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Despite developments in robotics and automation technologies, several challenges need
to be addressed to fulfill the high demand for automating various manufacturing processes
in the food industry. In our opinion, these challenges can be classified as: the development
of robotic end-effectors to cope with large variations of food products with high practicality
and low cost, recognition of food products and materials in 3D scenario, better
understanding of fundamental information of food products including food
categorization and physical properties from the viewpoint of robotic handling. In this
review, we first introduce the challenges in robotic food handling and then highlight the
advances in robotic end-effectors, food recognition, and fundamental information of food
products related to robotic food handling. Finally, future research directions and
opportunities are discussed based on an analysis of the challenges and state-of-the-
art developments.
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1 INTRODUCTION

The food industry is highly diverse and covers many industrial activities, such as production,
processing, packaging, distribution, preparation, preservation, and food service. Traditionally, the
food industry is considered to be low-tech, but it has become more technology intensive in recent
years, as measured by its R&D to sales ratio (Traill and Meulenberg, 2002). Due to an aging society
and labor shortages in countries such as Japan, automation in the food industry is in high demand to
maintain profit margins. In particular, upon the impact of the COVID-19 pandemic, automation is
strongly advocated at all stages in food production systems considering food safety and ensuring food
supply (Henry, 2020).

In food factories, some operations such as food production, processing, and packaging require
direct contact with food products. For operations of production and processing, dedicated machines,
for example rice making machine, dumpling maker machine, and automatic chocolate molding
machine, are usually preferable because the operations are constantly required without frequent
change and update. In dedicated machines, handling operations of food materials or products can be
specified and pick-and-place operations are often not required. On the other hand, packaging food
products are generally conducted by pick-and-place operations. Moreover, pick-and-place
operations are also required to transfer food products from one dedicated machine to another
for connecting different processing operations. To realize pick-and-place operations, robotic systems
consisting of robotic manipulator, end-effector, and sensors (e.g., camera), are often used because of
their efficiency and adaptability to various food products.

Currently, industrial robotic arms are used as manipulators in the food industry for generating
desired motions and carrying payloads in pick-and-place operations (Bader and Rahimifard,
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2020). The industrial robotic arms can provide high position
accuracy and high motion speed, but often with high cost. For
robotic end-effector, the most widely used ones in food factories
are suction cups as shown in Figure 1A, which are inexpensive
and can be operated simply. Simple operation is an essential
requirement for food handling systems because most handling
tasks must be completed within a short time period to maintain
production efficiency. However, there are many food products
or handling operations, such as grasping food materials with
moisture and porous surfaces, cannot be performed using
suction cups. As a result, these operations are eventually left
for human laborers to perform, as examples shown in Figures
1B,C, and the automation of such operations is currently the
main task for most enterprisers and researchers in the food
industry.

To automate the pick-and-place operations as shown in
Figures 1B,C, gripping-type robotic end-effectors are needed
and they are required to adapt to the variations of food products
considering the frequent changes and updates of food products.
Moreover, in many scenarios, cooked and prepared food
products are randomly distributed or stored in containers as
shown in Figure 1D instead of aligning on a belt conveyor. This
brings challenges for grasping, recognition, and sensing. To
address these challenges, many researches have been carried out
and numbers of commercialized systems are available. However,
there are still many open issues to be challenged to further
accelerate the automation in the food industry. Therefore, in
this review, we attempt to address these challenges in details and
review recent developments and advances regarding these
challenges. Finally, we discuss potential opportunities and
research directions for improving food handling automation
in the food industry.

2 CHALLENGES

There are many challenges in the development of automated
systems to be used in the food industry. In this review, we focus

FIGURE 1 | Factory scenarios of food handling operations in the food industry: (A) using suction cups to package cucumber, (B) human laborers packaging fried
shrimps, (C) human laborers manufacturing Japanese boxed lunches, and (D) examples of prepared food materials in containers.

FIGURE 2 | The structure of the review contents.
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on robotic systems to perform typical handling tasks, such as
pick-and-place operations. It is a simple operation for human
laborers, but it presents many difficulties for a robotic system to
achieve an efficiency similar to that of human laborers. Many
technologies are required to complete these simple operations,
such as the technologies for successfully recognizing food items,
effectively handling food products, and robotic end-effectors for
handling various food products.

Food products are mostly non-rigid, sometimes fragile, and
easily bruised and marked when they come in contact with hard
surfaces. In addition, food products are susceptible to bacterial
contamination, and their properties are highly affected by
environmental conditions, such as temperature, humidity, and
pressure (Chua et al., 2003). These characteristics of food
products bring many challenges when developing robotic
systems to handle them. In this review, we will focus on the
following three aspects: robotic end-effector, food recognition,
and fundamental information of food products, as indicated by
the light blue area in Figure 2. More details will be discussed in
the following sections.

2.1 Robotic End-Effectors
To cope with the large variety and variable characteristics of food
products, various robotic end-effectors need to be developed. The
lack of effective robotic end-effectors is considered one of the
main reasons that hinder the rapid introduction of robots into the
food industry (Chua et al., 2003). Lien (2013); Fantoni et al.
(2014) summarized the challenges of developing robotic grippers
for food handling tasks and suggested that robotic grippers must
cope with the softness, uneven surfaces, and non-uniform shapes
of food products, and fulfill the hygienic requirements. In
addition, robotic end-effectors must also adapt to the food
surface conditions, such as wet and sticky surfaces. In some
scenarios where the spaces or gaps among food products are
small, as shown in Figure 1B, robotic end-effectors must have the
ability to enter the small spaces for grasping. From contamination
considerations, the robotic end-effectors must contain as few
mechanical components as possible to avoid dropping into the
food product. From the system’s point of view, the robotic end-
effectors must have a simple motion and can be operated at a high
speed to achieve a proper takt time. Furthermore, the end-
effectors should be low cost and designed to meet the hygienic
design principles (EHEDG, 2018).

2.2 Food Recognition
Difficulties in food recognition vary significantly depending on
the operation scenarios. In food factories, scenarios of food
recognition can be divided roughly into two categories: 1)
food products aligned or scattered on a food conveyor with no
overlap, 2) food products randomly distributed in a food
container with overlaps and contacts among food products, as
shown in Figure 1B, which is also known as the random bin-
picking (RBP) scenario. In the first scenario, food products or
materials are separately located on a flat surface. Therefore, they
can be recognized by using conventional 2D image processing
methods based on color information or pattern-matching
techniques. The position and posture of the food product need

to be calculated only in a 2D plane. For such a scenario,
automated robotic systems can often be found in food
factories, for example, the robotic systems for picking pizza
and packaging powder based on pattern matching (Connolly,
2007a). On the other hand, it is difficult to perform food
recognition in the RBP scenario because the food products
may overlap and are located in a 3D space in which the
position and posture of the food product must be described.
The 3D template matching technique can be used in 3D space to
recognize the position and pose of objects with well-defined
geometries (Vock et al., 2019), but it is difficult to be applied
to food products that have large variations in geometrical
parameters. Therefore, food recognition in the 3D or RBP
scenario for various food products remains an challenging issue.

2.3 Fundamental Information
To achieve successful handling of food product, an effective
handling strategy can be very helpful. For instance, the
grasping force needs to be small enough to avoid damage on
food product, but it must also be large enough to complete a pick-
and-place task without dropping. Moreover, grasping velocity
also plays an important role when considering the viscosity of
food product and possible impacts upon grasping. To the best of
the authors’ knowledge, there are very few researches focusing on
investigating optimal handling strategies of food products. In
actual applications, these handling strategies are usually pre-
determined through trial-and-error experiments. The reason
behind this is the lack of fundamental information to properly
model the “engineering” properties of food products, such as size,
shape, weight, softness, surface condition, friction coefficient,
viscoelasticity, rheology, fragility, ease of bruising, and so on.
Researches in this area, especially from the viewpoint of robotic
handling, have not been carried out frequently. There are specific
machines or devices used for measuring these properties for
various research purposes, such as food science, nutrition, and
mastication. Unfortunately, such data for the purpose of robotic
handling are barely available, but they are essentially important
for designing end-effectors and investigating grasping strategies.
In addition, handling strategy depends on robotic end-effector
and food target. To improve versatility of handling strategy,
categorizations of robotic end-effectors and food products
based on their characterizations are also essential, and such
research activities have not been carried out frequently so far.

3 RECENT ADVANCES

To tackle the above-mentioned challenges, many researches and
commercial robotic systems have been developed in the last few
decades. In this section, we review these advances as indicated
with the light orange area in Figure 2.

3.1 Advances in Robotic End-Effectors
Many robotic hands and grippers have been proposed and
studied so far to handle food products and materials. To
better review and address related work, we divided robotic
end-effectors into six categories, as shown in Figure 3, based
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on the position/positions where an end-effector contacts the
target food product. We employ this classification approach
instead of using grasping principles as nicely reviewed in
(Fantoni et al., 2014) because we tend to focus on the forces
that the food target may be received and reduce the number of
categories.

3.1.1 Grasping at Top Surface
In the case of grasping food products from the top surface
(Figure 3A), conventional grippers can be roughly categorized
into four groups: 1) suction cups, 2) grippers using the Bernoulli
principle (Petterson et al., 2010) or the Coanda effect (Elango
et al., 2012, 2018), 3) devices using adhesion force from a roller
(Davis et al., 2007) or by freezing the moist surface (Lien and
Gjerstad, 2008), and 4) gripper penetrating inside the food
product by needles (Gjerstad et al., 2006). A suction cup with
vacuum pressure has the advantages of a simple structure and
stable grasp. However, suction cups usually require the surface of
the food product to be relatively flat, smooth, and dry. In
addition, it may leave a bruise or mark on the product surface
when handling raw food products. To overcome these
disadvantages, grippers based on the Bernoulli principle or
Coanda effect have been proposed, and these grippers do not
require direct contact with food products for grasping. However,
the grasping becomes unstable, and rotation motion may be
generated owing the high-speed air flow. Grippers using
adhesion force are usually used for specific food products with
sticky properties (e.g., pasta dough) for the roller type and moist
surfaces (e.g., fresh fish piece) for the freezer type. The freezer-
type gripper also requires a sharp knife mechanism or heat flow to
release the food product upon placement (Fantoni et al., 2014).

In recent years, new types of grippers have also been proposed
for grasping various objects, including food products. Amend
et al. (2016) proposed jamming grippers and successfully tested
them for grasping various types of objects. They appeared to be
very promising for practical applications in the food industry.

Unfortunately, commercialization failed due to challenges such as
leaks, difficult actuation and assembly, and materials. Koivikko
et al. (2021) developed soft suction grippers with switchable
stiffness to achieve both small and large forces. The grippers
were tested on fruits, such as mangoes and bananas. Recently, a
pneumatically driven needle gripper was also proposed to grasp
raw food materials from their top surface (Wang et al., 2021c).
However, these grippers are still in their research stages, and
commercialization and applications in the food industry are
expected only in the future.

3.1.2 Grasping at Side Surfaces
Grippers belonging to this group have been widely studied and
are frequently applied in the food industry. When grasping an
object at its side surfaces, the object size must be known, and the
gripper must provide sufficient stroke for successful grasping.
Because the friction force dominates the grasping performance, it
is important to ensure a sufficient friction force for stable
grasping. This type of grasping has the advantage of better
placement accuracy because the object is enclosed inside the
gripper, and the posture of the object can be easily adjusted. Many
conventional two-fingered or multi-fingered parallel grippers for
manufacturing automation have been modified for application in
the food industry after solving the food compatibility issues and
ensuring that there is no damage to the food products. One good
example is the SCHUNK food gripper (SCHUNK, 2021), which
provides customized, fully regulation-compliant components and
gripper solutions for the food industry. In recent years, along with
the rise of soft robotics, many soft robotic grippers have been
developed for handling food products. Soft grippers have the
advantages of easy adaptation to food variations and because of
their soft bodies less risk of damage to the food products.
Examples of commercialized soft grippers include the mGrip
grippers from Soft Robotics, Inc. (Robotics Inc., Soft, 2021), soft
gripper from OnRobot (OnRobot, A/S, 2021), a modular-
designed soft gripper from SoftGripping (SoftGripping, 2021),

FIGURE 3 | Different types of robotic end-effectors according to their handling positions at (A) top surface, (B) side surface, (C) bottom surface, (D) top and side
surfaces, (E) side and bottom surfaces, and (F) top, side, and bottom surfaces. Red star marks indicate contact positions.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 7891074

Wang et al. Review of Robotic Food Handling

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


and the soft flexible gripper from Soft Robot Technology Co. Ltd.
(SRT., 2021). These grippers are pneumatically driven and
fabricated with silicone materials. They are able to handle a
wide range of irregular shaped and delicate food products. In
addition, Festo (Festo, 2021a) provides a shape adaptive gripper
using soft Fin Ray® structure which can passively adapt to the
shape of a target object.

In addition to these commercialized end-effectors, many
studies have been conducted to design end-effectors for
handling challenging food products. Pettersson et al. (2010)
developed a soft gripper using the effects of
magnetorheological fluid to cope with the ease of bruising and
shape variations of food products, such as apples, carrots,
strawberries, broccoli, and grapes. Maruyama et al. (2013)
proposed a robotic gripper made from an incompressible fluid
enclosed in a rubber part to grasp fragile objects, such as potato
chips and tofu. Endo and Otomo developed a two-degree-of-
freedom multi-fingered gripper for grasping noodles and
simmered food by considering an appetizing presentation
(Endo and Otomo, 2016). To handle similar chopped and
granular food materials, Kuriyama et al. (2019) proposed a
pneumatically driven wrapping gripper for automating the
topping operation of a Japanese lunch box. Blanes et al. (2014)
proposed several pneumatic actuators and mechanisms
fabricated by additive manufacturing for food handling. These
grippers have promising capabilities for handling specific food
materials, but many requirements, such as food compatibility and
hygiene, need to be considered before they can be commercialized
or used in actual applications.

3.1.3 Grasping From Bottom Surface
Handling food products solely from the bottom surface can often
be seen in kitchens when using a spatula to cook foods. However,
this approach is not widely adopted in automation systems
because of the possible instability or slippage during high-
speed translation motion. The only commercialized robotic
end-effector using this principle is the SWITL hand developed
by FURUKAWA KIKO (Furukawa, 2021). The hand consisted of
a Teflon film and a stainless-steel plate. The Teflon rotates around
the plate like a belt conveyer and creeps under the food material.
It can handle various food materials, such as slices of ham and
cheese, semi-liquid-gels, mousses, and mayonnaise sauce or
melted cheese (Kusuda, 2011).

3.1.4 Grasping at Top and Side Surfaces
It is natural to combine different principles to improve the
grasping capabilities. In this subsection, we review related
work on end-effectors that combine the grasping at both the
top and side surfaces of an object. However, we do not consider
those that combine both principles, but they are operated
independently by using a tool changer. In this end-effector
group, it is often possible to observe the combination of
suction and gripping. A commercialized example is the
gripper from RightHand Robotics, Inc., which consists of a
suction cup and a three-fingered gripper (RightHand Robotics,
2021). Another commercialized example is the TentacleGripper
from Festo, which is structured as a silicone tentacle and two rows

of suction cups located on the surface of the tentacle mimicking
the octopus leg (Xie et al., 2020; Festo., 2021b). In addition,
researchers have proposed other types of grippers that combine
suction and gripping principles. Bryan et al. (2019) proposed a
soft robotic gripper with three cable-driven fingers, and each
finger is equipped with three suction cups. Multi-fingered
grippers with suction cups at the fingertips have also been
developed by researchers for handling various objects,
including food materials (Yamaguchi et al., 2013; Wang et al.,
2020). Moreover, soft grippers with enveloping motion have also
been proposed to grasp various objects, including fragile food
products (Li et al., 2019; Hao et al., 2021). The gripper, upon
grasping can form an enclosed space; therefore, the gripper itself
works as a suction cup when vacuum pressure is applied (Hao
et al., 2021). Both grippers can adapt to the object shape and
generate large grasping forces. In addition, grippers integrated
with gecko-inspired adhesives have been proposed by researchers
to improve grasping performance (Song et al., 2014; Glick et al.,
2018). These grippers combine the principles of gripping and
adhesion, and require the contact surface to be relatively dry to
improve the adhesion performance. Some of the above-
mentioned grippers may not be designed specifically for food
industry applications, but the approaches used to achieve stable
grasping can be extended to handle food products.

3.1.5 Grasping by Side and Bottom Surfaces
There are also robotic end-effectors that combine grasping from
the side and bottom surfaces. Ma et al. (2020) proposed a flat-
shaped paper gripper for food grasping. This gripper can slide a
thin paper sheet under the food product for grasping, and the
puller sheet can also make contact with the food product for
stabilization purposes. Gafer et al. (2020) developed a quad-
spatula gripper for handling food ingredients. This gripper has
four cable-driven fingers with a spatula-shaped plate at each
fingertip. When grasping, the plates scoop the food ingredients,
and the fingers also apply a grasping force. In addition, Wang
et al. (2021a) proposed a scooping-binding gripper to handle
various food products, especially those with a low height profile
and slippery properties. The gripper consists of two thin scooping
plates and multiple rubber strings. Upon grasping, the scooping
plates are inserted under the bottom surface of the food product
and the rubber strings wrap around the side surfaces to stabilize
the grasp. However, no commercially available end-effectors were
found that use this combination of grasping by the side and
bottom surfaces of food products.

3.1.6 Grasping by Top, Side and Bottom Surfaces
The last group of grippers achieves stable grasping by enveloping
food products from all surfaces. One commercially available
gripper of this type is the meat gripper (AppliedRobotics.,
2021). This gripper consists of two L-shaped grip plates to
grasp food products and a center plate at the top with a
passive spring mechanism to provide a pushing force for
stabilization. The gripper is manufactured from lightweight
materials approved by the FDA and USDA, and it can be used
to handle various food products, such as fresh meat, fish, cheese,
bacon, and many other nonuniform products. For research
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activities, Sam and Nefti proposed a multifunctional gripper for
handling various food products (Sam and Nefti, 2010). This
gripper was constructed using a suction mechanism and four
rigid fingers. The suction mechanism was based on the Bernoulli
effect. After the food product was held by the suction mechanism,
the four fingers were closed to envelop the food product for
stabilization.

3.2 Advances in Food Recognition
3.2.1 2D Recognition
For the scenario of food scattered or aligned on food conveyor,
recognition can be performed using 2D image processing or
pattern matching approaches, which have been integreated in
commercially available robotic systems, such as the ABB
FlexPicker Packaing Robot (ABB, 2021). In addition, 2D
image processing can be also used in recognizing certain food
products with overlapping and occluding (Muhammedali et al.,
2004). The approach of 2D image processing assumes the depth
information of the food target is known and only the position and
orientation in the horizontal plane (usually the food conveyor)
need to be recognized. Using only image processing can greatly
reduce the complexity of the recognition problem and results in
an efficient solution. However, it is difficult to be applied to
recognize multiple food products or materials of different
categories. For recognizing multiple targets, machine learning
based approaches are often adopted. Kawano and Yanai
developed a smartphone-based food recognition system
(FoodCam) to estimate calories and nutrients in foods and
record a user’s eating habits (Kawano and Yanai, 2013;
Kawano and Yanai, 2014b; Kawano and Yanai, 2015). It
achieved a classification rate of 79.2% for the top five category
candidates for a 100-category food dataset (Kawano and Yanai,
2015). Liu et al. (2018) proposed a deep-learning-based food
recognition system for dietary assessment on an edge computing
service infrastructure and achieved approximately a 90%
classification accuracy with three different food datasets. In
addition, Ciocca et al. (2014) developed a food recognition
system that can track the eaten food and the user’s dietary
habits, realize automatic billing procedure based on the
recognized foods, and evaluate the leftovers for better
estimation of food intake. Even though these approaches are
not proposed for robotic handling purposes, the ideas of food
segmentation and classification can be extended to applications of
robotic handling.

3.2.2 3D Recognition
3D recognition is commonly required in the RBP scenario, as an
example shown in Figure 1B. The RBP problem has been widely
studied for grasping rigid parts with known CAD models in
industrial applications (Liu et al., 2012). Many commercial
systems are available to solve the RBP problem. Many robot
manufacturers provide such vision systems together with their
robotic manipulators, such as the FANUC 3D Vision Sensor
(Connolly, 2007b; FANUC., 2021), MELFA-3D Vision from
Mitsubishi Electric (MITSUBISHI ELECTRIC, 2021), and
KUKA.PerceptionTech (KUKA., 2021). There are also
companies that provide specific 3D vision systems for RBP

tasks, such as the 3D vision system from Pickit (Pickit.,
2021) and the 3D vision sensor “TVS” from Kyoto Robotics
(KYOTO ROBOTICS, 2021). However, most of these
approaches assume dealing with objects of known and non-
deformable shapes (Castaman et al., 2020), and therefore, they
have not yet been applied to food products. Machine learning-
based approaches have been investigated to recognize food
products in the RBP scenario. Joffe et al. (2019) proposed a
method using a standard Faster R-CNN architecture with a
Resnet 101 feature extractor to recognize chicken and evaluated
two pose estimation approaches: the augmented autoencoder
and direct regression approach. A suction cup gripper was used
to pick the chickens. Nishina and Hasegawa proposed an
approach to obtain the optimal grasping points through a
deep neural network and successfully applied it to a two-
fingered robotic hand and a suction cup gripper (Nishina
and Hasegawa, 2020). Moreover, Low et al. (2021) proposed
a YOLOv3 based object detection algorithm for recognizing
sousage, potato, broccoli, and tomato in a RBP scenario. The
accuracy of object classification and the speed of pose estimation
were achieve at 67.06% and 92.7 ms, respectively.

3.3 Advances in Fundamental Information
3.3.1 Food Categorization
Food products have large varieties and big variations in shape,
size, weight, surface conditions, softness, and other physical
properties. To maximize the cost performance of a robotic
end-effector, it is essential to investigate how many categories
of food products the end-effector can handle. Unfortunately, it is
impractical to perform experimental tests on each food product
considering the large varieties. Therefore, food categorization
needs to be carried out from a viewpoint of robotic handling.
Erzincanli and Sharp (1997) proposed a classification system for
robotic food handling and categorized food products depending
on their shapes, dimensions, surfaces, compiance, temperature,
and weight. The food shape was classified into eight groups with
standard geometries, such as flat, cylinder, square, ellipse, and so
on. The surface and compliance were qualitatively described as
smooth, furry, thorny, rigid, semi-rigid, non-rigid, and so on. In
addition, Wurdemann et al. (2011) presented a categorization
system for classifying food products to assist food ordering
process. Key characteristics used for the classification are
symmetry, surface condition, hardness, springiness, and
resistance to damage. All these characteristics are also defined
as qualitative descriptions.

3.3.2 Food Properties
Food properties have been studied for many decades. Among the
different properties, elasticity, often indicated by Young’s
modulus, has been widely studied for various purposes.
Williams et al. (2005) experimentally studied the Young’s
modulus of a series of foods, ranging from apple pulp to
prune pit, to develop a primate masticatory apparatus. Ogawa
et al. (2015) investigated the changes in Young’s modulus and
Poisson’s ratio in Japanese radish and carrot roots during boiling
to assess food quality. Kadowaki et al. (2013) measured the
Young’s modulus of crispy foods at the microscopic level to
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study food crash. Recently, Sinha and Bhargav studied the effects
of experimental parameters, such as the deformation rate, sample
shape and size, and moisture content, when measuring the
Young’s modulus of potato and sweet potato samples for food
quality assessment (Sinha and Bhargav, 2020). In addition to
elasticity, viscoelastic or rheological properties were also
investigated, and different analytical models were proposed to
capture the complex deformation and force behaviors. The linear
viscoelasticity of gummy candy, Mozzarella cheese, and cooked
ham was characterized by Singh et al. (2006) using broadband
viscoelastic spectroscopy (BVS). Sakamoto et al. (2007, 2009)
studied the viscoelasticity of Japanese food “Norimaki” using
Maxwell and Burger models to realize the optimum design of
robotic handling. Rheological models were also investigated by
Wang and Hirai (2010, 2012) to simultaneously capture both
deformation (especially, residual deformation) and force of
Japanese sweets.

Friction, as a surface property, has mostly been investigated for
studying the oral mastication sensation. For example, Joyner et al.
(2014) proposed a double-ball tribological system to evaluate the
friction of acid milk gels with and without the addition of saliva.
Chojnicka-Paszun and de Jongh explored the tribological
properties of food-relevant aqueous solutions on different
surfaces to study the mastication of food products (Chojnicka-
Paszun and de Jongh, 2014). A universal mechanical tester
“Tribolab” was used to measure the friction force between the
polydimethylsiloxane (PDMS) surface, which mimics the oral
surface, and intact soft solid foods such as gelatin gels and
sausages (Fuhrmann et al., 2020). In addition, a measuring
apparatus mimicking a robotic grasping scenario was
developed to measure the friction coefficient between a flat
stainless plate and food material (Wang et al., 2021b).

Food geometry is another important data for assisting with
robotic handling. In particular, geometry is essential to study
robotic grasping in a simulation environment or when
performing 3D template matching for food recognition.
Balcerzak et al. (2015) proposed an approach to construct a
geometric model of agri-food products using the Autodesk 3ds
Max to predict the behavior of agri-food products subjected to
drying, cooling, and heating operations. Goñi et al. (2008)
investigated three-dimensional geometric models of lamb,
pork, and chicken carcasses through magnetic resonance
imaging for food process modeling applications. Research
related to food quality inspection also employs the shape
information of food materials. Weres et al. (2009) developed
software packages to assess quality and classify selected agri-food
products, to represent their 3D geometry, and visualize their
property changes during thermo-mechanical processing. Ding
and Gunasekaran developed an automated food shape inspection
system that included a feature extraction stage and a classification
stage, and tested it on corn kernels, almonds, and animal-shaped
crackers (Ding and Gunasekaran, 1994). In addition, Loebnitz
and Grunert conducted a survey to explore the effect of food
shape abnormality on purchase intention and how environmental
concern and social trust might moderate this intention (Loebnitz
and Grunert, 2015).

3.3.3 Food Database
In terms of the food database, we often found those related to
nutrient profile (U.S. Department of Agriculture, 2021), food
composition (Food Standards Australia and New Zealand, 2021),
and food constituents, chemistry, and biology (The
Metabolomics Innovation Centre, 2021). Unfortunately, there
are no databases directly applicable to robotic handling tasks.
Available food databases are mainly developed for recognizing
food products from 2D images and conducting calculations of
calorie or nutrition for health monitoring purposes. Kawano and
Yanai created a series of datasets for Japanese food (Kawano and
Yanai, 2021). They first released a dataset (UEC FOOD-100)
containing 100 types of food photos with a bounding box for each
photo to indicate the location of the food item (Matsuda et al.,
2012). The dataset was then extended to UEC FOOD-256 which
contains 256 types of food photos (Kawano and Yanai, 2014a).
Recently, the authors updated the UEC FOOD-100 dataset to the
UEC-FoodPix Complete dataset with manually refined
segmentation masks to enable accurate food segmentation
(Okamoto and Yanai, 2021). In addition, the authors created a
school lunch dataset containing 3940 multiple-dish images with
bounding boxes on 21-class labels (Ege and Yanai, 2017).
Furthermore, there are also datasets of Food-101 (Bossard
et al., 2014) and Google Food-201 (Myers et al., 2015) for the
recognition ofWestern food items, and a dataset for Chinese food
identification (Chen et al., 2012). Even though these databases are
not created directly for the purpose of robotic handling tasks, they
have the potentials to be used for classifying food categories.

4 FUTURE OPPORTUNITIES

With an aging society and resulting labor shortages,
advancements in robotic technologies will lead to the
introduction of an increasing number of robotic systems into
the food industry to replace human laborers performing simple
tasks. There are plenty of opportunities (green area in Figure 2)
for researchers and enterprises in the fields of robotic
manipulators, robotic end-effectors, computer science, artificial
intelligence, and system integration. In this study, we did not
review robotic manipulators because industrial robots are
commonly used in the food industry (Bader and Rahimifard,
2020), and research on new robotic manipulators specifically for
the food industry is scarce. However, this does not mean that
there is no need to develop novel robotic manipulators for
industrial food applications. In fact, the majority of industrial
robotic manipulators are not well suited to the specific needs of
industrial food applications (Masey et al., 2010). In particular, the
high cost of the current robotic systems presents a financial
obstacle for food manufacturers. As summarized by Masey
et al. (2010), robotic manipulators designed for the food
industry should fulfill the requirements of easy to clean
hygienic design, low cost, fast operational pick-and-place
speed, safe operation alongside human workers, and easy to
reprogram. In recent years, collaborative robots have been
employed frequently in various applications, and they can
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TABLE 1 | Summarization of robotic end-effectors for food handling.

Gripper type Commercialized Under research

• Suction cup • Adhesion using roller Davis et al. (2007)
• Suction gripper based on Bernoulli’s principle VUOTOTECNICA.

(2021)
• Freezing moisture surface Lien and Gjerstad. (2008)

• Jamming gripper Amend et al. (2016) • Needle gripper Gjerstad et al. (2006); Wang et al. (2021c)
• Suction gripper with switchable stiffness Koivikko et al.

(2021)

• SCHUNK food gripper SCHUNK. (2021) • Gripper using magnetorheological fluid Pettersson et al.
(2010)

• mGrip gripper Robotics Inc., Soft. (2021) • Gripper using incompressible fluid Maruyama et al. (2013)
• OnRobot gripper OnRobot, A/S. (2021) • Multi-fingered gripper Endo and Otomo. (2016)
• Shape-adaptive gripper Festo. (2021a) • Wrapping gripper Kuriyama et al. (2019)
• Modular-designed gripper SoftGripping. (2021) • 3D printed gripper Blanes et al. (2014)
• Soft flexible gripper SRT. (2021)

• SWITL hand FURUKAWA. (2021)

• RightHand gripper RightHand Robotics (2021) • Cable-driven gripper with suction cups Bryan et al. (2019)
• TentacleGripper Festo. (2021b) • Pneumatic gripper with suction cups Wang et al. (2020)

• Enveloping gripper Li et al. (2019); Hao et al. (2021)
• Gecko-inspired gripper Song et al. (2014); Glick et al. (2018)

• Flat-shaped paper gripper Ma et al. (2020)
• Quad-spatula gripper Gafer et al. (2020)
• Scooping-binding gripper Wang et al. (2021a)

• Meat gripper AppliedRobotics. (2021) • Multi-functional gripper Sam and Nefti. (2010)
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meet the requirements of operating alongside human workers
and are easy to program. However, the requirements of low cost
and fast operational speed remain to be fulfilled.

Regarding to robotic end-effectors, research has been carried
out intensively in recent years, along with the rise of the soft
robotics field. However, there are still few commercialized end-
effectors, and successful user cases in the food industry are even
more limited. To be successful, the end-effectors must not only
meet all the hygienic design principles and takt time
requirements, but also be low cost and easy to be integrated
into the existing robotic systems. Moreover, one end-effector
should be able to handle various food products to adapt to rapid
changes or updates of the target products in an automation line.
Theoretical and experimental investigations need to be carried
out to establish relationships between robotic end-effectors and
food products. In addition, considering the grasping principle, as
summarized in Table 1, only end-effectors grasping at the top
and side surfaces are well studied and commercialized, but end-
effectors grasping from the bottom surface and all surfaces have
been barely studied so far. However, such end-effectors are
required for handling various kinds of food products,
especially slippery, heavy, and low-profile food products. An
increasing number of such end-effectors are expected.

For food recognition, the RBP scenario should be further
investigated for various food products and materials. Attention
need to be paid not only for classification and recognition, but
also for the determination of the grasping position and
orientation. In the bin-picking scenario, these positions and
orientations are in three-dimensional space, and the accuracy
of the recognition and determination may significantly affect the
grasping performance. To improve the recognition accuracy, one
potential approach is to use deep learning methods that learn
representational features from the dataset during the training
process and demonstrate stronger ability than traditional
methods (Zhou et al., 2019). The databases mentioned in
Section 3.3.3 may be used for developing deep learning
models, but new databases for bin-picking scenarios are also
needed to ensure satisfactory performance.

Regarding food categorization, it would be better to have a
categorization system including quantitative descriptions of
features such as surface condition, hardness, and resistance
to damage. Relationships between robotic end-effectors and
food categories need to be established to help the selection of
proper robotic end-effector. For the physical properties and
database of food products, it would be helpful to have a database
containing food property information related to robotic
handling, such as the properties of viscoelasticity or rheology,
friction, geometry, and weight, similar to the food version of the
Yale-CMU-Berkeley dataset (Calli et al., 2015, 2017). The
properties should be presented in a way that facilitates
robotic handling tasks. Such a database can lay a foundation
for the development of robotic systems for food handling and
can also be used to study and analyze robotic systems in a
simulation environment. It may also inspire researchers to
develop property-measuring devices and establish evaluation
standards for various robotic end-effectors.

Finally, from a system’s point of view, a compact system with
portability is preferable to cope with the high-mix low-volume
production in the food industry. In addition, system engineers are
usually not available in food factories; therefore, the robotic
system used in such factories must have an easy-to-use
interface, and complex system maintenance should be avoided
or done automatically. Along with the development of the Fourth
Industrial Revolution (4IR or Industry 4.0), an increasing number
of industrial and home devices are connected through the
technologies of the Internet of Things (IoT) or cyber physical
systems (CPS) (Khan et al., 2018). Therefore, it is also a good
opportunity to apply such technologies to the robotic systems in
the food industry to extend their capabilities of machine-to-
machine communication, self-monitoring, and automatic
system updating.

5 CONCLUSION

The food industry has a very long history, but it is still a labor-
intensive industry. There are many benefits to fully automate
food preparation and processing operations, but difficulties are
deep-rooted, and new technologies need to be integrated
together to make a step forward. In this review, we
investigated a large number of research articles and
commercial systems related to the robotic handling of food
products. We first summarized the basic challenges faced in the
food industry for introducing robotic systems, and then
elaborated on the advances in different aspects, such as the
robotic end-effector, food recognition, and fundamental
information of food categorization, property, and database,
which are essentially important for developing robotic
systems. Finally, we suggest future directions that are
potentially promising to tackle these challenges and
eventually help the process of automation in the food
industry. The purpose of this review is to encourage
researchers and enterprises in this field to further advance
the existing technologies, develop new technologies, and put
them into practice for automating various operations in the food
industry.
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