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Challenges and opportunities of multimodality and

data fusion in remote sensing
M. Dalla Mura, Member, IEEE, S. Prasad, Senior Member, IEEE, F. Pacifici, Senior Member, IEEE,

P. Gamba, Fellow, IEEE, J. Chanussot, Fellow, IEEE, J. A. Benediktsson, Fellow, IEEE

Abstract—Remote sensing is one of the most common ways
to extract relevant information about the Earth and our en-
vironment. Remote sensing acquisitions can be done by both
active (synthetic aperture radar, LiDAR) and passive (optical
and thermal range, multispectral and hyperspectral) devices.
According to the sensor, a variety of information about the
Earth’s surface can be obtained.

The data acquired by these sensors can provide information
about the structure (optical, synthetic aperture radar), elevation
(LiDAR) and material content (multi and hyperspectral) of the
objects in the image. Once considered together their comple-
mentarity can be helpful for characterizing land use (urban
analysis, precision agriculture), damage detection (e.g., in natural
disasters such as floods, hurricanes, earthquakes, oil-spills in
seas), and give insights to potential exploitation of resources
(oil fields, minerals). In addition, repeated acquisitions of a
scene at different times allows one to monitor natural resources
and environmental variables (vegetation phenology, snow cover),
anthropological effects (urban sprawl, deforestation), climate
changes (desertification, coastal erosion) among others. In this
paper, we sketch the current opportunities and challenges related
to the exploitation of multimodal data for Earth observation. This
is done by leveraging the outcomes of the Data Fusion contests,
organized by the IEEE Geoscience and Remote Sensing Society
since 2006. We will report on the outcomes of these contests,
presenting the multimodal sets of data made available to the
community each year, the targeted applications and an analysis
of the submitted methods and results: How was multimodality
considered and integrated in the processing chain? What were
the improvements/new opportunities offered by the fusion? What
were the objectives to be addressed and the reported solutions?
And from this, what will be the next challenges?

Index Terms—Data fusion, remote sensing, classification, pan-
sharpening, change detection.

I. INTRODUCTION

REMOTE sensing technologies can be used for observing

different aspects of the Earth’s surface, such as the spatial

organization of objects in a particular region, their height,

identification of the constituent materials, characteristics of

the material surfaces, composition of the underground, etc.

Typically, a remote sensing acquisition can just observe one (or

few, at the most) of the aforementioned characteristics. Thus,
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the observations derived by different acquisition sources can be

coupled and jointly analyzed by data fusion (DF) practices to

achieve a richer description of the scene. The joint exploitation

of different remote sensing sources is therefore a key aspect

towards a detailed and precise characterization of the Earth.

Fusion of multi-source information is nowadays considered to

be a typical scenario in the exploitation of remote sensing data.

Passive optical sensors have been widely used to map horizon-

tal structures like land cover types at large scales, whereas

Synthetic Aperture Radar (SAR) systems complement the

optical imaging capabilities because of the constraints on time-

of-day and atmospheric conditions and because of the unique

responses of terrain and man-made targets to radar frequencies.

Lately, Light Detection And Ranging (LiDAR) technology has

proven to be uniquely positioned to provide highly accurate

sample measurements of vertical height of structures (measure

correlated to the delay in the reception of the echoes of the

transmitted pulse) and along with information on the materials’

reflective property (considering the intensity of the reflected

signal). However, it is still limited by the high running costs.

Hence, the complementarity of optical/SAR/LiDAR measures

can lead to a more comprehensive description of a surveyed

scene if considering these data jointly. The differences among

these three modalities can be seen at a glance by looking at

Figure 1, in which a composition of the three acquisitions is

presented.

The importance of fusing different modalities was already

pointed out in many early works [1], [2] such as for the

recognition of man-made objects by fusing LiDAR data and

thermal images [3] or for scene interpretation [4] and image

classification [5] when jointly considering optical and SAR

images. Since the advent of remote sensing satellites, data

fusion has been a very active field of research due to the

increasing amounts of data available generated by the periodic

acquisitions. So far, data fusion practices are currently widely

employed in many applicative remote sensing tasks such as

urban mapping [6], forest-related studies [7], [8], [9], oil slick

detection and characterization [10], [11], disaster manage-

ment [1], [12], and digital surface model (DSM) and digital

elevation model (DEM) generation [13], to cite a few. Due to

the ever increasing number of sensors operating with different

characteristics and acquisition modalities, the potentialities and

outcomes of data fusion are increasing. As a result, the interest

of the remote sensing community around this topic keeps

increasing. See for example the presence of active groups

in professional societies dedicated to this topic (such as the

IEEE Data Fusion Technical Committee and the Working
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Fig. 1. From left to right, composition of an optical (true color composition with sub-meter spatial resolution [3 bands image]), SAR (amplitude of backscattering
[scalar image]) and LiDAR elevation data [scalar image obtained by rasterizing the 3d point cloud] acquired over the city of San Francisco, U.S.A.. This set
of data was used in the Contest of 2012. Source [16].

Group VII/6: Remote Sensing Data Fusion of the International

Society of Photogrammetry and Remote Sensing), the constant

presence of special sessions devoted to DF in almost all remote

sensing conferences and workshops, or even entire conferences

devoted to DF (such as the International Symposium Remote

Sensing and Data Fusion over Urban Areas), and of special

issues in remote sensing journals (e.g., the “Special issue on

data fusion” of the IEEE Transaction and Geoscience Remote

Sensing in 2008 [14] and the upcoming one of the IEEE

Geoscience and Remote Sensing Magazine [15]).

Data fusion is a common paradigm related to the processing

of data observed by different sensors and finds its place in a

large variety of domains. Since a survey of the problem of DF

in general terms is outside the scope of this paper, for reference

we refer the interested reader to [17], [18], [19], [20]. If we

focus on remote sensing, the approaches to data fusion are

usually divided into three groups according to the level of the

processing chain in which the fusion takes place [21], [22]. In

general fusion can be performed at three different processing

levels:

• Raw data level (also denoted as Pixel level). In some

scenarios, the fusion of different modalities is performed

at the level in which the data are acquired. The aim is

in this case to combine the different sources in order to

synthetize a new modality, which, afterwards, could be

used for different applications. Image sharpening, super

resolution and 3D model reconstruction from 2D views

are examples of applications that share this aim.

• Feature level. The objective of DF at the feature level

refers to the generation of an augmented set of obser-

vations considering data belonging to different sources.

The result of the fusion can be taken jointly as input

to a subsequent decision step. Focusing on land cover

classification, perhaps the most straightforward way to

perform this fusion is to stack one type of data on the

other and to feed the classifier with this new data set. In

other cases, different sets of features (e.g., image primi-

tives such as linear features [23] or spatial features [24])

can be extracted from one or multiple data sources and

combined together in order to reduce the uncertainty or

achieve a richer description, respectively.

• Decision level. In this third case, the combination of the

information coming from the different sources is per-

formed on the results obtained considering each modality

separately. If the data provide complementary information

for the application considered, one can expect to increase

the robustness of the decision through the fusion of the

results obtained from each modality independently. This

is achieved because in the result of the fusion the single

decisions that are in agreement are confirmed due to their

consensus, whereas the decisions that are in discordance

are combined (e.g., via majority voting) in the attempt of

decreasing the errors. The same concept can be found

implemented by ensemble learning in pattern recogni-

tion [25].

This paper aims to present the current trends, opportunities

and challenges of multimodal data fusion in remote sensing in

the light of the outcomes of the IEEE Data Fusion Contests

(DFCs) which have been taking place yearly since 2006.

The paper is organized as follows. A brief introduction of

the nine contests issued from 2006 to 2014 are presented in

Section II. Section III is devoted to present the applicative

tasks of remote sensing in which data fusion approaches

can be employed. Section IV proposes a discussion of the

opportunities and challenges of data fusion in remote sensing

and Section VI concludes this paper.

II. IEEE DATA FUSION CONTESTS

In order to foster the research on the important topic of data

fusion, the Data Fusion Technical Committee (DFTC)1 of the

IEEE Geoscience and Remote Sensing Society (GRSS) has

been annually proposing a Data Fusion Contest since 2006.

The DFTC serves as a global, multi-disciplinary, network for

geospatial data fusion, with the aim of connecting people and

resources, educating students and professionals, and promoting

the best practices in data fusion applications. The contests have

been issued with the aim of evaluating existing methodologies

at the research or operational level, in order to solve remote

sensing problems using multisensoral data. The contests have

provided a benchmark to the researchers interested in a class

1http://www.grss-ieee.org/community/technical-committees/data-fusion/
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of data fusion problems, starting with a contest and then

allowing the data and results to be used as reference for the

widest community, inside and outside the DFTC. Each contest

addressed different aspects of data fusion within the context

of remote sensing applications. The contests proposed so far

are briefly introduced in the following.

The focus of the 2006 Contest was on the fusion of images

with different spatial and spectral characteristics [26] (see

Sec. III-A for details on this application). Six simulated

Pleiades images were provided by the French National Space

Agency (CNES). Each data set included a very high spatial

resolution monochromatic image (0.80 m resolution) and its

corresponding multi-spectral image (3.2 m resolution). A high

spatial resolution multi-spectral image was available as ground

reference, which was used by the organizing committee for

evaluation but not distributed to the participants.

In 2007, the Contest theme was urban mapping using SAR

and optical data, and 9 ERS amplitude data sets and 2 Landsat

multi-spectral images were made available [27]. The task was

to obtain a classification map as accurate as possible with

respect to the unknown (to the participants) ground reference,

depicting land cover and land use patterns for the urban area

under study.

The 2008 Contest was dedicated to the classification of very

high spatial resolution (1.3 m) hyperspectral imagery [28].

The task was again to obtain a classification map as accurate

as possible with respect to the unreleased ground reference.

The data set was collected by the Reflective Optics System

Imaging Spectrometer (ROSIS-03) optical sensor with 115

bands covering the 0.43-0.86 µm spectral range. Each set of

results was tested and ranked a first time using the Kappa

coefficient. The best five results were used to perform decision

fusion with majority voting. Then, re-ranking was carried out

after evaluating the level of improvement with respect to the

fusion results.

In 2009-2010, the aim of the Contest was to perform change

detection using multi-temporal and multi-modal data [29]. Two

pairs of data sets were available over Gloucester, UK, before

and after a flood event. The data set contained SPOT and ERS

images (before and after the disaster). The optical and SAR

images were provided by CNES. Similar to previous years’

Contests, the ground truth used to assess the results was not

provided to the participants.

A set of WorldView-2 multi-angular images was provided by

DigitalGlobe for the 2011 Contest [30], [31]. This unique set

was composed of five Ortho Ready Standard multi-angular

acquisitions, including both 16 bit panchromatic and multi-

spectral 8-band images. The data were collected over Rio

de Janeiro (Brazil) in January 2010 within a three minute

time frame with satellite elevation angles of 44.7◦, 56.0◦, and

81.4◦in the forward direction, and 59.8◦and 44.6◦in the back-

ward direction. Since there were a large variety of possible

applications, each participant was allowed to decide a research

topic to work on, exploring the most creative use of optical

multi-angular information. At the end of the Contest, each

participant was required to submit a paper describing in detail

the problem addressed, the method used, and the final result

generated.

The 2012 Contest was designed to investigate the potential

of multi-modal/multi-temporal fusion of very high spatial

resolution imagery in various remote sensing applications [16].

Three different types of data sets (optical, SAR, and LiDAR)

over downtown San Francisco were made available by Digi-

talGlobe, Astrium Services, and the United States Geological

Survey (USGS). The image scenes covered a number of large

buildings, skyscrapers, commercial and industrial structures,

a mixture of community parks and private housing, and

highways and bridges. Following the success of the multi-

angular Data Fusion Contest in 2011, each participant was

again required to submit a paper describing in detail the

problem addressed, method used, and final results generated

for review.

The 2013 Contest aimed at investigating the synergistic use of

hyperspectral and LiDAR data (in the form of LiDAR-derived

digital surface model) that were acquired by the NSF-funded

Center for Airborne Laser Mapping over the University of

Houston campus and its neighboring area in the summer of

2012 [32], [33]. The 2013 Contest consisted of two parallel

competitions: i) the best classification challenge and ii) the best

paper challenge. The former was issued to promote innovation

in classification algorithms, and to provide objective and fair

performance comparisons among state-of-the-art algorithms.

For this task, users were asked to submit a classification map

of the data using the training samples generated by the DFTC

via photo-interpretation. The validation set was kept unknown

to the participants and used for the quantitative evaluation.

The best paper challenge had the objective of promoting novel

synergistic use of hyperspectral and LiDAR data. The deliv-

erable was a 4-page manuscript that addressed the problem,

methodology, and results. Participants were encouraged to

consider various open problems on multi-sensor data fusion,

and to use the provided data set to demonstrate novel and

effective approaches to solve these problems.

The 2014 edition of the Data Fusion Contest proposed the

fusion between images acquired at different spectral ranges

and spatial resolutions [34]. Specifically, the data at disposal

were a coarser-resolution long-wave infrared (LWIR) hyper-

spectral image (84-channels covering the wavelengths in the

thermal domain between 7.8 and 11.5 nm with a 1m of spatial

resolution) and a high spatial resolution data acquired in the

visible (VIS) spectrum (RGB channels with a 20-cm spatial

resolution) acquired over the same area. As for the Contest in

2013, two different challenges were proposed. One related to

land cover classification and the other to a best paper challenge

(i.e., leaving the application open).

III. DATA FUSION PROBLEMS IN REMOTE SENSING

This section aims at presenting the tasks pertaining to

remote sensing treated by the Contests in which data fusion

is employed.

A. Pansharpening

The so called Very High Resolution (VHR) satellites such

as IKONOS, QuickBird and the more recent WorldView-2
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and WorldView-3 are able to image a scene with panchro-

matic (PAN) and multispectral (MS) bands. The former is

a monochromatic sensor acquiring the radiance of the scene

in the Visible and Near InfraRed (VNIR) spectrum (typi-

cally in the interval 450-800 nm) with a sub-meter spatial

resolution. The spatial resolution is measured in terms of

Ground Sampling Interval (GSI) which is the distance on the

ground between the centers of two adjacent pixels [35] and

informally can be associated to the “pixel’s size”. Currently,

the highest spatial resolution for commercial satellites is given

by WorldView-3 with 0.31 m GSI at Nadir (i.e., direction

perpendicular to the sensor) and 0.34 m at 20◦ Off-Nadir.

The multispectral sensor acquires in different intervals of the

electromagnetic spectrum thus providing an image composed

of several spectral channels. The term spectral resolution is

used in general for denoting the capability of the sensor in

sensing the spectrum (number of spectral bands and width of

the acquisition intervals in the spectral domain). The most

typical configuration is four bands, (three in the visible,

corresponding to the wavelengths of the red, green and blue

colors and one in the near infrared domain) even if most

recent sensors have expanded the number of channels. As an

example, Figure 2 depicts the relative spectral responses of the

sensors mounted on the Worldview-2 satellite. For comparison,

Fig. 2. Relative spectral responses of the sensors mounted on the Worldview-2
satellite.

the recent WorldView-3 acquires a 16-band product with 8

acquisitions in the VNIR and 8 in the Short Wave InfraRed

(SWIR) spectrum. The GSI of the multispectral images is

lower than the one of the panchromatic. This is due to

a physical constraint that couples the spatial and spectral

resolution and that prevents the arbitrarily reduction of the

GSI simultaneously with the width of the spectral windows,

(and the acquisition time) in order to guarantee a sufficient

amount of energy reaching the sensor [35]. In general, the GSI

of a multispectral band is a multiple of 4 with respect to the

resolution of the panchromatic. For example for WorldView-3

the eight acquisitions in the VNIR spectrum have a GSI of

1.24 m at Nadir, 1.38 m at 20◦ Off-Nadir and in the SWIR

Nadir of 3.72 m at Nadir and 4.10 m at 20◦ Off-Nadir.

Due to the above-mentioned physical limit in the acquisi-

tion, the PAN image shows a higher spatial resolution (i.e., a

better capability in imaging the scene details) but a reduced

spectral resolution (i.e., there is no chromatic information)

with respect to the MS image. Since the common acquisition

modality senses the scene both through the panchromatic and

multispectral sensors simultaneously2, a same scene is imaged

in two products featuring complementary spatial and spectral

resolutions. In the remote sensing community, the procedure

aiming at synthesizing a new image with the spatial resolution

of the panchromatic image, and the spectral resolution of the

multispectral one is referred to as Pansharpening (i.e., the

spatial sharpening of the multispectral channels through the

use of the panchromatic image). This is clearly an instance of

data fusion.

There is a constantly increasing demand for pansharpening

products due to their use in many applications such as Earth

visualization systems (e.g., Google Earth and Microsoft Virtual

Earth) or as starting products in remote sensing applications

such as change detection [36], object recognition [37] and

visual image interpretation and classification [38]. Pansharpen-

ing presents some difficulties related to the fact that the details

that are present in the panchromatic image appear blurred in

the multispectral channels. Furthermore, such details would

appear with variable intensity in the different spectral channels

according to their spectral signature. This makes the retrieval

of the single spectral contributions difficult due to the absent

spectral information in the panchromatic image.

Many algorithms have been proposed in the literature of

the last two decades, for detailed surveys the reader can

refer to [39], [40], [41], [42]. The classical approach to

pansharpening relies on the extraction of those spatial details

from the panchromatic image that are not resolved in the

multispectral one and their injection (appropriately modulated)

into this latter one. This can be formulated as:

M̂Sk = M̃Sk + gkPD, (1)

in which M̂S, M̃S and PD are the result of pansharpening,

with the MS image upscaled to meet the spatial resolution

of the PAN and the spatial details of the PAN, respec-

tively; k denotes the k-th spectral channel over N bands

and g = [g1, . . . , gk, . . . , gN ] and gk the injections gains.

The way the operations of detail extraction and injection are

performed determines the nature of the pansharpening algo-

rithm. It is common practice to divide classical pansharpening

algorithms into two families according to the technique used

for estimating PD: the Component Substitution (CS) and the

MultiResolution Analysis (MRA). The former extracts the

details as:

PD = P− IL (2)

being P the PAN image and IL a monochromatic image

obtained by the weighted linear composition of the MS up-

sampled bands:

IL =
N∑

k=1

wkM̃Sk. (3)

2The delay between the two acquisitions can be considered negligible for
typical remote sensing applications.
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This approach can be equivalently implemented as a spectral

transformation of the multispectral image into another feature

space and on the subsequent substitution of one or more com-

ponents in the transformed space with the PAN image followed

by reverse transformation to produce the sharpened MS bands

(hence the name CS). Some widely used algorithms based on

this family are based on transformations such as Intensity-

Hue-Saturation [43], [44], Principal Component Analysis and

Gram-Schmidt orthogonalization [45].

The techniques belonging to the MRA class are based on the

extraction of the spatial details present in the panchromatic

image (and not fully resolved in the multispectral one) and

their subsequent addition to the MS bands. Thus PD here is

computed as:

PD = P−PL, (4)

with PL a low pass version of the PAN image obtained

by spatially filtering P. The spatial details can be extracted

by several approaches as using an average filter [44], [35]

or multiresolution decompositions of the image based on

Laplacian [46] pyramids, or wavelet/contourlet operators [47],

[48].

For both families, the injection of spatial details into the

interpolated MS bands are weighted by gains (gk) different

for each band and either considering them constant for each

channel of varying locally (i.e., leading to “global” or “local”

approaches, respectively). Pansharpening techniques based on

the paradigm in Eq. 1 differ according to the way they compute

IL for CS techniques (i.e., how are the weights wk in Eq. 3

obtained), PL for MRA ones and the injection gains gk.

The validation of the results in the context of pansharpening

cannot be performed directly since there is no reference data.

For this reason several attempts have been made for assessing

quantitatively the results of pansharpening. Two validation

strategies are mostly used. The first is based on the reduction

of the spatial resolution of both the original MS and PAN

images and then the original MS image is used as reference for

the evaluation of the results [26]. The underlying assumption

in this strategy is that the tested algorithms are invariant

among resolutions [49]. However, this hypothesis is not always

verified in the practice, especially for very high resolution

images acquired on urban areas [50]. The full scale validation

employs indexes that do not require the availability of a

reference image since they evaluate the relationships, such

as the spectral coherence, among the original images and the

pansharpened product [50], [51]. In this case the evaluation is

done at the native scale of the images but clearly the results

depend on the definition of such indexes.

We leverage the results of the DF Contest issued in

2006 [26] for bringing about a discussion on the performances

of different pansharpening algorithms. In this contest, the

participants were asked to perform pansharpening on a set

of simulated images from the Pleiades sensor and a spatially

downsampled image acquired by QuickBird. Each data set

included VHR panchromatic image and its corresponding

multispectral image. A high spatial resolution multispectral

image was available as ground reference, which was used by

the organizing committee for evaluation but not distributed

to the participants. This reference image was simulated in

the Pleiades data set and it was the original multispectral

image in the QuickBird one. The results of the algorithms

submitted by the different research groups were compared

with a standardized evaluation procedure, including both visual

and quantitative analysis. The former aimed at comparing the

results in terms of general appearance of the images as well

as by means of a local analysis focusing on the rendering

of objects of interest such as linear features, punctual objects,

surfaces, edges of buildings, roads, or bridges. The quantitative

evaluation was performed using quality indexes for measuring

the similarity of the fused results with respect to the reference

image.

Examples of pansharpening results submitted to the contest

are shown in Figure 3.

As it is possible to notice by looking at the figure, the

products of the fusion present differences in terms of both

radiometry (e.g., color) and geometry (i.e., rendering of the

spatial details). Relying on their evaluation (reported in [26]),

it is possible to draw some concluding remarks. CS techniques

yield in general fused products with accurate spatial details

since no spatial filtering is performed (the low resolution PAN

is estimated from the MS image according to Eqs. 2,3), but

can often produce spectral distortions which can be seen in the

fused images as a too high or low saturation of a certain color

component. The results obtained by MRA methods typically

better preserve the spectral content, but at the detriment of

the spatial fidelity of the details. Indeed the spatial filtering

for extracting the details to inject can in some cases produce

spatial artifacts or blurred areas according to [50]. Among the

algorithms considered in the contest, the best results (both in

terms of visual and quantitative analysis) were obtained by

two algorithms from the MRA family: GLP-CBD and AWLP

in Figure 3. These two pansharpening techniques extract the

spatial details with a multiresolution decomposition of the

PAN (Eq. 4) with a Gaussian pyramid for the former and

wavelet filters for the latter. It is worth emphasizing that even

if the two filters are different, their frequency response is

very similar and it can be seen as an approximation of the

Modulation Transfer Function of the sensor (i.e., the transfer

function of the optical system [35]). This is a fundamental

aspect since selecting a filter that models as closely as possible

the blur that relates the MS and the PAN sensor, it is possible

to obtain an accurate extraction of the spatial details and

consequent consistent pansharpening result.

For a more comprehensive comparison among several pan-

sharpening algorithms the reader is referred to [42].

B. Change detection

Change Detection (CD) refers to the task of analyzing two

or more images acquired over the same area at different times

(i.e., multitemporal images) in order to detect zones in which

the land cover type changed between the acquisitions [52],

[53], [54], [55], [56]. There is a wide range of applications

in which change detection methods can be used, such as

urban and environmental monitoring, agricultural and forest

surveys, and disaster management. In general CD techniques
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(a) WSIS (b) GIHS-TP (c) GLP-CBD

(d) FSRF (e) Original (f) AWLP

(g) UNP-PanSharp (h) GIHS-GA (i) Panchromatic

Fig. 3. Results of the 2006 Data Fusion contest on pansharpening (pansharpening family reported in parenthesis): (a) Weighted Sum Image Sharpening, WSIS
(CS); (b) Generalized Intensity Hue Saturation With Tradeoff Parameter, GIHS-TP (CS); (c) Generalized Laplacian Pyramid With Context-Based Decision,
GLP-CBD (MRA); (d) Fast Spectral Response Function, FSRF (CS); (e) Original image used as reference in the validation; (f) Additive Wavelet Luminance
Proportional, AWLP (MRA); (g) University of New Brunswick (UNB)-Pansharp (CS); (h) Generalized Intensity Hue Saturation With Genetic Algorithm,
GIHS-GA (CS); (i) Panchromatic image. Source [26].

assume multitemporal images to be captured from the same

sensor and possibly with same acquisition modality (e.g., angle

of view) in order to reduce the problems of co-registration

between images and minimize the presence of differences in

the images that are not due to a real change in land cover. In

the case of natural disasters and search and rescue operations,

where time is a constraint and the data available is usually

fragmented, not complete, or not exhaustive the analysis has

to be performed using images acquired from different sensors.

Thus, CD encounters greater challenges and its accuracy relies

on the way the different modalities are handled.

In the following, we will briefly introduce the main ap-

proaches that have appeared in the literature for performing

CD and we will focus on CD based on different modalities. CD
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can be seen as a particular instance of thematic classification

of the land cover, in which the classes are change and no-

change.

The methods proposed in the literature can be divided

into two main approaches: i) supervised and ii) unsupervised

CD. The first relies on the presence of a priori information

on the scene such as examples of changed and unchanged

areas. This information could be derived from field surveys

or defined by the user through photo-interpretation. The

availability of labeled information allows one to perform the

detection of land cover transition employing conventional

supervised classification techniques. Two main approaches are

presented in the literature according to the stage of the CD

process in which the classification step is performed: post-

classification comparison [53], in which classification is done

independently at each acquisition, and the changes are then

detected from a comparison of classification maps; and multi-

date classification [52], where multi-temporal information is

considered simultaneously for classification. Semi-supervised

approaches also exist and have recently gained interest from

the community since they handle the lack of labeled informa-

tion for some dates, which might be a frequent operational

scenario. These techniques are in general based on transfer

learning and domain adaptation methods (such as [57]). The

advantage of supervised technique lies in the fact that the

analysis is built on the definition of change. Moreover, if

the labeled information comprises information on different

land cover types, the analysis can also determine the type

of change according to the type of land cover transition

that occurred. However, these approaches also have some

drawbacks due to the classification step, for example CD

results can be affected by misclassification errors (especially

for techniques based on post-classification comparison) [29].

In addition, these techniques are limited by the availability

of labeled samples. Unsupervised approaches to CD do not

require any ground reference and will detect changes as (in

general sudden) variations in the evolution of land covers.

In general, these techniques detect only the presence of

changes [56]. Recently, in specific cases some techniques have

been proposed for discrimination among different types of

changes [58], [59]. However, the detected change cannot be

associated with thematic information (e.g., on the type of land-

cover transition) since no reference on the ground is available.

Unsupervised techniques attempt to detect variations in land

covers based on some dissimilarity measures (e.g., multivariate

differences [56]) computed among the images acquired at

different dates or statistical tests (e.g., [60]). With a focus

on CD performed on optical images, the change is related

to a variation in the radiometry of the scene, which refers

to the values of radiance captured by the sensor. Changes of

interest are usually related to variations in radiance that are

related to a change in the reflectance of the land cover rather

than to variations due to differences in the acquisition settings

such as illumination changes, different data normalization

and calibration settings [56]. In order to cope with these

latter sources of radiometric variations and detect the relevant

changes, the multivariate alteration detection (MAD) tech-

nique with iterative reweighted (IR-MAD) scheme [61], [62]

was proposed. When considering data acquired by different

modalities, capabilities in providing a fast response can greatly

improve. However, using different data belonging to sources

that might be significantly different can be a severe issue to

handle. Comparison between modalities can be meaningless if

not done appropriately, differences in acquisitions can become

prohibitive for the generation of consistent results. In 2009-

2010, the contest was issued to address the task of CD using

multi-temporal and multi-modal data [29]. See Figure 4 for

the dataset used in the contest.

The two pairs of data sets made available to the participants

were acquired before and after a flood event. The class

“change” was the area flooded by the river and the class

“no change” was the ground that had not been concerned by

the flooding. The optical and SAR images were provided by

CNES. The participants were allowed to use supervised or an

unsupervised method with all the data, the optical data only, or

the SAR data only. A variety of supervised and unsupervised

approaches were proposed by the participants. Interestingly,

a simple unsupervised change detection method resulted in

similar classification accuracies compared with supervised

approaches. As expected, the approaches that utilized both

SAR and optical data outperformed other approaches, although

the contribution of SAR data alone was minimal to the overall

change detection accuracy (due to the high discrimination

capability of the optical data for this task). The overall best

results were obtained by fusing the five best individual results

via majority voting. Remarkably, considering both SAR and

optical data jointly in an unsupervised scheme led to slightly

degraded performances with respect to the use of only optical

data. In regard to this result, we remark that the analysis

was performed with an unsupervised approach, preventing

the analysis to target closely the objective of the task as

for a supervised approach, in which the available a priori

information is exploited.

C. Classification

Various past contests have focused on the fusion of data

in order to provide superior classification accuracy (compared

to considering the single modalities only) for remote sensing

applications. Previous contests have provided other multi-

modality fusion scenarios — both in terms of sensors and

challenges (e.g. use of optical imagery, LiDAR data, SAR data

etc.) for various image classification scenarios [27], [28]. We

take the most recent one — the 2013 contest involving multi-

sensor (hyperspectral and LiDAR) for urban classification, as

an example to highlight emerging trends. This contest saw

a very wide range of submissions — utilizing hyperspectral

only, or using hyperspectral fused with LiDAR in the original

measurement domain or in feature spaces resulting from

spatial and other related features extracted from the dataset.

Submissions that provided high classification performance of-

ten utilized LiDAR data in conjunction with the hyperspectral

image, particularly to alleviate confusions in areas where the

spectral information was not well-posed to provide a good

solution (e.g., classes that had similar material compositions

but different elevation profiles), and vice-versa.
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(a) (b) (c)

Fig. 4. Dataset of the 2009-2010 Contest. Color composition of the SPOT optical image (a) and ERS single amplitude SAR data (b), collected before (left)
and after (right) the flood event, provided as input to the change detection problem. The reference map used for the evaluation of the submitted algorithms
is shown in (c). Source [29].

(a) (b)

(c) (d)

Fig. 5. Dataset of the 2007 Contest. City of Pavia imaged by (a) SAR
(backscattering amplitude) and (b) optical (bands RGB-431) sensors. In (c)
and (d), the final classification map and the ground reference data are shown.
Source [27].

Another focus area of emerging and promising contribu-

tions to the range of submissions, involved post-processing

of classification results to mitigate salt-and-pepper errors in

classification. We note that this classification contest was

designed to pose some unique challenges — specifically,

the training mask and test masks were spatially disjointed,

and had substantial variability. Some classes existed under a

cloud shadow in the testing masks, testing algorithms while

other were submitted for their capability to adapt to such

variations. Most submissions did not fare well under cloud

shadows, but submissions where contestants utilized spatial

contextual information fared much better in general, even

under cloud shadows. The winning algorithm was based on

spectral unmixing, and utilized abundance maps derived from

hyperspectral imagery as features, in conjunction with raw

hyperspectral and LiDAR data, using Markov Random Fields

and ensemble classification. As a general trend, we have seen a

great degree of variability between classification performance

of various methods submitted for data fusion and classification

— be they feature level fusion or decision level fusion. It

is difficult to identify any one method that performs well in

general — to a great degree, this depends on the underlying

problem and the nature of the datasets.

With that background, we next summarize some emerging

trends in the general area of classification for multi-modality

data fusion for remote sensing. We recognize that as in

many application domains, “classification” implementations

take the following flow — (1) Preprocessing and feature

extraction followed by classification. Pre-processing steps refer

to operations undertaken to better condition the data prior to

analysis. These include spectral-reflectance estimation from at-

sensor radiance for hyperspectral measurements (e.g. using

atmospheric compensation techniques that rely on physics

based models [63] or statistical models [64]); geo-registration

of multiple modalities, spectral radiance/reflectance denoising

etc. Reflectance estimation is crucial when utilizing prior

libraries that have been constructed outside of the current

scene being analyzed, accurate geo-registration is critical in

multi-modality frameworks, denoising is helpful when uti-

lizing spectral imagery at longer wavelengths etc. Feature

extraction is often a critical preprocessing technique for the

classification of single and multi-modality image analysis.

With modern imagers (e.g. hyperspectral), the resulting di-

mensionality of feature spaces is intractably high. This has

ramifications wherein classification algorithms struggle to es-

timate statistics (or overfit) when using raw data. A variety
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of linear and nonlinear feature extraction algorithms exist to

alleviate this problem, with the end goal of transforming this

data to a lower dimensional subspace better conditioned for

classification. These can be categorized into feature selection

approaches [65], [66], feature projection approaches [67],

linear and nonlinear approaches, and supervised, unsupervised,

or semi-supervised approaches. An emerging area within the

feature extraction category is nonlinear manifold learning that

recognizes that high dimensional remote sensing data often

resides in a lower dimensional manifold — techniques that

characterize and learn the manifold structure from training data

have been shown to yield superior features for classification,

pixel unmixing and data fusion tasks [68].

While nonlinear support vector machine classifiers and

their many variants have gained popularity in the remote

sensing community, a variety of classification approaches are

now prevalent. Among these include approaches that rely on

statistical models [69], sparse representation models [70] etc.

We note that among these methods, statistical classifiers (e.g.

the Gaussian mixture model) are extremely sensitive to the

dimensionality of the data, and hence a feature reduction

scheme is often employed as a preprocessing technique for

such classifiers. Within the realm of supervised classification

for remote sensing, active learning is a potentially useful

paradigm — with ground data being expensive (and in many

cases difficult) to acquire, a strategic sampling scheme is

desirable. Active learning provides a closed-loop (annotator-

in-the-loop) framework whereby the classifier guides collec-

tion of strategic field samples that add the most value to the

underlying classification task. These approaches have been

developed and optimized for various classifiers for remote

sensing image analysis [71].

We note that several of these approaches have been recently

extended to multi-modality or multi-source image analysis

frameworks. For instance, in [72] a composite kernel SVM was

implemented for multi-source data fusion; in [73] a composite

kernel local Fisher’s discriminant analysis was implemented

(CK-LFDA) for multi-source feature extraction in a kernel

induced space wherein a composite kernel feature space was

constructed that optimally represented (in the sense of the local

Fisher’s ratio) multi-source data; [74] provides a framework

for multi-source active learning using multi-kernel learning,

etc. Likewise, statistical classifiers have been used for effective

data fusion for remote sensing image analysis [75].

The emerging paradigms of deep learning provide an ap-

proach to systematically and hierarchically learn the underly-

ing structure in datasets via deep neural networks [76], [77].

In recent years, deep hierarchical neural models have been

proposed to learn a feature hierarchy — from input images

to the back-end classifier. Typically in such architectures,

image patches are convolved with filters, responses repeatedly

subsampled, and refiltered — when passed through sufficient

layers of convolution, subsampling (and nonlinear mapping

through activation functions), it is expected and observed

with real data that the resulting feed forward network is very

effective for image analysis. Although deep learning has been

successfully applied to many computer vision applications, its

utility for single and multi-sensor remote sensing data has been

very limited, although the potential benefits to multi-sensor

data fusion are enormous.

D. Miscellaneous applications

As mentioned in Sec. II, the most recent Contests accepted

submissions in which the objective of the fusion was not

imposed in order to encourage new applications. This was

done for exploring the capabilities in using the data provided

in the framework of the contests in unforeseen problems.

Besides the “regular” data fusion tasks discussed previously,

a number of interesting research topics were proposed and

addressed demonstrating numerous possibilities and a variety

of applications that multi-modal remote sensing images can

offer.

For instance, hyperspectral and LiDAR data, and depth images

at different locations are used in [78] to quantify phys-

ical features, such as land-cover properties and openness,

to learn a human perception model that predicts the land-

scape visual quality at any viewpoint. Techniques to track

moving objects (such as vehicles) in WorldView-2 images

are illustrated in [79] and [80]. The main idea is based on

the time gap between different banks of filters. Radiosity

methods are discussed in [16] to improve surface reflectance

retrievals in complex illumination environments such as urban

areas, whereas [33] presents a methodology for the fusion of

spectral, spatial, and elevation information by a graph-based

approach. Other contributions include methods to derive an

urban surface material map to parameterize a 3-dimensional

numerical microclimate model, to retrieve building height [81],

to applications such as visual quality assessment and modeling

of thermal characteristics in urban environments. Likewise,

another proposed work was a new method that focused on

removing artifacts due to cloud shadows that were affecting a

small part of the image [32].

Fig. 6. The WorldView-2 scene provided for the 2011 Data Fusion Contest
with three details from the three most nadir-pointing images. Source [27].

IV. DISCUSSION

In this section we want to highlight some relevant aspects

of data fusion in remote sensing by leveraging the outcomes
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of the contests. As introduced in Sec. I and seen as in practice

from the challenges proposed, data fusion can take place at

different levels in the generic scheme aiming at extracting

information from data.

• Raw data level. Examples of applications considered

in the contests in which fusion was performed at this

level are pansharpening (Sec. III-A) and DSM generation

from multiangular images (e.g., Figure 6). Usually in

these specific tasks there are some constraints that bound

the analysis. Particularly, it is possible to rely on some

similitudes among the data to fuse. For example when

considering the analysis of multiangular data the sensor

used in the acquisitions is the same. In the specific case

of the scenario of the contest of 2011, the images were

acquired in a single pass of the satellite; hence limiting

the variations in the images due to different illumination

condition (as it would be the case for acquisitions done

at different dates). Analogously, for pansharpening, the

panchromatic and multispectral sensors are mounted on

the same platform (this makes the spatial registration

between images not necessary) and with a negligible

time lag. This applies also to other tasks that were not

presented in this paper such as in hyperspectral imaging

for combining spectral channels (for generating a new

image with a different configuration of the spectra),

spectral and spatial features (hyperspectral images) [82].

• Feature level. Fusion at the feature level took place in

several proposed techniques addressing tasks such as clas-

sification and change detection. Features were extracted

by one or more modalities and subsequently fused in

order to compose a new enriched set of characteristics.

Demonstrations of fusion on a single modality are are

given for example, when combining spectral with spatial

features. In this case, in order to properly perform such

fusion, the differences between the modes should be taken

into account in order to be able to properly exploit them.

For example, in the context of classification with LiDAR

and optical images, if one wants to use both sources as

input to a classifier, then registration problems should be

solved (e.g., by rasterizing the LiDAR data to the same

spatial resolution of the optical image).

• Decision level. Fusion of decisions occurs at the highest

semantic level. Among the contests, we recall that the

one of 2008 [28] was based on such DF paradigm (i.e.,

ranking the submitted classification maps on the basis of

their amount of relative contribution in the final decision

obtained by majority voting on them). Decision fusion

took place also in other contests both performed by the

contests’ organizers (such as in 2009-10 [29]) as by in

some of the techniques proposed by the participants.

According to the results, DF at this level proved to be

very effective even with a simple fusion strategy such as

the majority voting.

By looking at the results of this review it is possible to make

some general remarks:

• For certain applications, the exploitation of multiple

modalities through a DF paradigm is the sole way for

performing the analysis. This is the case when the fusion

takes place at the raw level. For example, it would not

be possible to derive a 3D model of any scene only

with a single acquisition. Moreover, it is only through

the joint consideration of multisensoral data that it is

possible to observe some phenomena (e.g., for the re-

trieval of biophysical parameters which cannot be sensed

by using the acquisitions of a single sensor or single

modality [83]). Likewise, this more complete description

of the observed world can make certain operations pos-

sible. In classification the discrimination between several

classes might only be possible if multimodal data is

considered. For instance, LiDAR gives information on the

elevation of the objects in a scene, while a multispectral

sensor captures the spectral properties of the materials

on their surfaces. Clearly, land cover types differing in

both of these characteristics could not be discriminated

by considering only one of these modalities.

• It is necessary to consider the sensors and data character-

istics. Especially when the data show extremely different

resolutions or significantly different geometries in the

acquisition. For example, by considering a fusion between

a SAR and an optical image, the position in a SAR

image of the contributions of the objects in a scene is

dependent on their distance to the sensor, whereas an

optical image reflects their position on the ground. In

addition, the SAR image can show patterns (such as those

due to double bounce, layover and shadowing effects) that

find no correspondents in the optical image. In this case,

a trivial pixelwise combination of a VHR optical and

SAR image might lead to meaningless results. The joint

exploitation of the two modalities can only take place

if one properly accounts for the model describing the

way the acquisitions are done and if a 3D model of the

scene is available [16]. Analogously, the more knowledge

of the sensors is included in the analysis, the better the

accuracy of the fusion results. As shown for pansharpen-

ing (Sec. III-A), the more precise and meaningful results

where obtained by taking into consideration the blur that

models the difference in terms of spatial resolution be-

tween the panchromatic and the multispectral acquisition.

In addition, DF should considered cum grano salis since

the data characteristics are not properly accounted for if

the a priori information (e.g., given by the application)

is not included. Related to this latter aspect, we remark

how fusing different data can even prevent the correctness

of the results (e.g., as reported in Sec. III-B for change

detection in a completely unsupervised mode). Thus,

considering data that are not relevant for the application

could even harm the analysis. So this last aspect opens

some questions on the motivation of the fusion, since

considering a fusion of different modes further increases

the complexity of the system and the computational

burden. So the use of different modes should be supported

by its actual need. In order to address this last aspect, a

priori information on the application and a knowledge of

the characteristics of the different modalities should be

considered in advance.
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• Despite the clear benefits that data fusion can bring, it

can lead to some important challenges. Data acquired

from different sources might come in completely different

formats. For example, imaging sensors provide data over

a lattice, whereas LiDAR generates a set of sparse and

non-uniformly spaced acquisitions. In addition, pixels in

optical images and data in LiDAR are multivariate real

values whilst radar images have complex values. Having

to convert the data into common formats for processing

them jointly can generate additional uncertainty in the

measure (e.g., greater errors due to operations such as

quantification and interpolation) in the data with respect

to the one inherent to each single modality. When the

correspondence among multisensoral data cannot be es-

tablished, the result of the fusion might present missing

information (for some modalities). This creates theoreti-

cal and algorithmic challenges related to the way missing

data are handled.

V. PERSPECTIVES

From the current status resumed in the previous section, here

we will account for still open challenges and new perspectives

of DF in remote sensing.

• The number of new satellites that are planned to be

launched in the near future is constantly increasing,

and companies such as Planet Labs and SkyBox are

building Earth observation constellations of hundreds of

satellites. In addition to this increasing trend, satellite

platforms are getting more and more diversified in terms

of characteristics. For example, the recently launched

WorldView-3 by DigitalGlobe includes 29 bands in the

VNIR-SWIR region of the spectra, ranging from 30 cm

to 30 m resolution. These two aspects are leading to the

generation of data acquired by a plethora of different

sensors, that will consequently produce an increasing

need of DF analysis in order to fully exploit such data. In

this perspective, we can think of DF approaches that are

less sensor dependent have an advantage, due to a larger

application scope.

• Another current trend we are witnessing is the improve-

ment of the sensors’ resolution (geometric, spectral or

radiometric). This is surely a very favorable feature, but

it induces an increasing effort in the analysis [84]. Higher

resolution data are able to sense more finely a scene

(i.e., provide more geometric/spectral/radiometric details)

increasing the amount of information, meaningful for a

given task, that can be extracted but making the process

of processing it from data more complex. This applies

to each single modality, so when fusing multiple infor-

mation sources the potentialities and difficulty in mining

the relevant information scale accordingly. Furthermore,

due to the increasing presence of satellite constellations

providing larger coverage on the Earth’s surface with

smaller revisit times and the availability of archive data,

a potentially massive amount of data could be processed.

The need of efficient algorithms able to cope with such

large amount of data will increasingly be a demand for

new DF approaches that should be used in operational

scenarios.

• In the last years, the remote sensing market has not

only been exclusively considering data acquired by large

satellites launched by governmental space organizations

or large EO companies. Technological advancements

have permitted to produce miniaturized satellite plat-

forms [85] such as micro (10-100 kg), nano (1-10 kg),

pico (0.1-1 kg) and even femto satellites (< 0.1 kg) [86].

Since smaller platforms have costs that are dramatically

lower (about 103 [85]) with respect to those required

by large ones (> 500 kg), launching satellite EO instru-

ments has become an affordable business even accessible

to universities [87]. Furthermore, terrestrial Unmanned

Aerial Vehicles (UAVs) have largely spread, becoming

undoubtedly an asset also for EO applications [88].

The low cost of off-the-shelf flying platforms and the

possibility to equip them with consumer-level instruments

(e.g., compact cameras) have made EO accessible to a

larger amatorial public. Such increasing presence of small

satellites and terrestrial EO platforms, is going to provide

a consequently large amount of diversified data further

broadening the scenario in which DF can take place.

Clearly the instruments of the payload (e.g., sensors, GPS

receivers and inertial systems) are significantly poorer in

terms of performances with respect to those mounted

on large satellites or professional airborne acquisition

systems. The lower quality of these data can directly

affect DF results if not properly accounted for in the

analysis.

• In a larger perspective, we also envisage that additional

information sources will be exploited for fusion in the

near future. So far DF for EO has been almost exclu-

sively based on remote sensing data (e.g., active and

passive imagery). For example, the information available

from Geographic Information Systems (GISs), such as

road networks, building footprints from cadastral layers,

land cover maps etc. can be of fundamental importance

for EO applications. Some examples of fusion between

remote sensing data and GIS layers have been made

(e.g., [2]) but it has not taken off extensively in the remote

sensing research community, even if, coupling the two

information sources has been proven to be successful,

being a standard technology in many EO visualization

systems such as Google Earth. Perhaps a reason for

the lack of established DF techniques for fusing GIS

layers and remote sensing data can be attributed to the

inherently different features of the two sources. In many

cases, GIS layers can not be fused straightforwardly with

remote sensing data, since they come in vectorial format,

they might contain descriptive data (i.e., geo-localized

textual information), they deal natively with semantic

objects instead of pixels and coregistration with remote

sensing images can be a severe issue. However, GIS data

are largely available thanks to local information systems

held by municipalities or by worldwide databases such

as OpenStreetMap. In addition, some information issued

from GIS can cover periods before the first acquisitions
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available in remote sensing archives, hence becoming the

only information available for some applications. Due to

their large availability and features complementary with

conventional remote sensing imagery, we believe there

will be an increasing push in fusing GIS and remote

sensing data.

In the same research direction, we also think that less

conventional sensors could be beneficial for some ap-

plications. For example, the use of ground information

(e.g., images from mobile phones, street views, height

values from GPS sensors), opportunistic sensors (e.g.,

as passive sensors based on GPS signals [89]) or even

geographically distributed sources that are not strictly

remote sensing data, such as geo-tagged tweets, locations

extracted from news, track points, etc. Considering these

heterogeneous data together will definitely be a new

challenge for DF.

• The ever increasing heterogeneity (in terms of resolution,

characteristics, sources and consistency) of the data avail-

able for fusion will greatly influence the methodological

development of DF algorithms, which in our opinion,

will be increasingly application-driven. In fact, it will

be unlikely that general purpose DF strategies will be

able to deal with the different characteristics of data

and be sufficiently valid for several tasks. The specific

applications will define which sources are relevant for

the fusion and how to combine them. As an example, in

the framework of urban remote sensing, the model of the

urban area (e.g., building, district or town level) or the

phenomenon under study (e.g., detection of urban heat

islands, or air pollution) will be constrained implicitly

or explicitly which data to use and at which spatial and

temporal scale.

• With a particular regard to the way to handle imperfect,

missing and conflicting data, it is evident from the re-

marks in Sec. IV, that there is a lack of a universally

recognized framework in which to perform the fusion

properly taking into account these different characteris-

tics [20]. This problem has been partially addressed by

probability theory, fuzzy set theory, possibility theory,

rough set theory, and Dempster-Shafer evidence theory

but none of these approaches have been used extensively

in DF problems [20], making this a still open challenge.

This aspect will surely increase in importance since, as

mentioned previously in this section, due to the emerging

trends in EO there will large amounts of data available

with heterogeneous characteristics and qualities.

• Another fundamental challenge is related to the vali-

dation of the results. This is an perennial problem for

tasks in which there is no reference available (e.g.,

pansharpening) [82], [90]. However, the availability of

commonly recognized validation paradigms is essential

for evaluating newly proposed algorithms in a quantitative

way.

VI. CONCLUSION

By reviewing the outcomes of the contests issued by the

DFTC, it is possible to remark their main contributions such

as i) fostering the methodological development on the topics

defined by each contest; ii) making datasets available to

the community — sometimes such datasets were valuable

because it might be unusual in real operational scenarios to

have so many data acquired from different sensors with such

high spatial resolution, such as for the contests 2012 (VHR

SAR, VHR optical from different sensors and LiDAR) and

2011 (images VHR multiangular) and iii) encouraging the

emergence of new applications or research directions based

the data of the contests. From the analysis of the different

aspects of data fusion in remote sensing through the lens of

the contests, one can clearly state that data fusion is indeed

the way to extract information. Indeed, for some tasks and

applications it is the sole mean to perform the analysis.

By taking as an example classification, which perhaps is

one of the most active tasks that can be impacted by data

fusion: with respect to one goal (partition of the data into a

number of classes of interest), data fusion can lead to improved

classification performances by providing complementary in-

formation, by reinforcing our belief in a result, or by solving

ambiguities/conflicting situations. This is especially useful for

the problem of land-cover/land-use mapping in a variety of

applications. Multimodality can also be beneficial in a number

of other situations, trying to provide a better description of the

physical real-world. Each modality provides one projection of

the complex physical world. Using multimodality is a way to

access this complexity in a refined way, but combining these

projections in an efficient and reliable way is a challenge.

Specifically, as we saw in the preceding discussion, data fusion

also presents several unique challenges both from the technical

and methodological points of views, necessitating continued

investigation from the research community.
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