p is
the error probability (Ewing and Green, 1998), together with
the called bases, but the calibration of these scores is challeng-
ing (Brockman et al., 2008; Kircher et al., 2009) and there is no
consensus on how to compare scores across platforms.

Besides errors, the distribution of reads along the genome is
critical for diversity estimation, especially if phasing of genetic
variants is the goal. However, uniform coverage is difficult to
achieve and, in practice, the read coverage often varies by orders
of magnitude. The reasons for this variation are poorly under-
stood, but for Illumina, the GC content of the target sequence is
an important factor (Dohm et al., 2008). Uniform coverage is fea-
sible within short segments by using a single amplicon. However,
increasing the number of amplicons to cover longer segments can
impair this uniformity, and shot-gun approaches introduce even
more variation. For 454/Roche, Illumina, and ABI SOLiD, cor-
relation of coverage and errors is fairly weak among the three
different NGS platforms (Harismendy et al., 2009). Thus, for viral
diversity estimation, where uniform coverage and error correc-
tion are critical, complementary sequencing strategies involving
more than one platform may be more efficient than increasing
the coverage on a single platform.

The large amounts of viral sequencing data obtained by NGS
place substantial demands on information technology and com-
putational data analysis in terms of storage, quality control, map-
ping, error correction, single nucleotide variant (SNV) calling,
haplotype reconstruction, diversity estimation, and data inte-
gration (Pop and Salzberg, 2008; Vrancken et al., 2010; Barzon

et al., 2011; Beerenwinkel and Zagordi, 2011). Data analysis usu-
ally starts by removing reads of exceptionally low quality. The
rationale for this initial filtering step is that low-quality reads con-
tribute disproportionally to the overall error rate, i.e., most errors
occur on a few reads (Huse et al., 2007). Filtering can be based on
quality scores or on properties of the read or the target sequence
known to affect error rates, as discussed above. Optimized filter-
ing has been shown to reduce the error rate in detecting genomic
variation up to 300-fold (Reumers et al., 2011).

After filtering, the next step is to align the remaining reads.
In re-sequencing studies of known viruses, this is typically
done by mapping reads individually to a reference sequence
and then aggregating the pairwise alignments into a multiple
sequence alignment (MSA). For read mapping, local alignment
using dynamic programming may be applied (Wang et al., 2007;
Zagordi et al., 2011), but for larger data sets, efficient short
read mappers are required. Several efficient mapping algorithms
based on indexing techniques are available. Some of them can
handle gaps, account for quality scores, and have a paired ends
option (Trapnell and Salzberg, 2009; Wikipedia, 2012). In coding
regions, a major goal of the alignment step is to identify indels
that cause frameshifts. These alterations are likely to be sequenc-
ing errors, which are frequently observed using the 454/Roche
platform. Hence, they are usually removed, but this bears the
risk of losing virus variants harboring real indels. For correcting
indel errors, a high-quality alignment is necessary, but in mixed
samples, the use of a reference sequence can be suboptimal if
reads originating from some subpopulations align only poorly
to the reference sequence. To address this concern, a MSA may
be computed directly, for example, by using a progressive MSA
strategy that takes into account the approximate location of reads
on the genome (Saeed et al., 2009). Similarly, for the HIV env
gene, a multi-step procedure has been proposed, in which reads
are located efficiently on a reference sequence by k-mer matching
and MSAs are built locally in windows of width 70 nucleotides
along the genome. From all local MSAs, in-frame consensus
sequences are generated and concatenated. Finally, the reads are
re-aligned to the global consensus sequence and all indels caus-
ing frameshifts are removed. Using the consensus rather than a
reference sequence was shown to improve the alignment quality,
especially if their divergence is high (Archer et al., 2010).

LOCAL DIVERSITY ESTIMATION
From the aligned reads, one wants to reconstruct the original
virus population in the sample, meaning the composition and
relative frequencies of all individual viral genomes, also referred
to as strains or haplotypes. Even after filtering and removal
of frameshift-causing indels, many reads are still erroneous.
Therefore, in mixed samples, error correction and haplotype
inference are intrinsically tied to each other and, in fact, addressed
jointly by most computational methods. This is in contrast to the
simpler task of error correction in clonal samples, where implau-
sible variants can easily be discarded using either k-mers, suffix
trees/arrays, or MSA (Yang et al., 2012).

The haplotype inference problem occurs at different spatial
scales depending on the length of the genomic region to be ana-
lyzed for diversity (Figure 2). When only a single genomic site
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is considered, diversity estimation means detecting SNVs. Local
haplotype inference refers to analyzing windows in the MSA that
are covered entirely by reads. Finally, global haplotype inference,
also called quasispecies assembly, involves a jigsaw puzzling step
of assembling local fragments into multiple haplotype sequences
that span the entire genomic region of interest.

SNV calling is based on the observed nucleotide counts at a
single sequence position. The simplest statistical model for sep-
arating errors from true variations is to assume that, at each
genomic site, the number of errors follows the same Poisson dis-
tribution and to call SNVs that occur more often than expected
by chance for a given error rate (Wang et al., 2007). This
approach has been extended to account for site-specific error rates
(Macalalad et al., 2012). The power and accuracy of SNV call-
ing can be increased substantially by a control experiment, in
which the same genomic region is sequenced from a clonal sam-
ple under conditions as similar as possible to those for the mixed
sample. The rationale for this comparative sequencing approach
is that the control experiment allows for estimating the spe-
cific error patterns of the experiment and hence for improved
separation of biological signal from technical noise. In this set-
ting, SNV detection is based on comparing nucleotide counts

↓     ↓    ↓     ↓    ↓       ↓     ↓       ↓
A:  CCTGAAATCACTCTATGGCAACGACCCATCGTCACAATAAAGATAGGG  60%
B:  CCTCAAATCACTCTTTGGCAACGACGCATCGTCACAATATAGATAGGA  30%
C:  CCTCAAATCTCTCTTTGGCACCGACCCATCGTCCCAATAAAGATAGGG  10%

1  CCTGAAATCACTCTATGGCA
2     GAAAACACTCTATGGCAACG
3        ATCACTCTTTGGCAAGGCCG
4         TCACTCTATGGCAACGACCC
5          CTCTTTTGGGCACCGACCCA
6              CTATGGTAACGACCCATCGT
7               TATGGCAACGAGCCATCGTC
8                ATGGCACGGACCCATCCCCC
9                 TGGCAACGACGCATCGTCAC

10                    CAACGACCCATCGTCACAAT
11                    CAACGACGCATCGTCACGAT
12                     AACGACCCTTCGTCACAATA
13                       CGACCCATCGTCTCAATAAA
14                           GCATCGTCACAATATAGAGA
15                            CATCGTCACAAAATAGATAG
16                              TCGTCACAATAAAGATAGGG
17                                 TCACAATAAAGATGGGG
18                                   CCAATAAAGATAGGG
19                                     AATAAGGATGGGG
20                                        ATAGATAGGA

errors

···· global
--- local
— SNV

NGS

FIGURE 2 | Spatial scales of diversity estimation from NGS data. In this
example, it is assumed that the true virus population (top of figure) consists
of three haplotypes of relative frequencies 60% (A, blue), 30% (B, orange),
and 10% (C, green). Segregating sites are indicated by arrows. Twenty
short reads (labeled 1 through 20) are generated by NGS from the virus
population subject to sequencing errors (indicated in magenta). Reads are
displayed in a MSA and in the color of their corresponding parental
haplotype. Diversity estimation can be approached at single sites (SNV
detection, solid-line rectangle), in windows of the MSA (local haplotype
inference, dashed-line rectangle), or over the entire genomic region (global
haplotype reconstruction, dotted-line rectangle).

between two experiments, for example, using Fisher’s exact test
(Koboldt et al., 2012). Assuming independent Poisson distribu-
tions, another test is based on the difference of the number of
observed nucleotides (Altmann et al., 2011). Count data from
NGS experiments have repeatedly been shown to display more
variation across sites than is captured by a binomial distribu-
tion, and the beta-binomial distribution is a popular choice for
such overdispersed data (Flaherty et al., 2012; Gerstung et al.,
2012). Based on this model and accounting for the strand-bias
of sequencing errors, a sensitivity of up to 1/10,000 has been
achieved for SNV calling at a coverage of around 105 (Gerstung
et al., 2012).

By dropping the assumption of independence among sites,
SNV calling can be further improved. Considering the number
of joint sequencing errors at two positions has been shown to sig-
nificantly decrease the minimal frequency at which a variant is
detectable (Macalalad et al., 2012). This phasing of two SNVs is
possible only at a distance smaller than the maximal read length.
For small distances, the SNV pair will be covered by many reads,
but for larger distances the benefit of phasing will be undone by
the loss of joint coverage. In fact, for deep coverage, pairs are more
informative than single sites only if their distance is not larger
than the average read length (Macalalad et al., 2012).

The idea of phasing SNVs is further extended by comparing
entire reads within a sequence window they overlap. The size
of the window is subject to the same trade-off as the distance
between two SNVs discussed above: Small windows contain many
reads but few SNVs for robust pairwise comparisons of reads,
while large windows contain less reads but more segregating sites.
Local haplotype inference is based on clustering reads within a
given window (Figure 3). The rationale for clustering is that reads
originating from the same haplotype should be more similar to
each other than to reads from other haplotypes. This assumption
is only valid if the error rate is low relative to the diversity of the
population, and the ability to identify haplotype clusters increases
with coverage (Eriksson et al., 2008).

CAACGACC
TAACGACC
CAACGAGC
CAACGACC

CAAGGCCG
CAACGACG
CAACGACG

CACCGACC
CACGGACC

CAACGACC 4/9

CAACGACG 3/9

CACCGACC 2/9

CAAGGCCG
CAACGACC
CACCGACC
TAACGACC
CAACGAGC
CACGGACC
CAACGACG
CAACGACC
CAACGACG

CAACGACC
CAACGACC
TAACGACC
CAACGAGC
CAACGACC

CACGGACC
CACCGACC
CACGGACC

CAACGACG
CAAGGCCG
CAACGACG
CAACGACG

FIGURE 3 | Local read clustering. The local window of the MSA displayed
in Figure 2 is considered (dashed-line rectangle), with colors defined as in
Figure 2. Reads that are more similar to each other than to other reads are
grouped together which recovers the three original haplotypes A, B, and C
of Figure 2 as indicated by the three different colors. Each cluster center
sequence is a predicted haplotype (bold, underlined) and the size of its
corresponding cluster is an estimate of the frequency of the haplotype
(here, 4/f/9, and 2/9, respectively).
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Clustering was initially performed using the classical k-means
algorithm (Jain and Dubes, 1981) and later formulated prob-
abilistically and solved in a Bayesian fashion (Eriksson et al.,
2008; Zagordi et al., 2010a). In particular, the latter approach
allows for estimating the error rate and the number of clus-
ters from the data—a notoriously difficult problem with any
clustering method. The cluster centers are the predicted hap-
lotypes and the cluster sizes are interpreted as the haplotype
frequencies in the population. Error correction is based on a
local read clustering solution by replacing all read bases with
those of its cluster center (Figure 3). This method has been
shown to reduce the per-base error rate after correction, to
increase the sensitivity and specificity of local haplotype calling,
and to improve the estimation of haplotype frequencies as com-
pared to simple read counting or k-means clustering (Zagordi
et al., 2010b). For the 454/Roche platform, a similar clustering
approach called AmpliconNoise can be applied before base calling
on the flowgrams (Quince et al., 2009, 2011). Here, the observed
flowgrams are obtained from ideal flowgrams corresponding to
read sequences subject to measurement noise. Whether cluster-
ing is based on sequences or on flowgrams, the distance mea-
sure between reads should reflect the pattern of experimental
noise.

As an alternative to clustering, k-mer-based error correc-
tion, implemented in the program KEC, has been proposed for
viral amplicon sequencing (Skums et al., 2012). This approach
extends the EDAR error correction algorithm (Zhao et al.,
2010) and initially does not require a read alignment. It con-
sists of a number of heuristic steps with the goal of locating
error regions in reads by considering rare k-mers and remov-
ing errors in these regions. In a final step, which eventually
involves MSAs of the corrected reads, local haplotypes are recon-
structed.

GLOBAL DIVERSITY ESTIMATION
The local methods discussed in the previous section focus
on reconstructing haplotypes in a local window, the max-
imum size of which is effectively restricted to the average
length of the reads. The global reconstruction problem, on the
other hand, is defined as the genome-wide assembly of qua-
sispecies, irrespective of machine-specific parameters like the

average read length. The various approaches to solving this jig-
saw puzzle described in the literature can be roughly divided
into three groups: (1) graph-based methods that first aggre-
gate the reads in a read graph and then search for a mini-
mum set of paths through this graph, (2) probabilistic clustering
models based on mixture models, and (3) de novo assembly
methods which do not rely on the availability of a reference
sequence.

Read graph-based global haplotype reconstruction consists in
aggregating the reads in a read graph and subsequently identify-
ing haplotypes as paths in this graph. The concept of a read graph
has been independently introduced by Eriksson et al. (2008) and
Westbrooks et al. (2008). The read graph contains the possi-
bly pre-processed, for instance, locally error-corrected, reads as
nodes. Directed edges connect two nodes when the reads agree
on their non-empty overlap (Figure 4). The direction of the
edge reflects the order of the starting positions on the reference
sequence. The set of nodes is restricted to all irredundant reads,
where a read is considered redundant if there is another read
that overlaps completely and if both reads agree on this over-
lap. In a similar manner, the set of edges is restricted to include
only those edges for which there would be no path between the
corresponding nodes without this edge. The latter restriction is
called transductive reduction in (Westbrooks et al., 2008), and it
has been shown that this reduction can be computed efficiently.
Finally, a source and a sink node are added to the graph, along
with edges connecting all reads starting at the first position to
the source and all reads ending at the last position to the sink
(Figure 4).

Every path in the read graph connecting source and sink is a
potential haplotype, and the problem of estimating the haplo-
types present in a certain sample might be restated as finding a set
of such source-sink paths that explains the reads well. Different
formalizations of this problem lead to different optimization
problems. One example is the search for the minimum set of paths
that covers all reads implemented in ShoRAH (Eriksson et al.,
2008; Zagordi et al., 2011). The same problem has been stud-
ied in a different way as a network flow problem (Westbrooks
et al., 2008). A variant of the network flow formulation is the
search for a set of haplotypes covering all reads with mini-
mum costs (Westbrooks et al., 2008) and, in a slightly different

5

3

1 2 4 6 7 1210 13

9 11 14 15

8

begin end

FIGURE 4 | Read graph-based global haplotype reconstruction. Shown is
the read graph for the first 15 reads of the MSA shown in Figure 2. Each read
is represented by its index and colored according to its parental haplotype
(A, blue, first row; B, orange, second row; and C, green, third row). Reads are

connected by a direct edge if they agree on their non-empty overlap. Each
path from the begin node to the end node represents a potential global
haplotype, but there are more paths in the graph than the original three
haplotypes the reads have been derived from.
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fashion relaxing the requirement of a complete read cover, imple-
mented in ViSpA (Astrovskaya et al., 2011). The combinatorial
reconstruction is followed by frequency estimation using an
Expectation Maximization (EM) algorithm (Eriksson et al., 2008;
Westbrooks et al., 2008; Astrovskaya et al., 2011).

In a related approach termed QuRe, the same read graph idea
is used to find a set of consistent quasispecies explaining the
reads (Prosperi et al., 2011; Prosperi and Salemi, 2012). It dif-
fers from the methods above in the optimization procedure for
finding the quasispecies. This is formalized as minimizing the
number of in silico recombinants instead of finding a path cover
explaining the reads. However, both optimization strategies are
similar in nature, since avoiding in silico recombinants can be
regarded as avoiding redundant paths in the read graph. Another
advantage of QuRe is that it explicitly addresses the blockwise
structure of the reads due to amplicon-based sequencing in the
statistical analysis (Prosperi et al., 2011; Prosperi and Salemi,
2012).

Haplotype assembly based on amplicon sequencing is also
addressed by the BIOA software (Mancuso et al., 2011). Here,
a read graph-based framework is proposed that includes bal-
ancing of haplotype frequencies between neighboring amplicons
followed by quasispecies reconstruction using a maximum band-
width approach or a greedy algorithm. In the assembly step,
the parsimony criterion of explaining the observed reads with
a minimal number of haplotypes is relaxed to finding a qua-
sispecies of minimal entropy explaining the reads. This strategy
was shown to outperform shotgun-based quasispecies assembly
using ViSpA.

QColors is another method that relies on the read graph as
the main source of information for assembling reads into haplo-
types, but it uses in addition a conflict graph consisting of edges
between reads that overlap but disagree on the overlap (Huang
et al., 2011). The reconstruction problem is then to find a par-
tition of the reads into a minimal number of non-conflicting
subsets, which defines a vertex graph coloring problem, hence the
name QColors. A potential problem with this approach might be
the sensitivity of the conflict graph to sequencing errors and the
uncertainty in placing alignment gaps, which are not explicitly
dealt with.

Another method that uses the read graph approach is called
Hapler (O’Neil and Emrich, 2012). This method is specifically
designed for situations characterized by low haplotype diversity
and low read coverage (<25×), which, for instance, occur in the
context of population-level de novo transcriptome assemblies or
ecological studies. The minimum path cover problem is gener-
alized and reformulated as a weighted bipartite graph matching
problem, such that erroneous reads can be identified. Since, in
general, the resulting path covers are again not unique, the anal-
ysis is equipped with a randomization step in which samples are
drawn from the set of path covers, although this process seems
to lack a clear probabilistic interpretation. Experiments under
low-coverage conditions indicate that this method is successful
in reconstructing local haplotypes over a region that is roughly
determined by the average read length, which in our terminology
would be classified as local reconstruction. Nevertheless, longer
haplotype assemblies are possible with Hapler and specific care

is taken in reconstructing consensus sequences with a minimal
number of chimeric points.

A common property of all read graph-based approaches is that
the haplotype reconstruction problem itself becomes determinis-
tic in nature, while the unavoidable noise component present in
observed reads is dealt with in a pre-processing error correction
step—if at all.

Removing all the stochasticity in the observed reads by way
of local error correction prior to global haplotype reconstruc-
tion has the limitation that corrections cannot be revised in
the global context and miscorrections are propagated through
subsequent steps. A probabilistic hierarchical model that cir-
cumvents this problem has been introduced (Jojic et al., 2008).
The main idea is to model the generative stochastic process of
read generation. Parameters and hidden variables in this method
include the parental haplotype, the starting position, and the
parameters related to the error transformation. Inference is car-
ried out by maximizing the likelihood using the EM algorithm.
A potential drawback of this approach is that the user has to
fix the number of haplotypes to be reconstructed in advance,
and no well-defined estimation process for this number is
provided.

Probabilistic approaches are a second methodology for
global haplotype reconstruction. PredictHaplo is one of these
approaches which also automatically adjusts the number of hap-
lotypes (Prabhakaran et al., 2010). In this model, a haplotype is
represented as a set of position-specific probability tables over
the four nucleotides, which can be augmented to include a fifth
character representing alignment gaps (Figure 5). The underlying
generative model assumes that reads are sampled from a mix-
ture model, where each mixture component is interpreted as a
haplotype, and the associated mixing proportion estimates the
haplotype frequency. In order to avoid a priori specification of
the number of mixture components, an infinite mixture model
is employed (Ewens, 1972; Ferguson, 1973; Rasmussen, 2000),
and for computational reasons, a truncated approximation of this
stochastic process is used.

A further refinement of probabilistic haplotype reconstruction
has been implemented in the program QuasiRecomb (Zagordi
et al., 2012). Here, haplotypes are not reconstructed individu-
ally, but rather their distribution is estimated by a hidden Markov
model. The model assumes that all haplotypes are generated from
a small set of sequences by mutation and recombination. This
model is taking into account that in some RNA viruses, such
as HIV, recombination is very frequent and hence an important
factor generating genetic diversity.

All approaches described so far make use of a known reference
genome that serves as a fixed spatial coordinate system after read
alignment. By contrast, de novo assembly methods are more gen-
eral in nature since they do not require such reference genomes.
Several assemblers specifically designed for certain NGS platforms
like 454/Roche have been proposed in recent years (Finotello
et al., 2012). The original goal of de novo assembly is reconstruct-
ing a single target genome sequence, rather than an ensemble of
different genomes. Hence, the currently available genome assem-
blers are not designed to solve the whole-genome quasispecies
assembly problem, but the different contigs they reconstruct may
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FIGURE 5 | Probabilistic global haplotype reconstruction using a

generative mixture model. Each of the three haplotypes colored as in
Figure 2 (A, blue; B, orange; and C, green) is represented as a chain of
probability tables over the four nucleotides, where darker shading of a base

indicates higher probability. The probabilities of traversing from the begin
node to one of the haplotypes serve as an estimate for the haplotype
frequencies. Each read is regarded as an independent observation from this
statistical model.

serve as a starting point for this jigsaw puzzle (Ramakrishnan
et al., 2009).

Large-scale simulation studies show that all global recon-
struction methods rely on the availability of relatively long
reads. Coverage is also important when it comes to detect-
ing low-abundant mutants, but even an arbitrarily high cov-
erage cannot compensate for insufficient overlaps due to short
reads. Given the typical diversity of virus populations, it appears
that global haplotype reconstruction is currently only realistic
for sequencing platforms producing long reads on the order
of at least 300–500 bp. Accordingly, successful reconstructions
have been reported predominantly for the 454/Roche sequencing
platform.

Regarding the different computational approaches described
above, it is generally difficult to conduct informative com-
parative simulation experiments, but two general trends have
become evident. First, local read error correction has the ten-
dency to under-correct the reads, which can lead to a large
number of false positive global haplotypes, in particular, when
combined with read graph approaches requiring a complete cov-
erage of all reads. Quasispecies assembly methods that relax
this coverage requirement (Astrovskaya et al., 2011; O’Neil and

Emrich, 2012) or probabilistic approaches avoiding the read-
graph construction (Jojic et al., 2008; Prabhakaran et al., 2010)
are successful in decreasing the false positive rate. Second, the
most problematic step in genome-wide reconstruction is the
usually unavoidable (RT-)PCR pre-processing which can intro-
duce significant artifacts. These artifacts might have a much
stronger effect on the final quality of the haplotype reconstruc-
tion than the actual choice of the computational reconstruction
method.

Computational methods for local and global haplotype recon-
struction are summarized in Table 1. All of these tools have been
developed in research environments and most are subject to
continuous enhancements. Their usability and performance also
depends on the quickly changing characteristics of the sequenc-
ing machines. In the future, comparative studies using simulated
data, mixed control samples, or Sanger-sequenced gold stan-
dard samples are required to assess the performance of these
tools under different conditions. In addition, software tools are
available for NGS read data management and visualization. For
example, Segminator II has been specifically designed to dis-
play sequence variability of temporally sampled virus populations
(Archer et al., 2012).

Table 1 | Available software tools for viral quasispecies inference.

Program Method URL References

QuRe Read graph https://sourceforge.net/projects/qure/ Prosperi and Salemi, 2012

ShoRAH Read graph http://www.cbg.ethz.ch/software/shorah Zagordi et al., 2011

ViSpA Read graph http://alla.cs.gsu.edu/∼software/VISPA/vispa.html Astrovskaya et al., 2011

BIOA Read graph https://bitbucket.org/nmancuso/bioa/ Mancuso et al., 2011

Hapler Read graph http://nd.edu/∼biocmp/hapler/ O’Neil and Emrich, 2012

AmpliconNoise Probabilistic http://code.google.com/p/ampliconnoise Quince et al., 2011

PredictHaplo Probabilistic http://www.cs.unibas.ch/personen/roth_volker/HivHaploTyper Prabhakaran et al., 2010

QuasiRecomb Probabilistic http://www.cbg.ethz.ch/software/quasirecomb Zagordi et al., 2012
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APPLICATIONS
NGS is widely applied to study viral diversity mainly in the con-
text of drug resistance of clinically relevant viruses such as HIV,
HCV, and HBV (Table 2). Most studies focus on pre-existing
minority drug-resistant virus variants in treatment-naïve indi-
viduals and their impact on the success of antiviral therapy,
epidemiological surveillance, and virus population dynamics dur-
ing virological failure. The pathways of drug resistance develop-
ment are of particular clinical importance, since they can lead
to new drug design or new therapeutic strategies, for instance,
avoiding cross resistance or rapid selection of resistant viruses
(Beerenwinkel et al., 2003). Furthermore, epidemiological studies
for a huge variety of human pathogenic viruses were performed
using NGS technologies, including cytomegalovirus (CMV),
Epstein Barr virus (EBV), HCV, influenza virus, norovirus, rhi-
novirus, rotavirus, and varicella zoster virus (VZV) (Table 2).

NGS is also increasingly used in more basic research areas, such
as characterization of transmitted HIV (Fischer et al., 2010) and
HCV (Wang et al., 2010; Bull et al., 2011), estimation of infection
dates (Poon et al., 2011), evolution during the course of infection
with HIV (Rozera et al., 2009; Poon et al., 2010; Wu et al., 2011),
HCV (Bull et al., 2011), and rhinovirus (Cordey et al., 2010),
and hypermutation patterns (Reuman et al., 2010; Knoepfel et al.,
2011). Recently, NGS technologies have been applied to obtain
the whole genome of HIV using a coverage allowing quasispecies
analysis beyond the generation of consensus sequences to study,
for instance, patterns of immune escape (Bimber et al., 2010;
Willerth et al., 2010; Henn et al., 2012).

All these applications demonstrate the growing importance of
NGS in studying viral diversity. With this technology, we will
gain further insights into transmission traits, viral evolution,
and its association with pathogenesis. World-wide viral diversity
surveillance will be important for vaccine design and vaccina-
tion strategies. Currently, genetic diversity is mainly studied based
on the detection and analyses of SNVs, rather than the recon-
struction of linked mutations, due to the challenges in local and
global haplotype reconstruction discussed above. It will be a huge

step forward when haplotype reconstruction in heterogeneous
viruses matures into a routine procedure based on standardized
experimental protocols and validated, automatic data analysis
pipelines.

OUTLOOK AND CONCLUSIONS
NGS opens up new roads to study viral diversity. It will tremen-
dously increase our knowledge in virus evolution, fitness, selec-
tion pathways, and pathogenesis. Together with host genomics,
viral diversity will allow insights into complex virus-host interac-
tions. Full-length viral sequences may ultimately define truly con-
served regions in viral genomes which might also be of relevance
for vaccine and drug design. Clinically, the first application we can
foresee is that in a single assay all drug targets relevant for antiviral
treatment can be sequenced including information on minority
drug-resistant variants. For all applications, sample procedures
have to be chosen that minimize errors during sample prepara-
tion and sequencing. Several challenges in data analysis remain,
especially in regard to alignments and global diversity estimation.
In the future, some of these challenges might be diminished by
upcoming third- and fourth-generation sequencing technologies,
like single molecule or direct RNA sequencing.

Another not yet addressed future challenge will be making
sense of the large amounts of genome data generated by NGS.
For instance, clinical cut-offs need to be defined for minor-
ity drug-resistant virus variants, the clinical importance of new
virus subtypes or even new viruses needs to be determined,
and pathogenesis factors need to be confirmed in clinical set-
tings. Thus, downstream analyses have to include large sets of
well-documented patients, results from other experimental set-
ups, etc. These are challenges as well as opportunities to answer
important research questions which could not be addressed with
conventional sequencing techniques.
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