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The simulation of various rock properties based on three-dimensional digital cores plays an increasingly important role in oil and
gas exploration and development. The accuracy of 3D digital core reconstruction is important for determining rock properties. In
this paper, existing 3D digital core-reconstruction methods are divided into two categories: 3D digital cores based on physical
experiments and 3D digital core stochastic reconstructions based on two-dimensional (2D) slices. Additionally, 2D slice-based
digital core stochastic reconstruction techniques are classified into four types: a stochastic reconstruction method based on 2D
slice mathematical-feature statistical constraints, a stochastic reconstruction method based on statistical constraints that are
related to 2D slice morphological characteristics, a physics process-based stochastic reconstruction method, and a hybrid
stochastic reconstruction method. The progress related to these various stochastic reconstruction methods, the characteristics of
constructed 3D digital cores, and the potential of these methods are analysed and discussed in detail. Finally, reasonable
prospects are presented based on the current state of this research area. Currently, studies on digital core reconstruction,
especially for the 3D digital core stochastic reconstruction method based on 2D slices, are still very rough, and much room for
improvement remains. In particular, we emphasize the importance of evaluating functions, multiscale 3D digital cores,
multicomponent 3D digital cores, and disciplinary intersection methods in the 3D construction of digital cores. These four
directions should provide focus, alongside challenges, for this research area in the future. This review provides important
insights into 3D digital core reconstruction.

1. Introduction

With continuous exploration and development in the petro-
leum industry, unconventional reservoirs, such as tight oil
and gas, shale oil and gas, coalbed methane, and natural
gas-hydrate reservoirs, have received more attention than
conventional oil and gas reservoirs; thus, these unconven-
tional reservoirs are becoming key areas for exploration and
development [1–10]. Unconventional reservoirs are quite
different from conventional reservoirs; these differences are
reflected mainly in the microgeological characteristics of
rocks [11, 12]. The rocks in unconventional reservoirs are
characterized by various pore types, complex pore structures,
diverse mineral compositions, and complicated oil and gas
distributions [13–15]. Complex geological features result in
complex seepage, electrical, acoustic, elastic, radioactive,

and nuclear magnetic resonance (NMR) features of the rock
[16–19]. Consequently, exploration methods that are widely
used for conventional reservoirs are difficult to apply directly
to unconventional reservoirs, which require targeted research
[20–25]. Conducting an effective study on unconventional
reservoirs is difficult because of the lack of accurate data,
the high cost, and the need to improve the core experimental
methods that are employed for the characterization of
unconventional reservoir rocks. Since the concept of a digital
rock-physics experiment was proposed, research on virtual
rock physics based on digital cores has constituted a popular
research topic coincident with the development of related
disciplines and great improvements in computational capa-
bilities [26–32]. Virtual rocks boast a number of advantages;
for example, these virtual rocks are intuitive, they are
strongly reproducible and nondestructive in experiments,
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they have easily adjustable parameters, and they are relatively
inexpensive and require only short experimental periods
[33]. Therefore, virtual rock physics has great potential as
an alternative experimental method, especially for shale res-
ervoirs. Virtual rock physics also represents an important
development direction in petrophysics.

For virtual rock physics research that uses digital cores,
guaranteeing the accuracy in a simulation experiment is
based on the accuracy of modelling the numerical core. The
oldest digital core models are the abstract capillary bundle
model and the random pore network model; however, the
concept of digital cores was unknown when these models
were initially created. The capillary bundle model approxi-
mates the pore space of the rock by using capillary tubes of
varying radii [34–36]. Although this method is extremely
abstract with respect to the pore network of a rock, it is valu-
able for evaluating the seepage characteristics of conventional
reservoirs and primary tight-pored sandstone reservoirs [37,
38]. In contrast, the random pore network model uses pores
and pore throats to form a mesh structure from real experi-
mental methods, such as mercury intrusion experiments or
NMR experiments, to simulate rocks with less complex struc-
tures [39]. Nevertheless, the abovementioned numerical core
models simplify the pore space of the rock, so accurately
reflecting the characteristics of unconventional reservoirs is
difficult.

The random pore structure model simplifies only the
pore space of the reservoir rock and thus cannot fully reveal
the pore structure of a complex reservoir. For example, char-
acterizing the full pore size distributions of shale reservoirs
through pore structure experiments is difficult because overly
complex pore structures can reduce the experimental poros-
ity measurement accuracy. In addition, the current pore
structure model cannot reflect the influences of the rock
matrix on the physical properties of the reservoir; hence, only
the fluid-transfer characteristics can be studied. Greyscale
images of rocks can be obtained with the application of
X-ray computed tomography (CT) scanning and other
techniques to the study of reservoir rock microstructures.
The different greyscale values in these images represent
the different components of the rock. An algorithm can
be used to divide the obtained three-dimensional (3D)
gradation into two components, namely, the rock matrix
and the rock pores, and different integer values are used
to represent different components. In this way, a digital rock,
that is, a modern digital core, is obtained. Compared to the
previous pore network model, a digital core can both reflect
the complex pore space of a reservoir rock and display its
solid skeleton [40, 41].

At present, the digital cores that are used to study uncon-
ventional reservoirs are usually derived from rock-based dig-
ital images. Numerical simulations of physical properties
based on digital cores are called digital petrophysical experi-
ments; among them, digital rock physics experiments of
acoustic, electrical, NMR, and seepage properties are cur-
rently available. The real structure of the rock is obtained in
this fashion, so the numerical simulation results of the phys-
ical properties of the corresponding rock match the experi-
mental measurements.

Since the inception of this new field, many scholars have
studied the reconstruction of 3D digital cores [42]. According
to the above description, digital cores are a very important
component of modern petrophysical research. At present,
3D digital cores can be reconstructed in many ways, that is,
by various experimental methods and algorithms, and the
accuracy of the 3D digital core directly affects the implica-
tions of subsequent simulation experiments. Therefore, we
must review the progress of 3D digital core reconstruction
and provide a reasonable outlook for its efficacy in future
studies.

2. Status of Utilizing Physical Experimental
Methods to Reconstruct 3D Digital Cores

Physical methods are employed to directly reconstruct 3D
digital cores; that is, the real structure of the rock samples is
obtained by 3D scanning or continuous slice scanning with
instruments and various other physical means. Three main
physical experimental methods are used to create 3D digital
cores: confocal laser scanning, serial section imaging, and
X-ray CT scanning. Sections 2.1 and 2.2 of this paper intro-
duce the principles, resolution, advantages, and disadvan-
tages of confocal laser scanning, serial section imaging, and
X-ray CT scanning.

2.1. Confocal Laser Scanning. Confocal laser scanning is used
to obtain the 3D pore distribution of a sample by using a laser
scanning confocal microscope (LSCM) [43, 44]. The sample
must be prepared appropriately before performing laser
scanning, and the thickness of the sample must be controlled
during the preparation of the sample. This control is required
because the limited maximum penetration depth of the
LSCM is approximately 100μm, which makes this method
unsuitable for thicker samples. After drying, the sample is
injected into dyed epoxy by using a vacuum and pressurized
infusion. The epoxy resin fluoresces when excited by the
laser, and the LSCM detects this fluorescence. Thus, the
LSCM can describe the 3D pore distribution of a rock sample.

Laser scanning confocal microscopy [45] uses a laser
beam to illuminate the sample; the laser beam is then
reflected by the beamsplitter and focused on the sample,
and each point in the sample is scanned. If an excited dye is
present in the sample, then the fluorescence is returned to
the beamsplitter through the incident light path, after which
it is focused and collected by a photomultiplier tube (PMT)
and displayed on a computer (in greyscale). The detection
area of the microscope can be precisely controlled by the
computer, moved along the surface of the sample, and
probed into different depth regions of the sample to obtain
a digital core. Generally, the resolution of confocal laser scan-
ning can reach the micrometre-submicron scale.

However, this method has many drawbacks. Foremost
among them, the obtained digital core cannot be overly thick;
that is, the sample usually cannot exceed a thickness of
200μm (Figure 1). In addition, the penetration depth is gen-
erally less than 1mm. The second weakness of this technique
is that it requires the injection of an epoxy resin that contains
a fluorescent agent. This requirement constitutes a
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substantial problem for three reasons. First, the injection of
epoxy resin directly destroys the core, so the core can no lon-
ger be used for other purposes. Second, epoxy cannot be
injected into isolated voids; thus, ineffective pores within
the rock are undetectable. Third, as a liquid, epoxy resin
has a certain viscosity and is difficult to inject into excessively
small pores, such as organic pores. These drawbacks can pre-
vent the identification of micropores regardless of the accu-
racy of the probing instrument. The above analysis shows
that the potential for further development of the LSCM
method is inadequate, and this approach may be replaced
by other methods in the future. Accordingly, confocal laser
scanning is not widely used in practical research.

2.2. Imaging Methods Based on a Serial Section Rock Overlay

2.2.1. Ordinary Sequence Two-Dimensional (2D) Slice
Superposition Method. Rock imaging methods based on a
serial section rock overlay are destructive imaging tech-
niques, of which two exist: the ordinary sequence 2D slice
superposition method and the focused ion beam scanning
electron microscopy (FIB-SEM) physical imaging method
[46, 47]. In the former, the rock sample is prepared by polish-
ing it to obtain a relatively flat plane, after which a high-
magnification microscope is used to photograph the polished
rock sample surface to obtain a microscopic image of the core
surface. Subsequently, a layer of rock specimen is cut parallel
to the polishing surface, and the cut rock specimen is further
polished and photographed with a high-magnification
microscope. This process is repeated until a 3D digital core
with the desired thickness is obtained. Finally, experimental
images of the core are obtained by combining these photo-
graphs. This method yields nanoscale and high-resolution
core images [48–50].

2.2.2. FIB-SEM Physical Imaging Method. The ordinary
sequence 2D slice superposition method can obtain a
higher-resolution 3D digital core, but this technique uses an
electron beam to polish the sample surface, which produces
static electricity at the surface; therefore, imaging the surface
is not beneficial. As an alternative, FIB-SEM was first devel-
oped in 1988. The FIB-SEM system utilizes two beams and

is thus referred to as the dual-beam system [51]. FIB-SEM
can be simply understood as a single-beam FIB combined
with an SEM. Differently from the ordinary-sequence 2D
slice superposition method, the use of ion-beam polishing
has the advantage of producing less static electricity and bet-
ter imaging quality. Therefore, the FIB-SEM imaging method
is more applicable to this study than the ordinary sequence
2D slice superposition method.

Although the resolution can reach the nanoscale based on
the rock serial section overlay imaging method, the FIB-SEM
technique is problematic because it destroys rock samples
and has a slow modelling speed (Figure 2). For a sample with
a surface area of 50μm× 50 μm, the FIB abrasion of a sample
with a thickness of 0.1μm can take minutes, and only 5-20
images can be scanned per hour, which substantially slows
the modelling process. In addition, the faster the sample
erodes, the poorer the polishing effect becomes; thus, the
quality of the image is affected. Therefore, increasing the
speed of the serial section rock overlay imaging method is
difficult [52, 53]. Another disadvantage of this method is
the cutting and subsequent destruction of the rock sample.
In addition, when a sample is recut, the thickness between
adjacent slices is directly reduced during the cutting, and
the pore structure of the rock sample is destroyed. Conse-
quently, an inaccurate pore structure is obtained for the rock
sample. This phenomenon results in a relatively poor pore
structure after splicing that does not completely reflect the
original pore structure. These three disadvantages restrict
the development of this method. However, the accuracy of
this technique is still better than that of focused scanning,
and the nanoscale resolution is favourable for the identifica-
tion of organic pores in shale rocks. Therefore, this method is
used more often than focused scanning [54–57].

2.2.3. X-Ray CT Scanning Method. The basic principle of CT,
which was proposed by G.N. Hounsfield in 1969 [58],
involves the use of X-ray scanning to obtain the thickness
of an object as the detector receives the X-rays through the
sample. The X-rays are converted into electric signals that
consist of visible light through a photoelectric converter
and are then converted into digital signals through an
analogue-digital converter; finally, the signals are processed
by a computer to obtain 3D greyscale volume data. During
the actual scanning process, the sample is subdivided into
voxels of the same volume, and the X-ray attenuation coeffi-
cient of each voxel is determined by scanning and arrange-
ment in a matrix, which is then converted into greyscale
volume data. The attenuation coefficient is the key to distin-
guishing the material components of a digital core. Typically,
the number of X-rays that are absorbed by a sample depends
on the density of the components in the sample. Therefore,
the absorption coefficient reflects the material composition
of the sample.

The attenuation coefficient of X-rays that pass through a
component can be determined by Beer’s law as follows:

I = I0 ⋅ exp −μx , 1

where I0 is the incident X-ray intensity, I is the X-ray

165 �m

200 �m200 �m

Figure 1: Reconstruction of 3D digital cores using confocal laser
scanning method (the pore space is opaque (colored) and the solid
matrix is translucent). It is obvious that the thickness of 3D digital
cores obtained by LSCM method is low. This leads to too little
information on the obtained 3D digital core, and the results of
numerical simulation using 3D digital cores are not representative.
Figure from [43].
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intensity after attenuation, μ is the linear attenuation coeffi-
cient, and x is the length of the X-ray penetration path.

If the sample consists of many components (such as rocks
with more complex minerals), the above equation becomes
the following:

I = I0 ⋅ exp 〠
i

−μixi , 2

where i represents the i − th component.
In the early 1980s, the first microcomputed tomography

system (micro-CT) was developed to increase the vertical
resolution to the level of the horizontal resolution [59]. In
the early 1990s, Dunsmuir proposed the application of the
micro-CT method in the field of petroleum exploration
[60]. Later, Coenen et al. used micro-CT techniques to con-
struct submicron digital cores [61]. Currently, two micro-
CT systems are commonly employed: a benchtop micro-CT
scanning system that generates X-rays with an industrial
X-ray generator and a synchronous acceleration micro-CT
system that uses a synchrotron as an X-ray generator [62].
Generally, the digital core resolution that is obtained by a
synchronous acceleration micro-CT scanning system is
higher than that from a desktop micro-CT scanning system,
but the resolution of a micro-CT scanning system is typi-
cally still within the micrometre to submicrometre range.
Figure 3 shows a 3D sandstone core that was constructed
from CT scanning by Arns et al. at the Australian National
University, and Figure 4 shows the Fontainebleau sandstone
that was constructed with CT scanning at Brookhaven
National Laboratory.

In theory, the X-ray resolution limit should be
0.005 nm, but the original micro-CT technique cannot
probe at a resolution greater than the submicron scale.
The key restriction is the size of the X-ray source and
the pixel size of the detector. The detector size of the X-
ray source cannot reach the nanometre scale. Fortunately,

the resolution of a current radiation source can reach the
nanometre scale, and the size of the radiation source can
be constrained to achieve the resolution of nanometre-
scale CT (nano-CT) [64, 65]. After the appearance of the
nano-CT technique, nanometre CT systems based on visi-
ble light optical systems, synchrotron radiation sources,
and X-ray optical systems have been proposed. For example,
Lawrence Berkeley National Laboratory obtained 15nm
resolution CT images. With continuous improvements in
CT scanning technology, the resolution of this method
can be further improved.

Compared to the above two methods, the greatest advan-
tage of the X-ray CT scanning method is that the sample is
not damaged during the construction of the digital core. In
addition, current nano-CT systems can achieve nanoscale
resolution with the same accuracy as FIB-SEM systems.
Table 1 shows the sample size, instrument resolution, and
main application areas of the CT and FIB-SEM analysis
techniques.

Among the abovementioned methods, the X-ray CT
scanning technique is currently the most popular. However,
this approach also suffers from some problems. For instance,
the sample size of a CT experiment is too small. For rocks
with a high degree of heterogeneity, the results from CT
scanning are not representative, so one must reconstruct
the multiscale digital core. Nevertheless, the applicability of
CT experiments is generally broader than that of FIB-SEM
experiments.

2.2.4. Magnetic Resonance Imaging (MRI) Method. The mag-
netic resonance imaging (MRI) method was first pro-
posed in 1973 by Lauterbur [66]. Subsequently, MRI
methods were gradually applied in the medical and bio-
logical communities, among others. In 1995, Xiao applied
the MRI method to the field of petroleum engineering for
the first time [67], after which this technique was widely
employed in both petrophysics and petroleum engineer-
ing [68–73]. The use of the MRI method to image fluids
in rocks to reflect their structures has constituted an

Figure 2: The multicomponent 3D digital core reconstructed by the
FIB-SEM method. Different components are reflected in different
greyscales. The 3D digital core obtained by this method has a high
resolution, but the disadvantage is that the scanned sample will be
destroyed.

Figure 3: The use of X-ray CT scanning method is the
establishment of a 3D digital core. The transparent part is the
skeleton; the other part is the pores.
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important guide in the visual determination of micro-
scopic pore structures.

A nucleus with a nonzero magnetic moment undergoes a
phenomenon known as NMR; that is, Zeeman splitting
occurs in the spin-energy level of the external magnetic
field, and the resonance absorbs radiation that is associ-
ated with radio waves at a certain frequency. NMR signals
are generated during NMR within the nucleus. These
NMR signals are collected by a special device, and a 2D
inverse Fourier transform is used to obtain a reconstructed
image of a spatial point. The entire target object can be
imaged by collecting the signals at each point in the range
of the target object.

Compared to the LSCM, FIB-SEM, and X-ray CT
methods, the MRI method is limited by a very obvious disad-
vantage: an excessively low imaging resolution [74, 75]. For
tight sandstones and shale rocks, obtaining a large amount
of microscopic information with the MRI method is difficult.
In addition, NMR experiments require that the pores of the
rock be saturated with fluids, which is inherently difficult to
achieve for very dense rocks. Moreover, the type of fluid
within the rock can affect the imaging results [76, 77]. The
NMR inversion algorithm is another factor that influences
the imaging quality; accordingly, research on NMR inversion
algorithms is ongoing [78–80]. In summary, MRI is not
currently employed to construct digital cores because of its
limitations.

Many relatively simple pore network models are also
available [81, 82], and experiments such as mercury intru-
sion and one-dimensional NMR can be used to image the
porosity of a rock [83, 84]. However, the former cannot
accurately reflect the heterogeneity of rocks. Moreover,
the pore shape and overall pore network in a simple pore
network model are fixed, and the pores are arranged in a
given orientation; these principles are in contrast to the
idea that the digital core must reflect the rock features,
including the heterogeneity, to the greatest extent possible.
Unfortunately, experiments such as mercury intrusion

reflect the pore structure only from the side of the sample,
which is not intuitive and has multiple solutions. There-
fore, the above two methods cannot be called digital core
construction methods.

Overall, the most promising and suitable physical exper-
imental method that is currently available for the reconstruc-
tion of a digital core is CT scanning. The FIB-SEM
reconstruction method can also obtain digital cores with rel-
atively high resolution, but the samples will be destroyed in
the process. Nevertheless, as the resolution of these instru-
ments continues to increase, the accuracy of physical experi-
mental techniques in the reconstruction of 3D digital cores
will also continue to improve.

3. Status of 3D Digital Core Technology
Stochastic Reconstruction by 2D Slices

Digital cores can be acquired with sufficient accuracy by 3D
digital core reconstruction methods based on a physical
experimental method. However, constructing large-scale
digital cores with physical experimental reconstruction
methods, which greatly influence the accuracy of simulation
experiments on rocks with a high degree of heterogeneity,
remains difficult. More importantly, physical experiments
are expensive and time-consuming [85]. Unfortunately, the
conventional abstract capillary bundle and random pore net-
work models offer only abstract expressions of rocks and
cannot be utilized to characterize their randomness. There-
fore, the collection of single or multiple 2D slices through
experimental methods such as SEM and thin slicing is valu-
able for the random reconstruction of 3D digital cores.
Accordingly, the benefits of these methods have motivated
many scholars to conduct in-depth and meticulous research
on their applications. Existing reconstruction methods con-
strain and reconstruct 3D digital cores by using 2D slice mor-
phology information and 2D slice statistics of particle size
characteristics and simulating rock generation processes,
among others.

3.1. Stochastic Reconstruction Based on Statistics

3.1.1. Stochastic Reconstruction Based on 2D Slice Statistical
Constraint Features. The stochastic reconstruction method
is the most common method for reconstructing 3D digital
cores based on one or more slices of 2D slice data, various
mathematical-feature statistics, and functional information,
such as porosity data. Similar to facial reconstruction with
abstract facial features (e.g., eye size), the stochastic recon-
struction method uses the abstract mathematical features of
extracted 2D slices to build the most accurate 3D digital cores
[86–90].

(1) Gaussian Field Method. In 1974, Joshi was the first to use
stochastic information that was derived from the statistics of
2D slices to randomly reconstruct rocks [91]. Joshi proposed
a reconstruction technique known as the Gaussian field
method, which can be roughly divided into three steps. First,
a Gaussian field is randomly generated, and the Gaussian
field is filled with independent Gaussian variables. Then,

Figure 4: The Fontainebleau sandstone dataset with a binary
segmentation. The red part is the skeleton; the black part is the
pores. The total size of the dataset is 288 × 288 × 300 and a voxel
edge length is 7.5 μm. Figure from [63].
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the variables are linearly transformed to correlate the vari-
ables. The constraints that are used during the transforma-
tion are the core porosity values and the two-point
correlation function. Finally, the Gaussian field from the sec-
ond step is transformed into a digital core by using a nonlin-
ear transformation. However, Joshi built only 2D digital
core models at the time.

In 1984, Quiblier [92] improved upon the primitive
Gaussian field-reconstruction method and constructed 3D
digital cores. Subsequently, Adler et al. [93] introduced peri-
odic boundary conditions and the Fourier transform to
improve the speed and efficiency of the model, respectively.
Furthermore, Hilfer [94] added porosity and probability dis-
tribution functions to the model to improve its accuracy.
Torquato and Lu [95] used the chord-length distribution
function to describe pore space features. Ioannidis et al.
[96] added the fast Fourier transform to improve the micro-
scopic pore structure accuracy of the constructed digital core.
Giona and Adrover [97] used linear filters to improve the
accuracy of the reconstructed model. Roberts [98] replaced
the two-point probability function with a multipoint proba-
bility function. Most recently, Liang et al. [99] improved
the Fourier transform by using a truncated Gaussian method.

The abovementioned methods clearly improved the use
of the Gaussian field reconstruction method; however, this
technique has been criticized because of the poor connectiv-
ity within the constructed digital core. The connectivity of
the reconstructed 3D digital core does not greatly improve
with the use of any of the abovementioned methods; thus,
further development of the Gaussian field reconstruction
method is necessary. Generally, the advantage of the Gauss-
ian field method is its fast modelling speed. If the accuracy
of the digital core is not sufficient, then no quantitative calcu-
lation is required if the core to be reconstructed is a high-
porosity rock. If a more accurate digital core is required, then
the number of constraints must be increased; that is, the eval-
uation function must be enhanced. However, if additional
constraints are included, the modelling speed of the Gaussian
field method diminishes, so long-distance connectivity prob-
lems cannot be solved, and the accuracy becomes insufficient.
To obtain a more accurate 3D digital core in this scenario,
one should use a digital 3D core reconstruction method
based on an optimization algorithm (such as the simulated
annealing (SA) algorithm) with similar principles. Accord-
ingly, the Gaussian field reconstruction approach may be
replaced eventually.

(2) Stochastic Search Algorithm Based on a Majority Opera-
tor. In 2007, Zhao et al. proposed a random search method
based on a majority operator and evaluated the permeability
of the reconstructed digital core [100]. The main modelling
process of the majority operator is divided into four steps.
First, the 2D slice two-point probability and linear path func-
tions are calculated. Second, datasets that are the same size as
the 3D digital cores are randomly generated (for example, a
300 × 300 × 300 voxel digital core is randomly generated
when reconstructing a 300 × 300 × 300 voxel digital core),
and the difference between the two-point probability and
linear path functions is calculated as the objective function
value. Third, the randomly generated 3D digital cores are
optimized based on the majority operator-based random
search strategy. Seven main models are used for the opti-
mizing operators: D2Q9, D3Q13, D3Q15, D3Q19, D1Q3,
D2Q5, and D3Q27 [101]. Assuming that the D3Q27
model is selected, a voxel that points to a hole can be ran-
domly selected in a digital core; then, the binary states of
its 26 neighbourhoods (i.e., the porosity or rock skeleton)
can be judged. If a point represents a pore among the 26
neighbourhoods that exceeds a certain value (usually set
as a constant), the point is selected again; otherwise, the
point is selected and replaced with a skeleton point. After
each replacement is completed, the target function value is
recalculated until the target function value falls below a
given value or the target function value no longer changes
over several iterations.

Only scarce literature is available regarding the multiple-
operator random reconstruction method, which is more
suitable for the construction of 3D digital cores with large
pores (usually more than 20% porosity) [102] because this
approach suffers from many weaknesses. First, this method
is optimized with a fixed law, which is very slow, and thus
easily falls into extreme values, making it difficult for the
model to continue the optimization (i.e., SA and other meta-
heuristics are random and are therefore the best approach to
solve the traditional optimization problem). Second, the
adjustment of this method is partial, not integral. This partial
adjustment can guarantee only the details, while the overall
long-range connectivity is difficult to guarantee. Although
the majority operator method works better than the Gaussian
field method, it still does not address the holistic, random,
and long-range connectivity that is required for optimized
digital core-reconstruction methods. However, the multiple-
operator random reconstruction method can be used as an

Table 1: Instrument parameters and applications for 3D digital core reconstruction.

Instrument type Sample size Instrument resolution Main application areas

Micro CT

Core column scanning
(diameter 15-25mm)

12-30 μm Geological description, heterogeneity analysis

Core column scanning
(diameter 1-25mm)

0.5-12 μm Fine description, pore network generation

Nano-CT Less than 1mm 65-150 nm For the scanning of complex structural samples such as
shale, microcrystal, tight gas rock, and analysis of pore networkFIB-SEM Less than 1mm 2-150 nm

6 Geofluids



optimization solution for reconstructing digital cores
(described in Section 3.3).

(3) Simulated Annealing (SA) Method. In 1997, Hazlett [103]
first proposed a new digital core-reconstruction method
based on the SA optimization algorithm. After evaluating
the 2D slice porosity, the two-point probability function,
and the linear path, a 3D digital core that has the same poros-
ity as the 2D slice of the rock is first constructed, after which
the digital core is optimized by using an SA optimization
algorithm. During each iteration of the optimization, a pore
voxel point and skeleton voxel point are randomly selected
and exchanged, and the objective function is calculated. If
the value of the function decreases, the 3D digital core is
updated, the iteration is continued until it terminates, and a
reconstructed 3D digital core is obtained. Figure 5 shows
the flow chart for reconstructing a 3D digital core with the
SA method. Figure 6 shows a 3D digital sandstone core that
was obtained with the SA optimization algorithm in
Figure 6, in which blue colors denote pores and red colors
represent the skeleton.

Subsequently, Yeong, Torquato and Manwart [105–107]
proved that the SA method can approximate the evaluation
function. Eschricht et al. [108] improved the SA method
and the accuracy of the reconstructed model. After building
digital cores with the SA method, Zhao and Yao [109] sug-
gested that good evaluation parameters can improve the
reconstruction accuracy and consequently proposed an
improved method to speed up the model optimization pro-
cess. Considering the disadvantages of the SA optimization
method, Teng et al. [110] proposed a 3D image reconstruc-
tion method based on particle swarm optimization (PSO);
an improved reconstruction was obtained compared to the
Gaussian field reconstruction method and the SA method.
Ju et al. [111] proposed an improved SA method that
enhanced the modelling effect. Likewise, Zou et al. [112]
improved the SA method and proposed a very fast SA opti-
mization method, which was applied to reconstruct shale res-
ervoirs. Frączek et al. [113] proposed a multiscale SA
reconstruction method, and Zeng et al. used the SA recon-
struction method to reconstruct gas-hydrate digital cores,
achieving very good results. Lin et al. [114] proposed a multi-
scale SA reconstruction method and reconstructed digital
carbonate-rock cores with good results. In 2018, Capek pro-
posed an improved SA method to further improve the recon-
struction accuracy [115].

The effectiveness of reconstructions from the SA method
mainly depends on the efficiency of the algorithm and the use
of an appropriate evaluation function. With the same evalu-
ation function, the effect of the construction of the SA
method is better than that of the Gaussian field method as
well as that of the majority operator. The key issue at present
is that strong global optimization is the most important com-
ponent to improve the long-range connectivity regardless of
the optimization model. Thus, a large number of evaluation
functions that reflect the different details of digital cores
can be added to improve the prediction effect. Among the
several methods that are currently employed for this task,

metaheuristic optimization algorithms, including SA optimi-
zation algorithms, are the most promising because of their
high optimization efficiency and certain randomness
(thereby avoiding extreme values and improving the final
optimization effect). In Section 4, we also mention that the
prediction may be further improved if a new metaheuristic
optimization algorithm is used. In addition, the combination
of multiple optimization algorithms based on their unique
characteristics can further improve the digital core-
reconstruction effect.

(4) Discussion of the Statistically Constrained Stochastic
Reconstruction of Mathematical Features. Many methods
are based on the statistically constrained stochastic recon-
struction of mathematical features. In this paper, four
common methods are introduced. Among them, the most
studied is the SA method, which is a reconstruction method
that we consider to be very promising. The digital cores that
are reconstructed by the SA method boast better connectivity
than reconstructed 3D digital cores from the stochastic
search algorithm based on the majority operator and Gauss-
ian field methods; thus, the constraint function of the evalu-
ation function can be better executed. In this section, we
focus on a discussion of SA methods. To reconstruct a digital
core, the effect of an algorithm depends on the required time
for the reconstruction and the approximation degree (error

Binarize 2D slice image

Randomly generate 3D digital cores of the
same porosity as 2D slices

Determine the objective function

Optionally, a pixel representing the pore is
exchanged with the pixel representing the
skeleton and a new target function value is
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criteria whether to
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Whether to meet the
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Figure 5: SA method reconstruction of 3D digital core
reconstruction.
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size) of the evaluation function. To improve these two com-
ponents, an appropriate initial model and the algorithm itself
should be reasonably improved. The appropriate initial
model can be based on a combination of different methods,
which are discussed in detail in Section 3.3.

The SA algorithm, which was first proposed in 1953, is a
classic optimization algorithm that regards the accuracy of
the 3D digital core reconstruction as an optimization prob-
lem. SA algorithm optimization works very well for rocks
with high porosity and high permeability and rocks with
uncomplicated pore structures. However, the speed and
accuracy are greatly reduced when reconstructing large-
scale rocks with complex pore structures [116], indicating
that the classical SA algorithm cannot meet complex optimi-
zation requirements. Many scholars that have engaged in 3D
digital core-reconstruction research have not addressed any
improvements to this algorithm itself. Instead, scholars who
have focused on optimization research have made improve-
ments to various individual aspects of the SA algorithm, such
as the ease with which the algorithm falls into local minima
[117, 118], its long execution time [119–125], and the sensi-
tivity of its parameters [126–128]. Since the concept of the
metaheuristic optimization algorithm [103] was proposed,
research progress regarding this algorithm has been very
rapid. Numerous new metaheuristic optimization algorithms
based on various phenomena have been proposed. Com-
pared to these metaheuristics, the SA algorithm is primitive.
Table 2 summarizes some of the classic metaheuristic optimi-
zation algorithms and the latest metaheuristic optimization
algorithms. Figure 7 shows a 3D digital core that was recon-
structed by PSO and the SA algorithm with the same evalua-
tion function.

Table 2 demonstrates the evident diversity of heuristic
optimization algorithms; moreover, only a small number of
the many available optimization algorithms are shown in
Table 2. Hundreds of optimization algorithms can be used,
even if the improved algorithm is not calculated; in addition,
no improved algorithms based on the abovementioned meta-
heuristic optimization algorithm are included in this table.

Many of these optimization algorithms have been proven
superior to the 35-year-old SA method in terms of the search
speed and optimization effect. For the reconstruction of 3D
digital cores, one should use a variety of the most recently
developed optimization algorithms to determine which is
the most suitable for digital core-reconstruction problems
and research and to improve the search ability of each algo-
rithm as well as its optimization speed in order to satisfy
the needs of higher evaluation functions. This approach is
also the best to improve the accuracy of the stochastic recon-
struction method based on the statistical constraint of math-
ematical features. An interdisciplinary method should be
used to improve the reliability of a reconstructed 3D digital
core. Alternatively, we can combine the characteristics of
multiple optimization methods to jointly reconstruct a digital
core. For example, the Gaussian field method is used first to
optimize the initial stochastic model; at this time, fewer eval-
uation functions are selected. The results are then transferred
to the optimization algorithm, and more evaluation func-
tions are added to refine the digital core modelling process,
thereby increasing the long-range connectivity and reliability
of the digital core. Finally, a multituning method is used
to further fine-tune the model, and then the model more
closely resembles the actual rock. This approach can also be
regarded as a hybrid optimization method. In summary, the
advantage of the 2D slice method based on the statistical con-
straint of mathematical features is that it considers the integ-
rity of the digital core during its reconstruction; in addition,
this technique first generates the 3D random data and then
performs the optimization. However, the disadvantages of
this approach are obvious. Morphological characteristics
such as sex are obviously insufficient and depend on mathe-
matical algorithms.

3.2. Stochastic Reconstruction Method Based on the Statistical
Constraints of 2D Slice Morphological Characteristics. A sto-
chastic reconstruction method based on the statistical con-
straints of 2D slice morphological characteristics can be
used to calculate the morphological features of 2D slices (spe-
cifically, the relationships between the positions and relative
positions of voxels). This method can also be used for 3D
reconstruction purposes based on the morphological features
of 2D slices, but it differs from the stochastic method based
on the statistical constraints of mathematical features, which
considers the correlations between voxels with regard to the
connectivity and morphological features of pores. Represen-
tative reconstruction algorithms include the Markov chain
Monte Carlo (MCMC) reconstruction method and the
stochastic reconstruction method based on the statistical
constraints of slice morphology characteristics; these algo-
rithms are used to calculate the morphological features of
2D slices (specifically, the relationships between the positions
and relative positions of voxels). A reconstructed 3D digital
core is then built based on the morphological features of
these 2D slices. This approach is different from the stochastic
method based on statistically constrained mathematical fea-
tures, which considers the correlations between voxels with
regard to the connectivity and morphological features of
pores. Representative reconstruction algorithms include the

Figure 6: Reconstruction of 3D digital cores by the SA method. The
blue part is the pore; the red part is the skeleton. It can be seen that
the constructed 3D digital core has better pore connectivity and is
similar to the real pore space. Figure reprinted from [104].
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MCMC reconstruction method and multipoint geostatistics
(MPS) [145].

3.2.1. Sequence Indicator Simulation Method. In 2003,
Keehm [146] proposed a new reconstruction method,
namely, a 3D digital core stochastic reconstruction method
based on the sequence indicator simulation method from
geostatistics. Sequence indicator simulation is a method that
indicates the probability distribution field of data by using a
directed kriging interpolation technique in combination with
a conditional stochastic simulation. In this method, the var-
iogram and porosity values of the 2D slice are first calculated.
Then, the path of each network node is randomly assessed,
and kriging interpolation is applied to the indicator variable
to determine the probability that this variable is a discrete
variable at the node. Then, the discrete variable order is
determined, and a random number is generated, which

determines the random variable type at that point. The nodes
are repeatedly updated until each node is simulated, and a 3D
digital core is ultimately obtained. In 2007, Zhu and Tao
[147] reconstructed a 3D digital core by using cast sheet data.
The variation function of the reconstructed digital core is
considered to correspond well with the variation function
that is calculated from the reconstructed casting slice. The
sequence indicator simulation method produces recon-
structed 3D digital cores that are very similar to real digital
cores, so this method can be applied to the simulation of elec-
trical and elastic rock properties. In 2011, Liu and Mu [148]
proposed an improved sequence indicator simulation
method and applied it to calculate the permeability of a dig-
ital core.

Unfortunately, the sequence indicator simulation
method does not fundamentally solve the reconstructed dig-
ital core connectivity problem. The greatest advantage of the

Table 2: Some of the metaheuristic optimization algorithms.

Imitated object Representative algorithms

The evolution of
nature

Genetic algorithm [129], differential evolution algorithm [130]

Human behaviour Immune algorithm [131], brainstorm algorithm [132], fireworks algorithm [133]

Physical
characteristics

Simulated annealing algorithm [134], intelligent water drop algorithm [135], binary black hole algorithm [136]

Animal behaviour
Particle swarm optimization algorithm [137], ant algorithm [138], bat algorithm [139], krill herd algorithm [140],

whale optimization algorithm [141]

Plant behaviour Invasive weed algorithm [142], rain forest algorithm [143], root growth model [144]

(a) (b)

(c)

Figure 7: Particle swarm optimization (a), Fourier transform-based Gaussian field method (b), and simulated annealing method (c)
reconstruction results of 3D digital core. Among them, the 3D digital core with the same background color is the skeleton, and the white
part is the pores. It can be observed that the reconstruction effect of particle swarm optimization is better than that of the simulated
annealing algorithm, and the obtained 3D digital core has better connectivity in the pore space. Figure from [109].
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sequence indicator simulation method is that it has certain
integrity and correlations between voxels, which is very
important for the reconstruction of digital cores to ensure
long-range connectivity. The relevance of each voxel is
greatly considered. In contrast, the weakness of the sequence
indicator simulation method is that the rules to establish the
digital core are directly fixed from the image, which causes
two hidden problems. First, when using this method for the
reconstruction of a digital core, the reconstruction accuracy
is directly derived from the image. For images with very high
heterogeneity, the image representation is weak, and the
reconstruction effect is influenced accordingly. Second,
because the evaluation function is relatively fixed, developing
it further is difficult, so the model has weaker potential. The
above problem is a common problem of modelling methods
that are based on the morphological features of images, but
the disadvantages of the sequence indicator simulation
method are more serious. Compared to the MCMC and
MPS methods, the digital cores that are reconstructed by
the sequence indicator simulation method are also less reli-
able and are especially weaker overall than those that are
reconstructed by the MPS method, which considers several
consecutive voxel points in the vicinity and thereby more
fully considers the digital core. The subsequent implementa-
tion of the simulation method is significantly worse than the
implementation of both the MCMC and MPS methods. In
summary, the sequence indicator simulation method does
not fundamentally solve the reconstructed digital core con-
nectivity problem.

3.2.2. Markov Chain Monte Carlo (MCMC) Method. In 2004,
the MCMC reconstruction method was proposed by Wu
et al., who applied this technique to the 2D reconstruction
of soil structure [149]. In 2006, Wu et al. extended the 2D
digital core-reconstruction method into three dimensions
and proposed an MCMC-based 3D digital core-
reconstruction method [150]. This technique introduces the
Markov chain and traverses all two-point and five-point
neighbourhoods in a 2D slice image to calculate the condi-
tional probability of the neighbourhood template; this
method also determines the state of each point in the recon-
structed image based on conditional probabilities. Markov
chains describe a sequence of states (analogous to the notion
of a template). The state value of each position in the
sequence depends on the state of the previous position, and
the probability of describing this state is called the transition
probability [151, 152]. This reconstruction method can be
roughly divided into four steps. First, we establish a Markov
chain with a stable probability distribution function by
means of traversal scanning. When the chain is performed
over a sufficient distance in the image, an important statisti-
cal feature of the original image is obtained. After the condi-
tional probability is obtained, the image reconstruction can
be performed. Then, the first row of the first layer is recon-
structed, and the average porosity is determined by using
2D slices in the x, y, and z directions (slices can be recon-
structed in three directions from a single 2D slice). From
the second voxel, a two-point neighbourhood template is
used to reconstruct the three-point neighbourhood system

from the third point to reconstruct the first row of voxel
values. The third step is to reconstruct the first layer of the
3D digital core. The first point is reconstructed with two-
point neighbourhood templates, and the second point is
reconstructed by four-point neighbourhood templates. The
remaining points are reconstructed by using the five- and
six-point neighbourhood systems. Subsequently, the remain-
ing layers of the 3D digital core are reconstructed, and the
first layer is reconstructed vertically by using the previous
steps. Then, the first voxel of the second layer utilizes seven-
and eight-point neighbourhood systems for reconstruction.
Finally, the second line of the remaining components of the
3D digital core can be reconstructed with 10- and 11-point
neighbourhood systems. A diagram of the MCMC recon-
struction method is shown in Figure 8, and Figure 9 displays
a digital core of the Berea sandstone that was reconstructed
with the MCMC method.

Wang et al. [154] used the MCMCmethod to reconstruct
the pores of shale rocks in two dimensions. Nie et al. [154]
modelled a shale-gas reservoir with a large-scale 3D digital
core by using the 3D MCMC method. Guo et al. [155] used
a random walk algorithm to simulate the NMR response of
a sandstone reservoir in a reconstructed 3D digital core based
on the MCMC algorithm. Overall, the MCMC-reconstructed
sandstone digital cores match the actual cores, and the NMR
response values are similar.

The MCMC method is a very reliable digital core-
reconstruction technique. The constructed digital core boasts
good connectivity. However, MCMC-reconstructed digital
cores have weak anisotropy, and the pore throat radius distri-
bution is very concentrated. These factors are the major
disadvantages for reservoirs with strong heterogeneity. Com-
pared to the sequential indicator simulation method, the
MCMC method considers the voxel configuration around
each voxel to be determined and thus obtains a digital core
with better connectivity, especially with regard to the distri-
bution of pores, when the core is more uniform. However,
the most fundamental cause of the weak anisotropy in
reconstructed digital cores is that this hypothesis does not
conform to a heterogeneous rock. The assumption of this
technique is that the state of any point depends only on
the states of a few neighbouring points. Then, after count-
ing the probability function of the training image, the vox-
els that actually must be determined are determined only by
points that are close to each other, whereas the distances to
voxel points that are far from the points to be determined
are ignored, resulting in the absence of long-distance differ-
ences and eventually producing weak anisotropy. Neverthe-
less, the MCMC method is generally more accurate than the
sequential indicator simulation method; consequently, more
studies have been performed based on the reconstruction of
digital cores with the MCMC method. In conclusion, 3D
digital cores that are reconstructed by the MCMC algo-
rithm match real digital cores, but whether these cores are
applicable to rocks with very complicated pore structures
remains uncertain.

3.2.3. Multipoint Geostatistics (MPS) Method. In 2004, Okabe
and Blunt proposed a digital core-reconstruction method
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based on the statistical method of MPS [42]. The MPS
method extracts multipoint statistical information from
training images (i.e., 2D slices) and reconstructs the template
and reconstruction mode; then, this mode is used to perform
a 3D digital core reconstruction. Compared to the MCMC
method, this method is more biased toward the reconstruc-
tion of 3D digital cores with the morphological features of
2D slices. The reconstruction of a digital core with the MPS
method is divided into four steps. First, a 2D slice search tem-
plate and a search tree are established. Second, the raw data
are reloaded to the nearest simulation grid node and fixed
during the simulation. Next, we define a path that randomly

accesses all voxels. We use the search template to define
conditional data events, compute the conditional probability
distribution function (CPDF) based on the search tree, calcu-
late the simulated values with the function, and generate new
2D images through iteration. Finally, we employ the recon-
structed image as a new training image to generate the next
layer of the image, which is then used to generate a new 3D
digital core. Figure 10 shows a reconfigured flowchart of
the MPS reconstruction method, and Figure 11 shows a
3D digital shale-rock core that was reconstructed with the
MPS method.

In 2004, Daıän et al. [156] used MPS to reconstruct
digital cores and calculate their porosity and permeability,
which matched the actual experimental results. Because the
MPS method suffers from a slow reconstruction speed and
occupies more memory, Wu et al. [157] proposed a solution
to replace this pixel-wise distance calculation with a filter
score comparison, improving the reconstruction speed by a
factor of 10. In 2009, Wang et al. [158] reconstructed 3D dig-
ital cores by using 2D CT images and tested the permeability
of the reconstructed 3D digital cores by using the lattice
Boltzmann method. Teng et al. [159] proposed that higher
multipoint statistical stationarity and lower-scale stationarity
are likely to produce results that more closely resemble the
real 3D structure. In 2012, Tahmasebi et al. [160] proposed
a multipoint statistical method based on cross-correlation
function geostatistical methods (CCSIM) and conducted
continuous research to improve the method [161–165].
Straubhaar et al. [166] proposed a parallel multipoint geosta-
tistical method based on an improved search tree structure,
effectively reducing the memory footprint and increasing
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Figure 8: Reconstruction process of 3D digital cores using MCMC reconstruction method. (a) Shows reconstruction the first voxel, (b) shows
reconstruction the first row, (c) shows reconstruction the first level, and (d) shows reconstruction the remaining layers of the 3D digital core.
Figure from [153].

Figure 9: Reconstruction of 3D digital cores using MCMC
reconstruction method. Among them, black is the pore part, and
white is the skeleton part. The 3D digital cores obtained by the
MCMC method have good connectivity of pore space and more
concentrated pore space.
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the computational speed of the method. In 2013, Du and
Zhang [167] used multigrid templates to improve the recon-
struction effect and achieved good results. In 2014, Zhang
et al. [168] proposed an MPS method based on GPU acceler-
ation. In the same year, Gao et al. [169] proposed an MPS
method that uses three-step sampling. Zhang et al. [170] pro-
posed an Isomap-based MPS reconstruction method that
uses the Isomap method to reduce the dimensions and
redundancy. Liu et al. [171] proposed a directional MPS
reconstruction method that produces results that are more
similar to the real core. In 2016, Zuo et al. [172] proposed a
method to improve the reconstruction speed of the MPS
algorithm by using the half-template technique. In 2017,
Peng [173] established a digital core of a shale reservoir by
using the MPS method and concluded that the MPS method
can effectively reconstruct large-scale digital cores of shale
reservoirs by evaluating the function and permeability
results. In 2018, Wu et al. [149] combined the MPS method
with 3D digital core data to reconstruct a more accurate
digital core.

Generally, current research on MPS reconstruction
methods focuses mainly on three aspects: accelerating the
reconstruction speed, reducing the required memory for
reconstruction, and using multiscale templates to improve
the reconstruction accuracy. Digital cores that are recon-
structed with the MPS method display good connectivity;
hence, the MPS approach is a widely used reconstruction
method. However, similar to the MCMC reconstruction
method, we must study and discuss the effectiveness of
reconstructed rocks with complicated pore structures and
fine-scale descriptions. In addition, the stochastic reconstruc-
tion method based on the statistical constraints of 2D slice
morphological characteristics does not consider the mathe-
matical statistics of 2D slices; consequently, 3D digital cores
that are constructed with this method have some hidden dan-
gers, and certain statistics may not reflect the characteristics
of 2D slices. Compared to other stochastic simulation
methods, the greatest advantage of MPS is that it can effec-
tively replicate 2D or 3D models of the pore structure and
reconstruct the long-distance connectivity of a pore space.
Thus, digital cores that are constructed with the MPS tech-
nique are regarded as having the best long-distance connec-
tivity. Moreover, this technique can better describe the
shape of the pore space, which is difficult to achieve by other
reconstruction methods. Unfortunately, similar to other
methods based on the reconstruction of morphological fea-
tures, the MPS approach has a common problem wherein
the training image must be representative. In addition, this
technique suffers from a relatively slow computational speed.
Overall, MPS generates reliable results compared to other
reconstruction methods based on the pore morphology.
Since its proposal, the MPS digital core-reconstruction
method has been employed by a large number of scholars
and has continued to improve.

Accordingly, the MPS method is currently the most com-
mon technique for reconstructing complex 3D digital cores
with 2D slices [174]. The reconstructed digital core is more
accurate, but the algorithm itself is difficult to solve with
the stochastic reconstruction method based on the statistical
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Figure 10: MPS reconstruction method flow chart.

Figure 11: Reconstruction result of the 3D digital core using MPS
method. Among them, the blue part is the pore, and the
transparent part is the skeleton. It can be seen that even for shale
rock, the long-range connectivity of the pore space of the 3D
digital core obtained by the MPS method is still good. This shows
that the MPS method can reflect the training image well and
obtain the 3D digital core with long-range connectivity. Figure
reprinted from [155].
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constraints of 2D slice mathematical features because of
the fixed nature of the algorithm. Hence, the stochastic
reconstruction method based on the statistical constraints
of 2D slice morphological characteristics is mainly used
to improve the reconstruction speed and research multi-
scale reconstruction.

3.3. Physics Process-Based Stochastic Reconstruction Method.
Stochastic reconstruction methods based on physical pro-
cesses, that is, methods that consider the sedimentation and
diagenesis of real rocks and stochastically simulate these
processes, are different from the other two reconstruction
methods that were mentioned above. Common examples of
such reconstruction methods include random particle stack-
ing considering gravity and random particle stacking based
on the discrete element method (DEM).

In 1992, Bryant et al. [175] proposed the reconstruction
of digital cores with the accumulation of isospheres to reflect
geological formation processes; their method was later
improved in 1996 [176]. Subsequently, Bakke and Øren
[177–179] established 3D digital cores that used spheres of
different particle sizes and clearly delineated the deposition,
compaction, and diagenesis processes. Through the correla-
tion of two points, the use of local porosity distribution func-
tions, the calculation of the local seepage probability
function, and the simulation of formation factors, the recon-
structed digital cores matched the digital cores that were
obtained through CT scanning. The random particle stacking
method can be divided into four steps. First, the particle size-
distribution curve can be constructed by considering the
number of particles in the 2D slice, the particle size, and
the particle size distribution. Second, particles in free fall
are randomly selected for deposition simulation in a fixed
box; that is, no lateral force is assumed, the particles that fall
to a stable position are measured, and the particles fall until
the stopping requirement is met. Third, the compaction pro-
cess is computed by using a degree-of-compaction formula
and compaction factors. Finally, the cementing factor is used
to simulate the cementing process with a degree-of-
cementing formula [180]. Figure 12 shows the geometry pro-
cess in the physics process-based stochastic reconstruction
method, and Figure 13 shows a 3D digital core that was
reconstructed with the physics-based method.

In 2003, Jin et al. suggested that sedimentation should
consider the effects of gravity, contact forces, and resistance;
accordingly, these authors reconstructed a digital core by
using a DEM. This method yields 3D digital cores with a
smaller porosity and permeability [181]. In 2012, Zhu et al.
[182] proposed a digital core-reconstruction method by
changing the shape of an irregular particle. In 2013, Yan
et al. [183] compared digital cores that were reconstructed
with the physics-based method with artificial cores and con-
cluded that the numerical cores from this method were sim-
ilar to the artificial cores with regard to the results of the
evaluation functions. Zhao et al. [184] conducted a study
based on the physics-based process law and achieved good
results. In 2015, Zou et al. [185] utilized a DEM to recon-
struct 3D digital cores in tight sandstone reservoirs and
found these cores to be similar to real digital cores according

to NMR simulations. In 2017, Zhu and Yu [186] improved
the diagenesis process in this method by converting the vox-
els adjacent to the framework to build cements. In 2018, Tian
et al. [187] proposed a new physics-based process approach
that considers the physical influences of gravity and particle
collision on a mineral and improves the steady-state particle
position search algorithm; thus, deposited particles can
quickly converge to stable positions. Their process method
improved the disadvantages of previous physics-based pro-
cess methods, which cannot simulate more complex rocks
to a certain extent, and extended its scope of application.

Stochastic reconstruction methods based on physical
processes have obvious advantages and disadvantages. One
advantage is that the obtained rock connectivity is better
for simulating real geological processes and is more suitable
for simulating the simple diagenesis of rocks than other
methods. This advantage is critical, especially for rock seep-
age and conductivity studies, because differences in the con-
nectivity can have very prominent effects.

Among the disadvantages of these methods, rocks such as
carbonates and shales that have a complex diagenetic history
cannot be reconstructed. As mentioned earlier, process
methods can better simulate the rock deposition process,
which is similar regardless of whether the rock structure is
complex. However, the simulation of diagenesis in the
physics-based process method is too simple because it uses
only one formula to represent the diagenetic process, which
is obviously unreasonable because the diagenetic process
should be more complex than the deposition process. The
next step in research on process simulation methods should
address diagenetic processes, the study of which first must
consider the different diagenetic characteristics of different
rock types. For example, carbonate rocks are easily eroded
[188] and are also prone to fractures and pressure fractures
[189, 190], whereas shale reservoirs must consider the con-
version of organic matter [191] and the formation of micro-
fractures [192], and corresponding algorithms must be
established. A hybrid method can be used to strengthen the
simulation of diagenesis, and the targeted simulation of rock
diagenesis should improve the use of physics-based process
simulation methods for complex rocks.

3.4. Hybrid Stochastic Reconstruction Method. According to
the above summary of 2D slice-based 3D digital core-
reconstruction methods, digital cores that are constructed
with different methods evidently produce different results.
All these methods have unique advantages and disadvan-
tages, and their merits are difficult to evaluate. A method
must be developed to select the technique to be used to
reconstruct 3D digital cores. Table 3 compares the advan-
tages and disadvantages of common reconstruction methods.

Based on Table 3, different reconstruction algorithms
have different emphases in the reconstruction of 3D digital
cores. In response to these features, relevant scholars have
proposed a hybrid method that combines different recon-
struction methods.

When reconstructing digital cores, the differences
between methods must be understood to build a more accu-
rate digital core. Hidajat et al. [193] proposed a 3D digital
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core-reconstruction method that uses the Gaussian field
method combined with the SA method: the former is used
to reconstruct the initial 3D digital core, which is then used
to optimize the SA algorithm. The results from their study
showed that the 3D digital cores that were obtained with this
hybrid method were similar to real 3D digital cores. Liu et al.
[194, 195] proposed a 3D digital core-reconstruction method
that uses a combination of the physics-based process simula-
tion method and SA method; the latter was used to improve
the simulation effect of diagenesis in the reconstructed 3D
digital core. The results showed that the connectivity within

the 3D digital core from the hybrid reconstruction system
was more realistic than the reconstructed 3D digital core
from the SA method (Figure 14). The simulation results from
this method were the same as the actual experimental results,
and the reconstruction speed was faster than the original
speed.

In 2016, Mo et al. [104] combined the SA algorithm with
the stochastic search algorithm based on the majority opera-
tor to propose a supplementary SA optimization scheme for
3D digital cores. This scheme improves the shape and pore
connectivity of the pore spaces in reconstructed digital cores,
and the constructed 3D digital cores are more realistic.

Nevertheless, most scholars have overlooked the poten-
tial of hybrid reconstruction methods. Through the above
analysis of current mainstream reconstruction methods, each
method evidently has obvious advantages and disadvantages.
Consequently, whether one method can completely replace
the others is difficult to determine, and no universal digital
core-reconstruction method exists. Therefore, further
research should be conducted on combining different
methods to greatly improve the accuracy of reconstructed
digital cores. Regrettably, few studies have focused on this
aspect to date.

Regarding hybrid methods, a physics-based process
method must be combined with another method if high pore
connectivity is required. For reservoirs with greater primary
porosity, such as medium- to high-porosity and high-
permeability sandstone reservoirs, the pore connectivity is
usually better, and the degrees of sorting and rounding are
relatively consistent. For this purpose, the process method
+ optimization method is the most suitable combination.
For reservoirs with greater secondary porosity, the pore mor-
phology is not as uniform as that of a primary porosity-based
reservoir. Clearly, the pore morphology of the reservoir is
very important because a pore morphology that consists of
a higher abundance of secondary pores, such as pinholes
and cracks in carbonates, is related to the mineral composi-
tion, secondary effects, etc. In this case, one should use a

(a) (b)

Figure 12: Geometry process in physics process-based stochastic reconstruction method. (a) Shows 3D digital core results before meshing,
and (b) shows 3D digital core results after meshing. Figure from [63].

Figure 13: The 3D digital sandstone cores were reconstructed using
a process-based reconstruction method. Among them, blue is the
skeleton part, and the transparent part is the pore part. Pore space
connectivity of 3D digital cores is very good. However, it can also
be seen that due to the lack of detailed description of the
diagenesis of the rock, the three-dimensional digital core obtained
by the process method has a very single pore space and is difficult
to reconstruct the complicated pore structure.
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reconstruction method that considers the pore morphology
and then optimize the digital core based on the actual situa-
tion to improve the integrity of the reconstructed core. In
contrast, a technique that is similar to the majority operator
method, which is suitable for fine-tuning a digital core, is
more suitable for the final adjustment of a digital core and
the final stage of reconstructing a digital rock core. In sum-
mary, hybrid random reconstruction methods, process
methods, and reconstruction methods based on the pore
morphology are suitable for initially modelling digital cores,

whereas optimization-based methods are suitable for further
adjustments to the initial digital core, and the details can be
fine-tuned by using the majority operator method. Thus,
hybrid random reconstruction methods are very important.

Generally, hybrid methods have achieved some good
results regarding the reconstruction of 3D digital cores with
different lithologies. The next step is to accurately identify
the differences between these methods and create a reason-
able combination of methods to both speed up the model
reconstruction and improve the effectiveness of model recon-
struction. Different combinations of models have some sig-
nificance for future research.

4. Discussion of Trends and Challenges

As a new discipline direction, the reconstruction and simula-
tion of a digital core can resolve the problems that are associ-
ated with experimental costs and practical difficulties when
encountering some tight rocks. This method can aid in the
exploration and development of oilfields, which is of great sig-
nificance. Obtaining accurate 3D digital cores constitutes the
premise of accurate simulation experiments and represents
the most important research direction regarding digital cores.
However, the current modelling methods are far from perfect.
Generally, the actual problems that are considered are not
meticulous. In this section, we provide a detailed and reason-
able view of digital core-reconstruction techniques according
to their development and discuss the urgent problems that
must be resolved in exploration and development.

4.1. Challenges of Reconstructing 3D Digital Cores Based on
Physical Experimental Methods. Existing physical experimen-
tal methods to reconstruct 3D digital cores encounter fewer
challenges than the creation of 3D digital cores based on
2D slices because the former produce more realistic results.

Table 3: Common reconstruction methods contrast.

Reconstruction method Advantage Disadvantages

Stochastic reconstruction method based on
2D slice statistical constraint features

Gaussian field
simulation method

Reconstruction speed is high
Connectivity of reconstructed

3D digital core is poor

Stochastic search
algorithm based on
majority operator

Good connectivity
Connectivity decreases with

decreasing porosity

Simulated annealing
method

Allow to join as many evaluation
function constraints

The accuracy is limited by the
evaluation effect of the
evaluation function

Sequence indicator
simulation method

The evaluation results for the
constraints are similar to the

actual core results

Reconstructed 3D digital core
connectivity is poor

Stochastic reconstruction method based on
2D slice morphological characteristics
statistical constraint

MCMC simulation
method

Reconstructed 3D digital cores
feature similarities to the original

data

Reconstruction results have a
certain degree of randomness

MPS simulation
method

Good connectivity, pore
morphological characteristics
similar to the actual rock

Slow calculation, memory
footprint

Physics process-based stochastic
reconstruction method

Physics process
simulation method

Connectivity is very good
Cannot reconstruct complex

rocks with diagenesis
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Figure 14: Compared with the experimental data, the three-
dimensional digital core reconstructed by the hybrid method has
good correspondence with the experimental results in the high-
porosity part. The three-dimensional digital core constructed by
this method is more realistic. Figure reprinted from [195].
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Presently, three key problems must be further studied to
establish a 3D digital-core method based on physical experi-
mentation. First, the selected rock sample size and optimal
scan resolution is important. For a rock with a small pore
size, high-resolution instruments can be used to accurately
identify the pore space; conversely, a rock with a larger pore
size is recommended for low-resolution pore space identifi-
cation approaches. Second, binary images require further
study. The porosity cannot be determined with a single
threshold because of obscure skeleton-porosity boundaries
in greyscale images. Additionally, the porosity cannot be
determined based on physical property experiments, and
the microporosity may be difficult to measure through poros-
ity experiments [196–198]. Therefore, the determination of
the segmentation threshold is another problem to be
addressed. Finally, the size of the 3D digital core must be
modest because of computational limitations. Thus, the
determination of an appropriate 3D digital-core size for sim-
ulation experiments is also meaningful, and the task of build-
ing 3D digital cores based on physical experimentation is far
less challenging than the reconstruction of 3D digital cores
based on 2D slices.

4.2. Trends and Challenges of Reconstructing 3D Digital Cores
Based on 2D Slice Data. The cost of obtaining 2D slices is
much lower than the cost of directly measuring 3D digital
cores. Moreover, rock microfeatures that are more block-
like can be obtained through the use of 2D features at the
same cost, thereby increasing the flexibility of reconstructing
3D digital cores. Thus, studying 3D digital core-
reconstruction methods based on 2D slices is meaningful.
This section discusses several challenges that are encountered
in this approach.

4.2.1. Importance, Challenges, and Developmental Trends of
the Evaluation Function. Two purposes exist for the use of
various evaluation functions. One is to implement a stochas-
tic reconstruction method for the statistical constraint of
mathematical features; these features can be constrained by
an evaluation function to obtain a more accurate reconstruc-
tion result. Second, after the digital core is reconstructed, the
effectiveness of the reconstruction is tested by using various
functions. The ability of the evaluation function to obtain
an abstraction of the digital core determines the accuracy of
the reconstructed digital core. The evaluation function is also
appropriate for determining the number of iterations for the
algorithm and the reconstruction speed. The importance of
the evaluation function is self-evident. However, our prede-
cessors did not associate an adequate importance with the
evaluation function. Therefore, this paper summarizes the
evaluation function and provides a reasonable interpretation.
Figure 15 illustrates the importance of the evaluation func-
tion in statistical-based digital core reconstruction.

The variance within a variogram, which is the regional-
ized variable delta, was proposed by Baniassadi et al. in
1965 [199]. The variogram can be used to test the spatial sim-
ilarity and internal structural similarity between a recon-
structed core and a real core to constrain the reconstructed
3D digital core. The effectiveness of the evaluation is similar

to that of the two-point probability function. The function
that is used to constrain the porosity of the digital core, which
is also known as a single-point probability function, is the
most widely used evaluation function. In addition to the
single-point probability function, the two-point probability
function that was proposed by Smith in 1988 is a classic eval-
uation function. The probability that any two pixel points are
separated by a distance r in a multiphase system is calculated
and simultaneously distributed in the same phase to charac-
terize the rock [200]. This function can characterize the spa-
tial distribution of the system. Many scholars considered the
use of this function in the establishment of digital cores with
different lithologies at different scales [201–204]. In 1992, Lu
and Torquato proposed a linear path function that calculates
the probability that all voxel points will be in phase with any
voxel point at a distance r [205]. This function can reflect the
local connectivity (mainly the linear connectivity) of the
same phase, which is the same as the two-point probability
function, and is a commonly used function in digital core
reconstruction [114, 206–210]. The two-point autocorrela-
tion function was proposed in 1995 in a form similar to that
of the two-point probability function; both of these functions
reflect the in-phase probability of two points at a distance r
with only slight differences in the calculation method [211].
Similar to the two-point probability function, the two-point
autocorrelation function is also used to reflect the spatial dis-
tribution of phases. The N-point probability function was
proposed by Roberts in 1997 [212]; this function considers
the multiphase conditions of digital cores and extends the
single-point and two-point probability functions. The N

-point probability function calculates the in-phase probabil-
ity of each phase that is separated by r, thereby reflecting a
higher-order correlation. The N-point probability function
contains more details regarding the spatial distribution mor-
phology of the secondary phase. In 1998, a combination of
the pore size distribution function and the cumulative pore
size distribution function was proposed by Yeong and Tor-
quato [105] to ensure that the pore diameter distribution
was reasonable. The cumulative pore size distribution func-
tion, which is similar to a linear path function, was based
on the proposed pore size distribution function, in which
the radius increases and then gradually decreases. In 2000,
the local porosity distribution function was proposed by
Hilfer [213]; this function calculation method, which can
constrain the geometric properties of the reconstructed rock,
is more complicated than previously proposed functions.
Hajizadeh et al. proposed the connectivity function in 2011
to calculate the pore connectivity of reconstructed and train-
ing images. The effectiveness of this function is similar to that
of functions that reflect the connectivity of the linear path
function. In the same year, Piasecki [214] proposed an entro-
pic descriptor to constrain reconstructed 3D digital cores and
improve the speed and accuracy of the 3D digital core recon-
struction. In 2014, Ju et al. proposed a fractal system control
function based on the general fractal structure of most rocks.
In 2015, Karsanina et al. proposed two-point cluster func-
tions to evaluate the reconstruction results [215]; this func-
tion first creates a mesh by using the box-covering method
and then uses the fractal system control function to describe
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the fractal. Good results have been obtained when a 3D dig-
ital core is reconstructed with this function. Moreover, the
fractal system control function, which is different from the
previous evaluation function calculation methods, is a new
concept. Generally, the evaluation function has more compli-
cated calculation characteristics, and the factors are more
carefully considered. The above evaluation functions are
organized and shown in Table 4.

Although the majority of the evaluation functions in
Table 4 have different formulas, their constrained mathemat-
ical properties are very similar. The functions of these evalu-
ation functions overlap with few differences. Hence,
evaluation functions can be classified based on the mathe-
matical property that is being constrained: the phase volume
size, phase connectivity, spatial distribution characteristics,
geometric characteristics, and fractal characteristics. Any
similarity between these evaluation functions can increase
the evaluation function when reconstructing 3D digital cores.
Based on previous research, in which 3D digital cores were
reconstructed by the statistic-constrained stochastic recon-
struction method, the evaluation function produces results
that are very similar to the original 2D slices. This finding
indicates that the reconstruction algorithm itself does not
have a poor reconstruction effect, but the connectivity of
the reconstructed 3D digital core is worse than that of a 3D
digital core that is reconstructed through a physical experi-
ment. Finally, existing evaluation functions may not be well
suited for the abstraction of shale rocks with extremely
complex pore structures and strong heterogeneity. Based on
the above problems, some scholars have studied new recon-
struction methods; alternatively, stochastic reconstruction
methods that are constrained by either the statistics or the
morphological characteristics of 2D slices and process-
based stochastic reconstruction methods have been used.
The above description of the current applicability of the eval-
uation function is not ideal. In addition, recent studies have
been more inclined to employ simulation experiments to test
the reconstruction of digital cores, indicating that the ability
of the evaluation function to accurately reflect the character-
istics of the digital core must be strengthened.

The above problem is caused by a poor understanding of
the evaluation function in present-day research. First, the
existing numerical core evaluation function refers to isot-
ropy; that is, the evaluation function has no directional prop-
erty, and most evaluation functions are related only to the
voxel r. This factor is a serious problem for rocks with com-
plicated pore structures, such as carbonates, igneous rocks,
and shales, which display significant heterogeneity, so the
effectiveness of the reconstruction is greatly reduced. Second,
the correlation among the numerical core evaluation func-
tion, pore connectivity, and pore distribution features is pres-
ently indirect; this correlation is a voxel-based evaluation

method and does not have any petrophysical significance.
Therefore, we suggest that the petrophysical characteristics
of rocks should be combined (such as in the fractal system
control function) and that the directionality or tracking of a
certain phase should be considered to achieve a more
complex evaluation-function design. This approach should
improve the effectiveness of statistically constrained stochas-
tic reconstruction and provide a more accurate assessment of
digital cores that are reconstructed by various methods.
Equally, the inclusion of more advanced and faster optimiza-
tion functions, as discussed in Section (4), is also crucial to
improving the effectiveness of reconstruction algorithms
and developing better mechanisms for reconstructing 3D
digital cores. Mathematically and statistically constrained
stochastic reconstruction algorithms still have much room
for improvement.

4.2.2. Developmental Trends and Challenges of Multiscale 3D
Digital Cores. The multiscale problem involves the acquisi-
tion of more accurate digital cores with a number of
various-resolution images or ultra-high-resolution images
for various rocks with different pore types, sizes, and aniso-
tropic characteristics. The pore types of conventional high-
porosity and high-permeability sandstones are very simple,
thereby eliminating the need to consider multiscale prob-
lems. However, the pore origin and pore size vary greatly
for unconventional reservoir rocks such as tight sandstones
(with a diverse secondary porosity and varying pore radii),
carbonates (with large pores such as fissures and voids),
and shales (with large differences in the pore sizes between
organic and inorganic pores). Therefore, constructing an
accurate 3D digital core by using only one type of 2D slice
is difficult. For carbonate reservoirs that contain large-scale
fractures, coexisting voids, and small-scale primary pores,
one must scan large-scale cores with an extremely high reso-
lution to fully reflect the pore structure of the rock; unfortu-
nately, this method is extremely expensive and consumes an
excessive amount of memory. When using SEM and other
experiments to establish 2D slices, large-scale cracks and
holes cannot be observed. Hence, the simulation results of
small-scale digital cores are not representative for shale reser-
voirs because of their heterogeneity. However, the organic
pore size of a shale rock is excessively small, so this type of
rock is of limited significance for constructing large-scale
digital cores. Therefore, the construction of a multiscale dig-
ital core is imperative.

In 2012, Wang et al. proposed the use of the MCMC
method to construct corresponding macroporous digital
cores and microporous digital cores and obtained double-
peaked carbonate digital cores. In 2013, Yao et al. [216]
proposed the reconstruction of 3D digital cores of carbonate
reservoirs by using the SA and MCMCmethods; macropores

2D slice
Evaluation function

to represent the statistical regularity
Algorithm approximates the

statistical regularly by iteration
3D

digital core

Figure 15: Abstraction of the stochastic reconstruction method based on 2D slice statistical constraint features. The effect of 2D slice to 3D
digital core is determined by the evaluation function and algorithm. The evaluation function is one of the important parameters that
determine the effect of 3D digital core construction.
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were constructed by using the SA method (this method
reflects more of the mathematical characteristics, which are
more important for macropores, of a 2D slice) and then
reconstructed into small pores by using the MCMC method
(for small pores, the morphology is more important), after
which the pores were finally nested. In 2014, Ma et al. [217]
proposed a multiscale digital core-reconstruction method
for shale gas rocks. Hebert et al. [218] employed a multiscale
method to evaluate the porosity of carbonate rocks. In 2015,
Yang et al. [219] proposed a method for combining small-
scale digital cores that is equivalent to converting the result-
ing 3D digital cores into larger-scale 3D digital cores. That
same year, Gerke et al. developed a general solution for
merging multiscale categorical spatial data into a single
dataset by using stochastic reconstructions with rescaled
correlation functions [220]. In 2018, Liu et al. [221] devel-
oped a multipoint statistical construction method for digital
cores that considers microcracks in two steps. Mehmani
et al. [222] constructed multiscale digital cores in various
diagenetic stages. Sun et al. [223] presented the DRA upscal-
ing method to construct carbonate rock cores by using CT
images and slices.

Yang et al. [153] postulated that organic pores could be
reconstructed by reconstructing inorganic pores with the
MPS and MCMC methods; to this end, many organic and
inorganic pores were numerically embedded. Figure 16
shows a schematic diagram of a digital core with organic
pores, a digital core with inorganic pores, and a nested 3D
digital core, while Figure 17 shows a comparison between
the pore size distribution curves of the embedded digital
cores and the actual experimental pore size distribution
curves.

Research on multiscale issues is still in its infancy, leaving
much to be studied and many issues to be discussed. First, a
pore size distribution that matches the aperture distribution
from a real experiment can be obtained for a numerical core
from the superposition nesting method, but the evaluation
function and simulation experiments are still inadequate.
Questions often arise with regard to how the connectivity
of the 3D digital core was reconstructed, how nesting should
occur if the simulation results are unsatisfactory, and the reli-
ability of direct nesting, which is equivalent to different holes
within the 3D digital core that are not related to its genera-
tion. At present, when multiscale digital core reconstruction
is performed, the matching and connectivity of different pore
sizes are considered relatively low. These concepts are funda-
mental to matching a digital core with an actual rock, but

they are also the most difficult aspect to study, so in-depth
research must be conducted. Otherwise, the simulation
results of constructed multiscale digital cores will be very
inadequate because of the poor connectivity of the pore sys-
tem, especially for experiments that are related to the pore
structure and pore connectivity. We suggest that one must
consider whether the obtained results satisfy the spatial rela-
tionships between different types of pores and minerals
when performing multiscale digital core reconstruction.
For example, organic pores in shale rocks are usually spa-
tially similar to organic matter. Cracks that develop in clastic
or carbonate rocks usually depend on brittle minerals and
have a poor relationship with plastic minerals such as clay.
These details can fundamentally improve the stability and
reliability of digital cores. Many other details must be con-
sidered when reconstructing multiscale digital cores. In sum-
mary, one should pay close attention to the matching of
different scales when reconstructing multiscale digital cores.
These problems are very challenging issues that will be
addressed in a future study.

4.2.3. Developmental Trends and Challenges of
Multicomponent 3D Digital Cores. The types of minerals in
shale reservoir rocks and igneous rocks are diverse, and the
mineral, hydrocarbon, and water distributions are compli-
cated; nevertheless, the types and distributions of minerals
affect the simulation results, as do the distributions of oil,
gas, and water. Thus, one cannot consider only skeleton
and pore phases or only skeleton, oil, and water phases for
digital cores. In 2011, Jiang et al. [224] added a water-film
phase to the reconstructed 3D digital core after the oil-
water distribution was constructed; these researchers asserted
that the reservoir wettability and natural gas solubility must
be considered in the formation water through electrical
modelling when evaluating the actual reservoir saturation.
In 2016, Nie et al. proposed a multicomponent recon-
struction technique that uses the MCMC reconstruction
algorithm and nested and obtained a large-scale multicom-
ponent 3D digital core; these researchers also conducted an
electrical simulation of the reconstructed 3D digital core
and concluded that Archie’s formula is not suitable for shale
reservoirs. Zhu and Yu proposed a method for generating
cementitious phases within an original reconstructed digital
sandstone core. Saad et al. [225] used a physics-based pro-
cess approach to construct a multicomponent digital core.
By simulating a 3D digital core, the cement is considered
to influence the moduli of the longitudinal and transverse

Table 4: List of evaluation functions of digital cores.

Restricted mathematical properties Representative evaluation function Is it common?

Size of the phase Single point probability function Yes

Spatial distribution characteristics
Two-point probability function, two-point autocorrelation
function, N-point probability function, variogram function

Yes

Phase connectivity
Linear path function, pore size distribution function, cumulative

pore size distribution function, connectivity function
Yes

Geometric characteristics Local porosity function No

Fractal characteristics Fractal system control function No
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waves and thus should be considered. Although relatively
little attention has been given to multicomponent problems,
some scholars have studied the construction of multicompo-
nent 3D digital cores.

At present, multicomponent digital core reconstruction
has received less attention than multiscale digital core recon-
struction because the latter is a common problem that is
encountered for many rock types and has yet to be solved.
However, many rocks, such as shales, igneous rocks, and

metamorphic rocks, typically have multiple components,
although not all rocks urgently require this problem to be
resolved. The correlations among minerals and betweenmin-
erals and pores must also be considered to determine
whether a reconstructed multicomponent digital core is rea-
sonable and similar to the real core. In other words, the most
important component in the construction of multicompo-
nent digital cores is the need to conform to the corresponding
microscopic geological features of the rock. Therefore, as
with multiscale digital core construction, matching remains
the key to the accurate construction of multicomponent dig-
ital cores. Similar to the multiscale problem, too few simula-
tion experiments have been performed on multicomponent
3D digital cores; therefore, whether multicomponent 3D dig-
ital cores can be directly used in numerical simulation exper-
iments remains unclear. In addition, most existing methods
for constructing multicomponent digital cores are directly
nested after reconstruction, and the correlation between the
geology and minerals is not considered (e.g., organic matter
and pyrite are often associated with each other). Therefore,
the study of multicomponent reconstruction, which directly
uses a reconstruction algorithm, is suggested. In theory, both
theMPS method and the SAmethod can be utilized to recon-
struct 3D digital cores that contain more than two phases. In
conclusion, multicomponent 3D digital cores are difficult to
address and require additional investigation in the future,
similarly to multiscale 3D digital cores.

4.2.4. Digital Core Reconstruction Based on Interdisciplinary
Research. In addition to the abovementioned issues, this
study separately addresses digital core-reconstruction
methods based on an interdisciplinary approach to empha-
size their importance in the 3D digital core-reconstruction

(a) (b)

(c)

Figure 16: Shale 3D digital cores reconstructed using multiscale reconstruction method. Among them, the grey part is the skeleton, and the
black part is the pores. (a) Shows an inorganic pore digital core, (b) shows an organic pore digital core, and (c) shows a nested digital core.
Figure from [153].
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Figure 17: Comparing the pore size distribution of the 3D digital
core obtained in Figure 13 with the experimental pore size
distribution, it can be seen that the pore size distribution of the
3D digital core after nesting is in good agreement with the
experimental data. Figure reprinted from [153].
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field and discern the potential of interdisciplinary digital
core-reconstruction methods.

Interdisciplinary research refers to emerging fields in
which different disciplines intersect and merge; here, this
term mainly refers to the use of other methods to interpret
digital core-reconstruction technologies and ideas with the
help of other advanced or flourishing methods in combina-
tion with the actual need to improve these methods or in
combination with classic methods to further improve the
reconstruction effect. The most important points when using
knowledge and methods of other disciplines for the recon-
struction of 3D digital cores are as follows. First, we must
pay attention to the progress and trends of other related
disciplines, such as image processing, probability theory,
modern optimization theory, and machine learning. This
approach will be very helpful to further stimulate our think-
ing and improve the effects of rock reconstruction endeav-
ours. Second, if an interdisciplinary method is required to
reconstruct a digital core, one should examine the recon-
struction process from an interdisciplinary perspective,
which is very crucial. Otherwise, understanding the actual
needs of the reconstruction becomes more difficult, leading
to inconsistency among the disciplines, as does achieving
good results with a new method. Third, one should under-
stand whether the required conditions to use the newmethod
are consistent with the requirements to reconstruct the digi-
tal core. If these conditions are not consistent, they must be
thoroughly explored and rationally improved with regard to
specific problems, which is the key to implementing a new
interdisciplinary method.

Currently, researching digital core construction has great
potential with regard to optimization, particle accumulation,
and machine learning. In Section 4, we addressed how
important the optimization algorithm is for achieving an
adequate reconstruction effect; that is, a good optimization
algorithm can improve the effectiveness of the reconstruc-
tion. An optimization algorithm can also constitute an
attempt to improve the accuracy of the 3D digital core recon-
struction with interdisciplinary techniques. From the per-
spective of optimization, the main problems of digital core
reconstruction are constraining this process by using several
predetermined functions and optimizing the fitness function
by changing the values of the data. The digital core that cor-
responds to the optimal result is the best digital core from a
given method. For optimization theory, the digital core-
reconstruction problem is only an optimization problem.
Therefore, the evaluation function, which determines the
reconstruction of the digital core after optimization, becomes
very important, which matches the view that we presented in
Section 4.2.1.

The study of particle accumulation could be very benefi-
cial for digital core-reconstruction methods based on process
methods. Many new particle accumulation methods can be
directly applied to the reconstruction of digital cores after a
simple modification [226–233] because no fundamental dif-
ference exists between the accumulation of rock particles
and the accumulation of other irregular particles, that is,
those deposited by the actions of various forces. Moreover,
digital cores are small, so considering influencing factors

such as the rhythm and source direction is unnecessary. At
present, digital cores that are reconstructed based on the
DEM method as proposed by molecular dynamics are more
reliable. However, no reports have been published on the
use of irregular rock particles for direct DEM-based recon-
structions. For instance, Tahmasebi attempted to use only
non-DEM irregular particle accumulation methods [234],
while other scholars that specialize in particle accumulation
have proposed a method for the accumulation of particles
with irregular shapes based on DEMs [235]. Thus, the cur-
rent research on digital core reconstruction is not sufficient.

Machine learning is the multidisciplinary and interdis-
ciplinary study of learning, acquiring new knowledge and
skills and identifying existing knowledge. Machine learning
first attempts to learn the existing rules, after which
known rules are employed to predict and judge new sam-
ples. Digital core reconstruction could be regarded as such
a problem. If the reconstruction law can be learned, then a
stable prediction model can be predicted (i.e., a digital
core can be reconstructed).

Sundararaghavan and Zabaras [236] proposed a method
for reconstructing 3D digital cores by using the support vector
machine (SVM)method inmachine learning.With the contin-
uous development of artificial intelligence and other disci-
plines, existing algorithms have greatly improved the abilities
of pattern recognition and data-reconstruction algorithms
compared to the original techniques. Deep learning [237,
238], extreme learning [239], intensive learning [240], and
active learning [241] algorithms and generative adversarial net-
works [242], among others, all boast strong prediction and
reconstruction capabilities. The essence of 3D digital core
reconstruction is to use known data to obtain the reconstruc-
tion law and predict unknown spaces, which coincides with
the nature of machine learning algorithms. Currently, the more
difficult problem is how to obtain reliable predictionmodels for
high-dimensional and demanding digital core-reconstruction
problems with relatively few samples (i.e., when acquiring
experimental samples is expensive and time-consuming). The
current research on this aspect is still nascent, so evaluating
the effect of a small sample size on the actual reconstruction
is difficult, constituting another topic to be studied.

The above three aspects represent only a very simple
discussion of the effects of an interdisciplinary approach on
the reconstruction of digital cores. According to the above
discussion, a clear interdisciplinary understanding of this
problem can significantly improve the effect of digital core
reconstruction and expand the application scope of digital
core-reconstruction methods (i.e., current digital core-
reconstruction methods are relatively simple).

Thus, drawing on interdisciplinary content and reason-
ably utilizing such algorithms is another research direction
for 3D digital core reconstruction.

5. Conclusions

This study provided an overview of 3D digital core-
reconstruction methods and investigated the most common
techniques that are employed for the reconstruction of 3D
digital cores.
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(1) Reconstruction methods for digital cores can be
divided into two approaches for establishing 3D dig-
ital cores: those based on physical experiments and
those based on 2D slices. The methods of establishing
3D digital cores based on physical experiments
include confocal laser scanning, the imaging method
based on a serial section rock overlay, and X-ray CT
scanning; among these methods, the highest resolu-
tion can reach the nanometre level. The methods
for reconstructing 3D digital cores based on 2D slices
include statistically constrained stochastic recon-
struction based on mathematical features, the statisti-
cally constrained stochastic reconstruction of sliced
morphological features, process-based stochastic
reconstruction, and hybrid stochastic reconstruction

(2) Common statistical feature-constrained stochastic
reconstruction methods include the Gaussian field
method, random search algorithm based on multi-
ple operators, SA algorithm, and sequential-
indicator simulation technique. Digital cores that
are reconstructed with the SA method boast good
connectivity and are easy to improve; therefore,
this method has the most potential and is very
suitable for forming combinations with other types
of methods

(3) The most common stochastic reconstruction
methods based on the statistical constraints of 2D
slice morphological characteristics are the MCMC
reconstruction method and the MPS reconstruction
method. These methods can better reproduce the
morphology of each 2D slice phase and represent
the best reconstruction methods that are currently
available. However, these techniques do not consider
the mathematical statistics of 2D slices, and some of
the statistical information may not effectively reflect
the characteristics of the 2D slices. In addition, com-
pared to the statistically constrained stochastic
reconstruction method of mathematical features, this
method is more difficult to improve

(4) The connectivity of 3D digital cores from the
process-based stochastic reconstruction approach is
better than that from other methods. One disadvan-
tage of this method is that the diagenesis process is
considered too simple. In the future, the diagenetic
processes of different lithologies should be integrated
to study the 3D digital core reconstruction of uncon-
ventional reservoir rocks

(5) Hybrid stochastic reconstruction methods combine
the advantages of various methods to complement
each other and can consider more reconstruction fac-
tors than can any single method; thus, its reconstruc-
tion speed and reconstruction effect are superior.
Hybrid stochastic reconstruction methods have some
significance, and improvements to their accuracy
depend on both the improvement of a single recon-
struction method and the combination of different
reconstruction methods

(6) In terms of the challenges that are encountered dur-
ing the reconstruction of 3D digital cores, the current
challenge of establishing 3D digital core methods
based on physical experiments is less pressing than
that of establishing 3D digital core methods based
on 2D slices. The challenges that are associated with
the former are determined by the sample size, the
optimal scan rate, the binarization of greyscale
images, and the size of the 3D digital core that is used
for the simulation. The challenges that are associated
with the latter are related to four major aspects: find-
ing a better evaluation function, establishing multi-
scale digital cores, establishing multicomponent
digital cores, and using an interdisciplinary approach
to improve the accuracy of 3D digital core recon-
struction. Presently, the methods and theories for
establishing 3D digital cores based on 2D slices are
immature, and many challenges remain. Moreover,
the problems that are considered in this research
are still relatively simple. Relevant research on 3D
digital core-reconstruction methods will have to uti-
lize broader thinking and creative research

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This project was supported by Yangtze University Excellent
Doctoral and Master’s Degree Thesis Cultivation Program;
the National Natural Science Foundation of China (Nos.
41404084 and 41504094); the Natural Science Foundation
of Hubei Province (No. 2013CFB396); Open Fund of Key
Laboratory of Exploration Technologies for Oil and Gas
Resources (Yangtze University); Ministry of Education
(Nos. K2015-06, K2016-09, K2017-01, and K2018-11);
Youth Innovation Team, Key Laboratory of Exploration
Technologies for Oil and Gas Resources (Yangtze Univer-
sity); Ministry of Education (No. PI2018-03); National Sci-
ence and Technology Major Project (No. 2017ZX05032003-
005); China National Petroleum Corporation major projects
(No. 2013E-38-09); and Yangtze University ESI Discipline
Enhancement Program.

References

[1] K. A. Bowker, “Barnett shale gas production, Fort Worth
Basin: issues and discussion,” AAPG Bulletin, vol. 91, no. 4,
pp. 523–533, 2007.

[2] I. B. Sosrowidjojo and A. Saghafi, “Development of the first
coal seam gas exploration program in Indonesia: reservoir
properties of the muaraenim formation, South Sumatra,”
International Journal of Coal Geology, vol. 79, no. 4,
pp. 145–156, 2009.

[3] T. C. Kinnaman, “The economic impact of shale gas extrac-
tion: a review of existing studies,” Ecological Economics,
vol. 70, no. 7, pp. 1243–1249, 2011.

[4] S. D. Golding, C. J. Boreham, and J. S. Esterle, “Stable isotope
geochemistry of coal bed and shale gas and related

21Geofluids



production waters: a review,” International Journal of Coal
Geology, vol. 120, no. 6, pp. 24–40, 2013.

[5] A. Shafiei, M. B. Dusseault, S. Zendehboudi, and I. Chatzis,
“A new screening tool for evaluation of steamflooding perfor-
mance in naturally fractured carbonate reservoirs,” Fuel,
vol. 108, no. 11, pp. 502–514, 2013.

[6] L. Zeng, H. Su, X. Tang, Y. Peng, and L. Gong, “Fractured
tight sandstone oil and gas reservoirs: a new play type in the
Dongpu depression, Bohai Bay Basin, China,”AAPG Bulletin,
vol. 97, no. 3, pp. 363–377, 2013.

[7] A. Ghanizadeh, C. R. Clarkson, S. Aquino, O. H. Ardakani,
and H. Sanei, “Petrophysical and geomechanical characteris-
tics of Canadian tight oil and liquid-rich gas reservoirs: i. pore
network and permeability characterization,” Fuel, vol. 153,
no. 1, pp. 664–681, 2015.

[8] Y. Gensterblum, A. Ghanizadeh, R. J. Cuss et al., “Gas trans-
port and storage capacity in shale gas reservoirs – a review.
Part a: transport processes,” Journal of Unconventional Oil
and Gas Resources, vol. 12, pp. 87–122, 2015.

[9] W. Lin, “A review on shale reservoirs as an unconventional
play - the history, technology revolution, importance to oil
and gas industry, and the development future,” Acta Geolo-
gica Sinica - English Edition, vol. 90, no. 5, pp. 1887–1902,
2016.

[10] W. G. Wang, C. Y. Lin, M. Zheng, S. F. Lu, M. Wang, and
T. Zhang, “Enrichment patterns and resource prospects of
tight oil and shale oil: a case study of the second member of
Kongdian formation in the Cangdong sag, Huanghua depres-
sion,” Journal of China University of Mining and Technology,
vol. 47, no. 2, pp. 332–344, 2018.

[11] S. A. Holditch, “The increasing role of unconventional reser-
voirs in the future of the oil and gas business,” Journal of
Petroleum Technology, vol. 55, no. 11, pp. 34–79, 2003.

[12] M. Vincent, “Restimulation of unconventional reservoirs:
when are refracs beneficial,” Journal of Canadian Petroleum
Technology, vol. 50, no. 5, pp. 36–52, 2013.

[13] D. J. K. Ross and R. Marc Bustin, “The importance of shale
composition and pore structure upon gas storage potential
of shale gas reservoirs,” Marine and Petroleum Geology,
vol. 26, no. 6, pp. 916–927, 2009.

[14] J. Cai, W. Wei, X. Hu, R. Liu, and J. Wang, “Fractal char-
acterization of dynamic fracture network extension in
porous media,” Fractals, vol. 25, no. 2, article 1750023,
2017.

[15] J. Lai, G.Wang, Z. Fan et al., “Three-dimensional quantitative
fracture analysis of tight gas sandstones using industrial com-
puted tomography,” Scientific Reports, vol. 7, no. 1, p. 1825,
2017.

[16] S. Han, J. Zhang, Y. Li et al., “Evaluation of lower cambrian
shale in northern Guizhou province, South China: implica-
tions for shale gas potential,” Energy & Fuels, vol. 27, no. 6,
pp. 2933–2941, 2013.

[17] W. Yan, J. Sun, J. Zhang et al., “Studies of electrical properties
of low-resistivity sandstones based on digital rock technol-
ogy,” Journal of Geophysics and Engineering, vol. 15, no. 1,
pp. 153–163, 2018.

[18] L. Mosser, O. Dubrule, and M. J. Blunt, “Reconstruction of
three-dimensional porous media using generative adversarial
neural networks,” Physical Review E, vol. 96, no. 4, 2017.

[19] Y. Wu, P. Tahmasebi, C. Lin et al., “A comprehensive study
on geometric, topological and fractal characterizations of

pore systems in low-permeability reservoirs based on SEM,
MICP, NMR, and X-ray CT experiments,”Marine and Petro-
leum Geology, vol. 103, pp. 12–28, 2019.

[20] J. Cai, W.Wei, X. Hu, and D. A. Wood, “Electrical conductiv-
ity models in saturated porous media: a review,” Earth-Sci-
ence Reviews, vol. 171, pp. 419–433, 2017.

[21] Y. Hu, X. Li, Y. Wan et al., “Physical simulation on gas perco-
lation in tight sandstones,” Petroleum Exploration and Devel-
opment, vol. 40, no. 5, pp. 621–626, 2013.

[22] H. Xu, D. Tang, J. Zhao, and S. Li, “A precise measurement
method for shale porosity with low-field nuclear magnetic
resonance: a case study of the carboniferous–permian strata
in the linxing area, eastern Ordos Basin, China,” Fuel,
vol. 143, pp. 47–54, 2015.

[23] X. Nie, C. Zou, Z. Li, X. Meng, and X. Qi, “Numerical simu-
lation of the electrical properties of shale gas reservoir rock
based on digital core,” Journal of Geophysics and Engineering,
vol. 13, no. 4, pp. 481–490, 2016.

[24] S. Tao, X. Gao, C. Li et al., “The experimental modeling of gas
percolation mechanisms in a coal-measure tight sandstone
reservoir: a case study on the coal-measure tight sandstone
gas in the Upper Triassic Xujiahe Formation, Sichuan Basin,
China,” Journal of Natural Gas Geoscience, vol. 1, no. 6,
pp. 445–455, 2016.

[25] Z. Wei and S. Rui, “Digital core based transmitted ultrasonic
wave simulation and velocity accuracy analysis,” Applied
Geophysics, vol. 13, no. 2, pp. 375–381, 2016.

[26] Y. Wang, W. Yue, and M. Zhang, “Numerical research on the
anisotropic transport of thermal neutron in heterogeneous
porous media with micron x-ray computed tomography,”
Scientific Reports, vol. 6, no. 1, article 27488, 2016.

[27] J. Yao, X. C. Zhao, Y. J. Yi, and J. Tao, “The present situ-
ation and prospect of digital core technology,” Petroleum
Geology and Recovery Efficiency, vol. 12, no. 6, pp. 52–54,
2005.

[28] L. Zhang, J. M. Sun, and Z. Q. Sun, “Application of digital
core modeling method,” Journal of Xi'an Shiyou University
(Natural Science Edition), vol. 27, no. 3, pp. 35–40, 2012.

[29] X. F. Liu, W. W. Zhang, and J. M. Sun, “Methods of con-
structing 3-D digital cores: a review,” Program Geophysica,
vol. 28, no. 6, pp. 3066–3072, 2013.

[30] W. Zhu and R. Shan, “Progress in the research of virtual rock
physics,” Oil and Geophysics Prospect, vol. 49, no. 6,
pp. 1138–1146, 2014.

[31] C. Lin, Y. Wu, L. Ren et al., “Review of digital core modeling
methods,” Journal of Petroleum Science and Engineering,
vol. 33, no. 2, pp. 679–689, 2018.

[32] M. J. Blunt, B. Bijeljic, H. Dong et al., “Pore-scale imaging and
modelling,” Advances in Water Resources, vol. 51, pp. 197–
216, 2013.

[33] C. H. Arns, F. Bauget, A. Ghous et al., “Digital core labora-
tory: petrophysical analysis from 3D imaging of reservoir
core fragments,” Petrophysics, vol. 46, no. 4, pp. 260–277,
2005.

[34] L. Wang, Z. Q. Mao, Z. C. Sun, X. P. Luo, Y. Song, and Z. L.
Wang, “A new method for calculating fluid permeability of
shaly sandstone,” Chinese Journal of Geophysics, vol. 58,
no. 10, pp. 3837–3844, 2015.

[35] Z. You, A. Badalyan, and P. Bedrikovetsky, “Size-exclusion
colloidal transport in porous media – stochastic modeling

22 Geofluids



and experimental study,” SPE Journal, vol. 18, no. 4, pp. 620–
633, 2013.

[36] P. Bedrikovetsky, Z. You, A. Badalyan, Y. Osipov, and
L. Kuzmina, “Analytical model for straining-dominant
large-retention depth filtration,” Chemical Engineering Jour-
nal, vol. 330, pp. 1148–1159, 2017.

[37] L. Q. Zhu, C. Zhang, Y. Wei, and C. M. Zhang, “Permeability
prediction of the tight sandstone reservoirs using hybrid
intelligent algorithm and nuclear magnetic resonance logging
data,” Arabian Journal for Science and Engineering, vol. 42,
no. 4, pp. 1643–1654, 2017.

[38] L. Zhu, C. Zhang, Y. Wei, X. Zhou, Y. Huang, and C. Zhang,
“Inversion of the permeability of a tight gas reservoir with the
combination of a deep Boltzmann kernel extreme learning
machine and nuclear magnetic resonance logging transverse
relaxation time spectrum data,” Interpretation, vol. 5, no. 3,
pp. T341–T350, 2017.

[39] I. Fatt, “The network model of porous media,” Transactions
of the American Institute of Mining and Metallurgical Engi-
neers, vol. 20, no. 7, pp. 144–181, 1956.

[40] H. Yuan, A. Shapiro, Z. You, and A. Badalyan, “Estimating
filtration coefficients for straining from percolation and ran-
dom walk theories,” Chemical Engineering Journal, vol. 210,
pp. 63–73, 2012.

[41] H. Yuan, Z. You, A. Shapiro, and P. Bedrikovetsky,
“Improved population balance model for straining-
dominant deep bed filtration using network calculations,”
Chemical Engineering Journal, vol. 226, pp. 227–237, 2013.

[42] H. Okabe and M. J. Blunt, “Prediction of permeability for
porous media reconstructed using multiple-point statistics,”
Physical Review E, vol. 70, no. 6, article 66135, 2004.

[43] J. T. Fredrich, B. Menendez, and T. . F. Wong, “Imaging the
pore structure of geomaterials,” Science, vol. 268, no. 5208,
pp. 276–279, 1995.

[44] C. Rembe and A. Drabenstedt, “Laser-scanning confocal
vibrometer microscope: theory and experiments,” Review
of Scientific Instruments, vol. 77, no. 8, article 83702, 2006.

[45] Y. Zhang, B. Hu, Y. Dai et al., “A new multichannel spectral
imaging laser scanning confocal microscope,” Computational
and Mathematical Methods in Medicine, vol. 2013, Article ID
890203, 8 pages, 2013.

[46] D. P. Lymberopoulos and A. C. Payatakes, “Derivation of
topological, geometrical, and correlational properties of
porous media from pore-chart analysis of serial section data,”
Journal of Colloid and Interface Science, vol. 150, no. 1,
pp. 61–80, 1992.

[47] H. J. Vogel and K. Roth, “Quantitative morphology and
network representation of soil pore structure,” Advances

in Water Resources, vol. 24, no. 3–4, pp. 233–242, 2001.

[48] L. Tomutsa and V. Radmilovic, “Focused ion beam assisted
three-dimensional rock imaging at submicron scale,” in
International Symposium of the Society of Core Analysts,
Pau, France, SCA2003-47, 2003.

[49] L. Tomutsa, D. B. Silin, and V. Radmilovic, “Analysis of chalk
petrophysical properties by means of submicron-scale pore
imaging and modeling,” SPE Reservoir Evaluation & Engi-
neering, vol. 10, no. 3, pp. 285–293, 2013.

[50] S. H. Lee, W. S. Chang, S. M. Han, D. H. Kim, and J. K. Kim,
“Synchrotron X-ray nanotomography and three-dimensional
nanoscale imaging analysis of pore structure-function in

nanoporous polymeric membranes,” Journal of Membrane
Science, vol. 535, pp. 28–34, 2017.

[51] I. Banerjee, B. Tracy, P. Davies, and B. Mcdona, “Use of
advanced analytical techniques for VLSI failure analysis,” in
28th Annual Proceedings on Reliability Physics Symposium,
pp. 61–68, New Orleans, LA, USA, 1990.

[52] G. L. Yan, Research of Permeability Models of Reservoirs
Based on Digital Cores, China Petroleum University, East
China, 2013.

[53] X. Nie, Digital Core Modeling and Numerical Study of Electri-
cal Conductivity of Shale Gas Reservoir Rock, China Petro-
leum University, Beijing China, 2014.

[54] T. Cao, Z. Song, S. Wang, and J. Xia, “Characterization of
pore structure and fractal dimension of Paleozoic shales from
the northeastern Sichuan Basin, China,” Journal of Natural
Gas Science and Engineering, vol. 35, pp. 882–895, 2016.

[55] R. Yang, S. He, J. Yi, and Q. Hu, “Nano-scale pore structure
and fractal dimension of organic-rich Wufeng-Longmaxi
shale from Jiaoshiba area, Sichuan Basin: investigations using
FE-SEM, gas adsorption and helium pycnometry,” Marine
and Petroleum Geology, vol. 70, pp. 27–45, 2016.

[56] J. Hu, S. Tang, and S. Zhang, “Investigation of pore structure
and fractal characteristics of the lower Silurian Longmaxi
shales in western Hunan and Hubei provinces in China,”
Journal of Natural Gas Science and Engineering, vol. 28,
no. 6, pp. 522–535, 2016.

[57] X. Shao, X. Pang, Q. Li et al., “Pore structure and fractal
characteristics of organic-rich shales: a case study of the
lower Silurian Longmaxi shales in the Sichuan Basin, SW
China,” Marine and Petroleum Geology, vol. 80, pp. 192–
202, 2017.

[58] M. A. Straus, “Measuring intrafamily conflict and violence:
the conflict tactics CT scales,” Journal of Marriage and Fam-
ily, vol. 41, no. 1, pp. 75–88, 1979.

[59] J. C. Elliott and S. D. Dover, “X-ray microtomography,” Jour-
nal of Microscopy, vol. 126, no. 2, pp. 211–213, 1982.

[60] J. H. Dunsmuir, S. R. Ferguson, K. L. D'Amico, and J. P.
Stokes, “X-ray microtomography: a new tool for the charac-
terization of porous media,” in SPE22860, 66th Annual Tech-
nical Conference and Exhibition of the Society of Petroleum
Engineers, Dallas, TX, USA, 1991.

[61] J. Coenen, E. Tchouparova, and X. Jing, “Measurement
parameters and resolution aspects of micro X-ray tomogra-
phy for advanced core analysis,” in International Symposium
of the Society of Core Analysts, Abu Dhabi, UAE, 2004.

[62] P. R. Munroe, “The application of focused ion beam micros-
copy in the material sciences,” Materials Characterization,
vol. 60, no. 1, pp. 2–13, 2009.

[63] H. Andrä, N. Combaret, J. Dvorkin et al., “Digital rock phys-
ics benchmarks—part I: imaging and segmentation,” Com-
puters & Geosciences, vol. 50, no. 1, pp. 25–32, 2013.

[64] H. J. Lemmens, A. R. Butcher, and P. W. S. K. Botha, “FIB/-
SEM and SEM/EDX: a new dawn for the SEM in the core
lab?,” Petrophysics, vol. 52, no. 6, pp. 452–456, 2011.

[65] R. G. Loucks, R. M. Reed, S. C. Ruppel, and U. Hammes,
“Spectrum of pore types and networks in mudrocks and a
descriptive classification for matrix-related mudrock pores,”
AAPG Bulletin, vol. 96, no. 6, pp. 1071–1098, 2012.

[66] P. M. Matthews and P. Jezzard, “Functional magnetic reso-
nance imaging,” Neuroscience for Neurologists, vol. 75,
pp. 401–422, 2006.

23Geofluids



[67] L. Xiao, “A study on the application of NMR imaging to eor,”
Acta Petrolei Sinica, vol. 16, no. 3, pp. 106–110, 1995.

[68] D. A. Doughty and L. Tomutsa, “Imaging pore structure and
connectivity by high resolution NMR microscopy,” Interna-
tional Journal of Rock Mechanics and Mining Sciences,
vol. 34, no. 3-4, pp. 69.e1–69.e10, 1997.

[69] X. Ge, H. Wang, Y. Fan, Y. Cao, H. Chen, and R. Huang,
“Joint inversion of T1–T2 spectrum combining the iterative
truncatedsingular value decomposition and the parallel
particle swarmoptimization algorithms,” Computer Physics
Communications, vol. 198, pp. 59–70, 2016.

[70] X. Ge, H. Chen, Y. Fan, J. Liu, J. Cai, and J. Liu, “An improved
pulse sequence and inversion algorithm of T2 spectrum,”
Computer Physics Communications, vol. 212, pp. 82–89,
2017.

[71] X. Ge, Y. Fan, Y. Xiao et al., “Quantitative evaluation of the
heterogeneity for tight sand based on the nuclear magnetic
resonance imaging,” Journal of Natural Gas Science and Engi-
neering, vol. 38, pp. 74–80, 2017.

[72] Y. Han, Y. Fan, Y. Gao, H. Yue, and J. Liu, “Quantitative eval-
uation of core heterogeneity based on nuclear magnetic reso-
nance imaging,” Well Logging Technology, vol. 40, no. 4,
pp. 427–431, 2016.

[73] O. Talabi and M. J. Blunt, “Pore-scale network simulation of
NMR response in two-phase flow,” Journal of Petroleum
Science and Engineering, vol. 72, no. 1-2, pp. 1–9, 2010.

[74] R. Cui, Q. Feng, H. Chen, W. Zhang, and S. Wang, “Multi-
scale random pore network modeling of oil-water two-
phase slip flow in shale matrix,” Journal of Petroleum Science
and Engineering, vol. 175, pp. 46–59, 2019.

[75] X. Ge, J. Liu, Y. Fan, D. Xing, S. Deng, and J. Cai, “Laboratory
investigation into the formation and dissociation process of
gas hydrate by low-field NMR technique,” Journal of Geo-

physical Research: Solid Earth, vol. 123, no. 5, pp. 3339–
3346, 2018.

[76] J. Guo and R. Xie, “Numerical simulation and parameter
analysis of NMR T2–D distributions of tight sandstone satu-
rated with a gas–water two-phase fluid,” Journal of Natural
Gas Science and Engineering, vol. 37, pp. 502–511, 2017.

[77] J. Guo and R. Xie, “Numerical investigations of NMR T1–T2
map in two-phase fluid-bearing tight sandstone,” Applied
Magnetic Resonance, vol. 50, no. 1-3, pp. 479–495, 2019.

[78] M. Liu, R. Xie, J. Guo, and G. Jin, “Characterization of pore
structures of tight sandstone reservoirs by multifractal analy-
sis of the NMR T2 distribution,” Energy & Fuels, vol. 32,
no. 12, pp. 12218–12230, 2018.

[79] J. Guo, R. Xie, and G. Jin, “An efficient method for NMR data
compression based on fast singular value decomposition,”
IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 2,
pp. 301–305, 2019.

[80] K. Wang and N. Li, “Numerical simulation of rock pore-
throat structure on NMR T2 distribution,” Journal of
Petroleum Science and Engineering, vol. 5, no. 2, pp. 86–
91, 2008.

[81] Z. Jun, D. Xin-Yun, L. Yi-Fan, and T. Shen-Hua, “Shale reser-
voir conductive mechanism simulation based on percolation
network,” Chinese Journal of Geophysics, vol. 60, no. 3,
pp. 275–285, 2017.

[82] C. Xu and C. Torres-Verdín, “Pore system characterization
and petrophysical rock classification using a bimodal

Gaussian density function,” Mathematical Geosciences,
vol. 45, no. 6, pp. 753–771, 2013.

[83] A. M. S. Lala and N. A. A. el-Sayed, “Effect of pore framework
and radius of pore throats on permeability estimation,” Jour-
nal of African Earth Sciences, vol. 110, pp. 64–74, 2015.

[84] X. Ye, Y. Li, Y. Ai, and Y. Nie, “Novel powder packing theory
with bimodal particle size distribution-application in superal-
loy,” Advanced Powder Technology, vol. 29, no. 9, pp. 2280–
2287, 2018.

[85] G. Li, S. H. Luo, and N. Gu, “Research progress of Nano CT
imaging in Chinese,” Chinese Science Bulletin, vol. 58, no. 7,
pp. 501–509, 2013.

[86] X. Ying, Y. Zheng, Z. Zong, and L. Lin, “Estimation of reser-
voir properties with inverse digital rock physics modeling
approach,” Chinese Journal of Geophysics, vol. 62, no. 2,
pp. 720–729, 2019.

[87] C. H. Arns, M. A. Knackstedt, W. V. Pinczewski, and N. S.
Martys, “Virtual permeametry on microtomographic
images,” Journal of Petroleum Science & Engineering,
vol. 45, no. 1-2, pp. 41–46, 2004.

[88] A. S. Tolba, A. H. El-Baz, and A. A. El-Harby, “Face recogni-
tion: a literature review,” International Journal of Signal Pro-
cessing, vol. 2, no. 1, pp. 88–103, 2006.

[89] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Yi Ma,
“Robust face recognition via sparse representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 2, pp. 210–227, 2009.

[90] H. Andrä, N. Combaret, J. Dvorkin et al., “Digital rock phys-
ics benchmarks-part II: computing effective properties,”
Computers & Geosciences, vol. 50, no. 1, pp. 33–43, 2013.

[91] M. A. Joshi, A Class Three-Dimensional Modeling Technique
for Studying Porous Media, Publication Ph. D. University of
Kansas, Kansas, USA, 1974.

[92] J. A. Quiblier, “A new three-dimensional modeling technique
for studying porous media,” Journal of Colloid and Interface
Science, vol. 98, no. 1, pp. 84–102, 1984.

[93] P. M. Adler, C. G. Jacquin, and J. A. Quiblier, “Flow in simu-
lated porous media,” International Journal of Multiphase
Flow, vol. 16, no. 4, pp. 691–712, 1990.

[94] R. Hilfer, “Geometric and dielectric characterization of
porous media,” Physical Review B, vol. 44, no. 1, pp. 60–75,
1991.

[95] S. Torquato and B. Lu, “Chord-length distribution function
for two-phase random media,” Physical Review E, vol. 47,
no. 4, pp. 2950–2953, 1993.

[96] M. Ioannidis, M. Kwiecien, and I. Chatzis, “Computer gener-
ation and application of 3-Dmodel porous media: from pore-
level geostatistics to the estimation of formation factor,” in
SPE 30201, Petroleum Computer Conference, Houston, TX,
USA, 1995.

[97] M. Giona and A. Adrover, “Closed-form solution for the
reconstruction problem in porous media,” AICHE Journal,
vol. 42, no. 5, pp. 1407–1415, 1996.

[98] A. Roberts, “Statistical reconstruction of three-dimensional
porous media from two-dimensional images,” Physical
Review E, vol. 56, no. 3, pp. 3203–3212, 1999.

[99] Z. R. Liang, C. P. Fernandes, F. S. Magnani, and P. C. Philippi,
“A reconstruction technique for three-dimensional porous
media using image analysis and fourier transforms,” Journal
of Petroleum Science & Engineering, vol. 21, no. 3–4,
pp. 273–283, 1998.

24 Geofluids



[100] X. C. Zhao, J. Yao, J. Tao, and Y. J. Yi, “A digital core model-
ing method based on simulated annealing algorithm,”
Applied Mathematics-A Journal of Chinese Universities,
vol. 22, no. 2, pp. 127–133, 2007.

[101] C. G. Li, J. P. -Y. Maa, and H. G. Kang, “Solving generalized
lattice Boltzmann model for 3-D cavity flows using CUDA-
GPU,” Science China Physics, Mechanics and Astronomy,
vol. 55, no. 10, pp. 1894–1904, 2012.

[102] X. C. Zhao, J. Yao, Y. J. Yi, and Y. F. Yang, “A new method of
constructing digital core utilizing stochastic search algorithm
based on majority operator,” Rock and Soil Mechanics,
vol. 29, no. 5, pp. 1339–1344, 2008.

[103] R. D. Hazlett, “Statistical characterization and stochastic
modeling of pore networks in relation to fluid flow,” Mathe-
matical Geology, vol. 29, no. 6, pp. 801–822, 1997.

[104] X. W. Mo, Q. Zhang, and J. A. Lu, “A complement optimiza-
tion scheme to establish the digital core model based on the
simulated annealing method,” Chinese Journal of Geophysics,
vol. 59, no. 5, pp. 1831–1838, 2016.

[105] C. L. Y. Yeong and S. Torquato, “Reconstructing random
media. II. Three-dimensional media from two-dimensional
cuts,” Physical Review E, vol. 58, no. 1, pp. 224–233, 1998.

[106] C. L. Y. Yeong and S. Torquato, “Reconstructing random
media,” Physical Review E, vol. 57, no. 1, pp. 495–506,
1998.

[107] C. Manwart, S. Torquato, and R. Hilfer, “Stochastic recon-
struction of sandstones,” Physical Review E, vol. 62, no. 1,
pp. 893–899, 2000.

[108] N. Eschricht, E. Hoinkis, F. Mädler, P. Schubert-Bischoff, and
B. Röhl-Kuhn, “Knowledge-based reconstruction of random
porous media,” Journal of Colloid and Interface Science,
vol. 291, no. 1, pp. 201–213, 2005.

[109] X. C. Zhao and J. Yao, “Construction of digital core and eval-
uation of its quality,” Journal of Xi'an Shiyou University,
vol. 22, no. 2, pp. 16–20, 2007.

[110] Q. Z. Teng, T. Tang, Z. J. Li, and X. H. He, “Three-dimen-
sional reconstruction of sandstone section image based on
particle swarm optimization,” Journal of Electronics & Infor-
mation Technology, vol. 33, no. 8, pp. 1871–1876, 2011.

[111] Y. Ju, J. Zheng, M. Epstein, L. Sudak, J. Wang, and X. Zhao,
“3D numerical reconstruction of well-connected porous
structure of rock using fractal algorithms,” Computer
Methods in Applied Mechanics and Engineering, vol. 279,
no. 9, pp. 212–226, 2014.

[112] M. F. Zou, W. B. Sui, X. D.Wang, and S. Zhang, “Reconstruc-
tion of shale with dual-region based on very fast simulated
annealing algorithm,” Petroleum Geology and Recovery Effi-
ciency, vol. 22, no. 5, pp. 117–122, 2015.

[113] D. Frączek, W. Olchawa, R. Piasecki, and R. Wiśniowski,
“Entropic descriptor based reconstruction of three-
dimensional porous microstructures using a single cross-sec-
tion,” Physics, vol. 399, no. 4, pp. 75–81, 2015.

[114] W. Lin, X. Li, Z. Yang et al., “Construction of dual pore
3-D digital cores with a hybrid method combined with
physical experiment method and numerical reconstruction
method,” Transport in Porous Media, vol. 120, no. 1,
pp. 227–238, 2017.

[115] P. Capek, “On the importance of simulated annealing algo-
rithms for stochastic reconstruction constrained by low-
order microstructural descriptors,” Transport in Porous
Media, vol. 125, no. 1, pp. 59–80, 2018.

[116] X. Zhao, J. Yao, and Y. Yi, “A new stochastic method of
reconstructing porous media,” Transport in Porous Media,
vol. 69, no. 1, pp. 1–11, 2007.

[117] A. J. Liu, Y. Yang, F. Li, Q. S. Xing, H. Lu, and Y. D. Zhang,
“Chaotic simulated annealing particle swarm optimization
algorithm research and its application,” Journal of Zhejiang
University (Engineering Science), vol. 47, no. 10, pp. 1722–
1730, 2013.

[118] M. Dai, D. Tang, A. Giret, M. A. Salido, and W. D. Li,
“Energy-efficient scheduling for a flexible flow shop using
an improved genetic-simulated annealing algorithm,” Robot-
ics and Computer-Integrated Manufacturing, vol. 29, no. 5,
pp. 418–429, 2013.

[119] S. S. Wang, C. P. Li, Q. R. Li, Y. J. Guan, and X. B. Nie, “Fast
simulated annealing seismic inversion,” Chinese Journal of
Geophysics, vol. 38, no. 1, pp. 123-124, 1995.

[120] K. Genovese, L. Lamberti, and C. Pappalettere, “Improved
global–local simulated annealing formulation for solving
non-smooth engineering optimization problems,” Interna-
tional Journal of Solids and Structures, vol. 42, no. 1,
pp. 203–237, 2005.

[121] Y. G. Peng, X. P. Luo, and W. Wei, “A new fuzzy adaptive
simulated annealing genetic algorithm,” Control and Deci-
sion, vol. 24, no. 6, pp. 843–848, 2009.

[122] H. G. Chen, J. X. Li, J. S. Wu, and P. Yu, “Study on simulated-
annealing MT-gravity joint inversion,” Chinese Journal of
Geophysics, vol. 55, no. 2, pp. 663–670, 2012.

[123] W. Y. Fu and C. D. Ling, “Brownian motion based simulated
annealing algorithm,” Chinese Journal of Computers, vol. 37,
no. 6, pp. 1301–1308, 2014.

[124] H. Nishimori, J. Tsuda, and S. Knysh, “Comparative study of
the performance of quantum annealing and simulated
annealing,” Physical Review E, vol. 91, no. 1, article 12104,
2015.

[125] X. Zhang, X. Yuan, and Y. Yuan, “Improved hybrid simulated
annealing algorithm for navigation scheduling for the two
dams of the three gorges project,” Computers & Mathematics
with Applications, vol. 56, no. 1, pp. 151–159, 2008.

[126] K. Y. Chan, C. K. Kwong, and X. G. Luo, “Improved orthog-
onal array based simulated annealing for design optimiza-
tion,” Expert Systems with Applications, vol. 36, no. 4,
pp. 7379–7389, 2009.

[127] Y. S. Sun, Y. M. Li, Y. H. Zhang, and L. Wang, “Improved
simulated annealing algorithm and its application in adjust-
ing of S plane parameters in AUV motion control,” Acta
Armamentarii, vol. 34, no. 11, pp. 1417–1423, 2013.

[128] B. A. Huberman, R. M. Lukose, and T. Hogg, “An economics
approach to hard computational problems,” Science, vol. 275,
no. 5296, pp. 51–54, 1997.

[129] D. C. Walters and G. B. Sheblé, “Genetic algorithm solution
of economic dispatch with valve point loading,” IEEE Trans-
actions on Power Systems, vol. 8, no. 3, pp. 1325–1332, 1993.

[130] K. V. Price, “Differential evolution vs. the functions of the
2nd, ICEO,” in IEEE International Conference on Evolution-
ary Computation, pp. 153–157, Indianapolis, Indiana, 1997.

[131] J.-S. Chun, M.-K. Kim, H.-K. Jung, and S.-K. Hong, “Shape
optimization of electromagnetic devices using immune algo-
rithm,” IEEE Transactions on Magnetics, vol. 33, no. 2,
pp. 1876–1879, 1997.

[132] A. R. Jordehi, “Brainstorm optimisation algorithm BSOA: an
efficient algorithm for finding optimal location and setting of

25Geofluids



FACTS devices in electric power systems,” International
Journal of Electrical Power & Energy Systems, vol. 69,
pp. 48–57, 2015.

[133] M. A. el Majdouli, I. Rbouh, S. Bougrine, B. el Benani, and
A. A. el Imrani, “Fireworks algorithm framework for big data
optimization,” Memetic Computing, vol. 8, no. 4, pp. 333–
347, 2016.

[134] S. Z. Selim and K. Alsultan, “A simulated annealing algorithm
for the clustering problem,” Pattern Recognition, vol. 24,
no. 10, pp. 1003–1008, 1991.

[135] D. R. Prabha, T. Jayabarathi, R. Umamageswari, and
S. Saranya, “Optimal location and sizing of distributed gener-
ation unit using intelligent water drop algorithm,” Sustain-
able Energy Technologies and Assessments, vol. 11, pp. 106–
113, 2015.

[136] C. C. O. Ramos, D. Rodrigues, A. N. de Souza, and J. P. Papa,
“On the study of commercial losses in Brazil: a binary black
hole algorithm for theft characterization,” IEEE Transactions
on Smart Grid, vol. 9, no. 2, pp. 676–683, 2018.

[137] G. Venter and J. Sobieszczanski-Sobieski, “Particle swarm
optimization,” AIAA Journal, vol. 41, no. 8, pp. 1583–1589,
2003.

[138] P. C. Pinto, A. Nagele, M. Ä. Dejori, T. A. Runkler, and J. Ã.
M. C. Sousa, “Using a local discovery ant algorithm for Bayes-
ian network structure learning,” IEEE Transactions on Evolu-
tionary Computation, vol. 13, no. 4, pp. 767–779, 2009.

[139] S. Kashi, A. Minuchehr, N. Poursalehi, and A. Zolfaghari,
“Bat algorithm for the fuel arrangement optimization of reac-
tor core,” Annals of Nuclear Energy, vol. 64, pp. 144–151,
2014.

[140] A. H. Gandomi and A. H. Alavi, “Krill herd: a new bio-
inspired optimization algorithm,” Communications in Non-
linear Science and Numerical Simulation, vol. 17, no. 12,
pp. 4831–4845, 2012.

[141] S. Mirjalili and A. Lewis, “The whale optimization algo-
rithm,” Advances in Engineering Software, vol. 95, pp. 51–
67, 2016.

[142] Q. Zhang, D. D. Chen, X. R. Qin, and Q. Gao, “Convergence
analysis of invasive weed optimization algorithm and its
application in engineering,” Journal of Tongji University
(Natural Science), vol. 38, no. 11, pp. 1689–1693, 2010.

[143] W. S. Gao, C. Shao, and Q. Gao, “Pseudo-collision in swarm
optimization algorithm and solution: rain forest algorithm,”
Acta Physica Sinica, vol. 62, no. 19, pp. 750–754, 2013.

[144] H. Zhang, Y. Zhu, and H. Chen, “Root growth model: a novel
approach to numerical function optimization and simulation
of plant root system,” Soft Computing, vol. 18, no. 3, pp. 521–
537, 2014.

[145] K. Wu, N. Nunan, J. W. Crawford, I. M. Young, and K. Ritz,
“An efficient Markov chain model for the simulation of het-
erogeneous soil structure,” Soil Science Society of America
Journal, vol. 68, no. 2, 2004.

[146] Y. Keehm, Computational Rock Physics: Transport Properties
in Porous Media and Applications, Ph.D. Stanford University,
State of California, USA, 2003.

[147] Y. H. Zhu and G. Tao, “Sequential indicator simulation tech-
nique and its application in 3D digital core modeling,” Well
Logging Technology, vol. 31, no. 2, pp. 112–115, 2007.

[148] Z. Liu and C. M. Mu, “Applying COSISIMmodel to study the
permeability of porous media,” Journal of Coal Science and
Engineering, vol. 17, no. 2, pp. 128–132, 2011.

[149] Y. Wu, C. Lin, L. Ren et al., “Reconstruction of 3D porous
media using multiple-point statistics based on a 3D training
image,” Journal of Natural Gas Science and Engineering,
vol. 51, pp. 129–140, 2018.

[150] K. Wu, M. I. J. van Dijke, G. D. Couples et al., “3D stochastic
modelling of heterogeneous porous media – applications to
reservoir rocks,” Transport in Porous Media, vol. 65, no. 3,
pp. 443–467, 2006.

[151] X. L. Zhu, “A review of Markov chain Monte Carlo method,”
Statistics and Decision, vol. 21, pp. 151–153, 2009.

[152] Z. Y. Qu, T. Chen, T. Q. Wang, C. D. Sun, and C. B. Zhou,
“Parallelization and application of Markov chain Monte
Carlo,” Computer Engineering and Design, vol. 37, no. 7,
pp. 1811–1816, 2016.

[153] Y. Yang, J. Yao, C. Wang et al., “New pore space characteriza-
tion method of shale matrix formation by considering
organic and inorganic pores,” Journal of Natural Gas Science
and Engineering, vol. 27, pp. 496–503, 2015.

[154] X. Nie, C. C. Zou, X. H. Meng, S. Jia, and Y. Wan, “3D digital
core modeling of shale gas reservoir rocks: a case study of
conductivity mode,” Natural Gas Geoscience, vol. 27, no. 4,
pp. 706–715, 2016.

[155] J. F. Guo, R. H. Xie, and Y. J. Ding, “Three dimensional digital
cores reconstructed by MCMC method and numerical simu-
lation of rock NMR response,” China Sciencepaper, vol. 11,
no. 3, pp. 280–285, 2016.

[156] J.-F. Daıän, C. P. Fernandes, P. C. Philippi, and J. A. Bellini da
Cunha Neto, “3D reconstitution of porous media from image
processing data using a multiscale percolation system,” Jour-
nal of Petroleum Science & Engineering, vol. 42, no. 1, pp. 15–
28, 2004.

[157] J. Wu, T. Zhang, and A. Journel, “Fast FILTERSIM simula-
tion with score-based distance,” Mathematical Geosciences,
vol. 40, no. 7, pp. 773–788, 2008.

[158] Y. L. Wang, T. Zhang, J. H. Liu, and J. Zhang, “The study of
porous media reconstruction using a 2D micro-CT image and
MPS,” in International Conference on Computational Intelli-
gence and Software Engineering, pp. 1–5, Wuhan, China, 2009.

[159] Q. Teng, D. Yang, Z. Xu, Z. J. Li, and X. H. He, “Training
image analysis for three-dimensional reconstruction of
porous media,” Journal of Southeast University, vol. 28,
no. 4, pp. 415–421, 2012.

[160] P. Tahmasebi, A. Hezarkhani, and M. Sahimi, “Multiple-
point geostatistical modeling based on the cross-correlation
functions,” Computational Geosciences, vol. 16, no. 3,
pp. 779–797, 2012.

[161] P. Tahmasebi and M. Sahimi, “Geostatistical simulation and
reconstruction of porous media by a cross-correlation func-
tion and integration of hard and soft data,” Transport in
Porous Media, vol. 107, no. 3, pp. 871–905, 2015.

[162] P. Tahmasebi, F. Javadpour, and M. Sahimi, “Multiscale and
multiresolution modeling of shales and their flow and mor-
phological properties,” Scientific Reports, vol. 5, no. 1, article
16373, 2015.

[163] P. Tahmasebi, F. Javadpour, and M. Sahimi, “Stochastic shale
permeability matching: three-dimensional characterization
and modeling,” International Journal of Coal Geology,
vol. 165, pp. 231–242, 2016.

[164] P. Tahmasebi, F. Javadpour, M. Sahimi, and M. Piri, “Multi-
scale study for stochastic characterization of shale samples,”
Advances in Water Resources, vol. 89, pp. 91–103, 2016.

26 Geofluids



[165] P. Tahmasebi, M. Sahimi, A. H. Kohanpur, and A. Valocchi,
“Pore-scale simulation of flow of CO2, and brine in recon-
structed and actual 3d rock cores,” Journal of Petroleum Sci-
ence & Engineering, vol. 155, pp. 21–33, 2017.

[166] J. Straubhaar, A. Walgenwitz, and P. Renard, “Parallel
multiple-point statistics algorithm based on list and tree
structures,” Mathematical Geosciences, vol. 45, no. 2,
pp. 131–147, 2013.

[167] Y. Du and T. Zhang, “The MPS reconstruction of porous
media using multiple-grid templates,” Applied Mechanics
and Materials, vol. 462-463, pp. 462–465, 2013.

[168] T. Zhang, Y. Du, T. Huang, and X. Li, “GPU-accelerated 3D
reconstruction of porous media using multiple-point statis-
tics,” Computers & Geosciences, vol. 19, no. 1, pp. 79–98,
2015.

[169] M. Gao, X. He, Q. Teng, C. Zuo, and D. Chen, “Reconstruc-
tion of three-dimensional porous media from a single two-
dimensional image using three-step sampling,” Physical
Review E, vol. 91, no. 1, article 13308, 2015.

[170] T. Zhang, Y. Du, T. Huang, J. Yang, F. Lu, and X. Li,
“Reconstruction of porous media using ISOMAP-based
MPS,” Stochastic Environmental Research and Risk Assess-
ment, vol. 30, no. 1, pp. 395–412, 2016.

[171] X. F. Liu, Q. L. Diao, B. D. Sun, G. L. Li, and W. C. Zeng,
“Reconstruction of 3-D digital cores by multiple-point geos-
tatistics method based on 2-D images,”Well Logging Technol-
ogy, vol. 39, no. 6, pp. 698–703, 2015.

[172] C. Zuo, Q. Z. Teng, X. H. He, and M. L. Gao, “A fast 3D
reconstruction algorithm of multiple point statistics,” Journal
of Sichuan University (Natural Science Edition), vol. 53, no. 2,
pp. 337–346, 2016.

[173] W. Peng, “Reconstruction of digital shale cores using multi-
point geostatistics,” Natural Gas Industry, vol. 37, no. 9,
pp. 71–78, 2017.

[174] X. Wang, J. Yao, Z. Jiang et al., “A new method of fast dis-
tance transform 3D image based on “neighborhood between
voxels in space,” theory,” Chinese Science Bulletin, vol. 62,
no. 15, pp. 1662–1669, 2017.

[175] S. Bryant, C. Cade, and D. Mellor, “Permeability prediction
from geologic models,” AAPG Bulletin, vol. 77, no. 8,
pp. 1338–1350, 1993.

[176] S. Bryant, G. Mason, and D. Mellor, “Quantification of spatial
correlation in porous media and its effect on mercury porosi-
metry,” Journal of Colloid and Interface Science, vol. 177,
no. 1, pp. 88–100, 1996.

[177] S. Bakke and P. E. Øren, “3-D pore-scale modelling of sand-
stones and flow simulations in the pore networks,” SPE Jour-
nal, vol. 2, no. 2, pp. 136–149, 2013.

[178] P. E. Øren and S. Bakke, “Process based reconstruction of
sandstones and prediction of transport properties,” Transport
in Porous Media, vol. 46, no. 2/3, pp. 311–343, 2002.

[179] P. E. Øren and S. Bakke, “Reconstruction of Berea sandstone
and pore-scale modelling of wettability effects,” Journal of
Petroleum Science & Engineering, vol. 39, no. 3-4, pp. 177–
199, 2003.

[180] S. Kimminau, “A review of pore and grain geometric
models,” in SPWLA Twenty-Eighth Annual Logging Sympo-
sium, Heriot-Watt University, Edinburgh, 1987.

[181] G. Jin, T. Patzek, and D. Silin, “Physics-based reconstruction
of sedimentary rocks,” in SPE 83587, SPE Western

Regional/AAPG Pacific Section Joint Meeting, Long Beach,
CA, USA, 2003.

[182] W. Zhu, W. Yu, and Y. Chen, “Digital core modeling from
irregular grains,” Journal of Applied Geophysics, vol. 85,
no. 10, pp. 37–42, 2012.

[183] G. L. Yan, J. M. Sun, X. F. Liu, and L. Zhang, “Accuracy eval-
uation on 3d digital cores reconstruction by process-based
method,” Journal of Southwest Petroleum University, vol. 35,
no. 2, pp. 71–76, 2013.

[184] J. Zhao, J. Sun, X. Liu, H. Chen, and L. Cui, “Numerical sim-
ulation of the electrical properties of fractured rock based on
digital rock technology,” Journal of Geophysics and Engineer-
ing, vol. 10, no. 5, article 55009, 2013.

[185] Y. L. Zou, R. H. Xie, J. F. Guo et al., “Reconstruction of digital
core of tight reservoir and simulation of NMR response,”
Journal of China University of Petroleum, vol. 39, no. 6,
pp. 63–71, 2015.

[186] W. Zhu and W. H. Yu, “Study on processed based method
digital rock modeling and elastic property simulation,” Prog-
ress in Geophysics, Chinese, vol. 32, no. 5, pp. 2188–2194,
2017.

[187] Z. Tian, L. Xiao, G. Liao, H. Dong, S. Tian, and X. Song,
“Study on digital rock reconstruction method based on sedi-
mentological process,” Chinese Journal of Geophysics, vol. 62,
no. 1, pp. 248–259, 2019.

[188] R. Liu, L. Jiang, G. Huang et al., “The effect of carbonate and
sulfate ions on chloride threshold level of reinforcement cor-
rosion in mortar with/without fly ash,” Construction and
Building Materials, vol. 113, pp. 90–95, 2016.

[189] A. Ahmatjan, J. H. Zhong, Y. Li, and X. Chen, “Stylolite char-
acteristics and petroleum geology significance of ordovician
carbonate rocks in tahe oilfield,” Journal of China University
of Petroleum, vol. 34, no. 1, pp. 7–11, 2010.

[190] G. Z. Zhang, H. Z. Chen, Q.Wang, and X. Y. Yin, “Estimation
of S-wave velocity and anisotropic parameters using frac-
tured carbonate rock physics model,” Chinese Journal of Geo-
physics, vol. 56, no. 5, pp. 1707–1715, 2013.

[191] G. F. Huang, Q. T. Wu, J. W. C. Wong, and B. B. Nagar,
“Transformation of organic matter during co-composting of
pig manure with sawdust,” Bioresource Technology, vol. 97,
no. 15, pp. 1834–1842, 2006.

[192] L. Liang, J. Xiong, and X. Liu, “Experimental study on crack
propagation in shale formations considering hydration and
wettability,” Journal of Natural Gas Science and Engineering,
vol. 23, pp. 492–499, 2015.

[193] I. Hidajat, A. Rastogi, M. Singh, and K. K. Mohanty, “Trans-
port properties of porous media reconstructed from thin-
sections,” SPE Journal, vol. 7, no. 1, pp. 40–48, 2013.

[194] M. G. Politis, E. S. Kikkinides, M. E. Kainourgiakis, and A. K.
Stubos, “A hybrid process-based and stochastic reconstruc-
tion method of porous media,”Microporous and Mesoporous
Materials, vol. 110, no. 1, pp. 92–99, 2008.

[195] X. Liu, J. Sun, and H. Wang, “Reconstruction of 3-D digital
cores using a hybrid method,” Applied Geophysics, vol. 6,
no. 2, pp. 105–112, 2009.

[196] Y. Fu and L. Sima, “Preliminary study and comparison of
shale core gas-porosity test parameters,” Special Oil and Gas
Reservoirs, vol. 25, no. 3, pp. 144–149, 2018.

[197] N. Jia, W. Lv, T. Chang et al., “A new method for precisely
measuring core porosity with high efficiency and no destruc-
tion,” Acta Petrolei Sinica, vol. 39, no. 7, pp. 824–828, 2018.

27Geofluids



[198] L. Zhu, C. Zhang, C. Guo et al., “Calculating the total porosity
of shale reservoirs by combining conventional logging and
elemental logging to eliminate the effects pf gas saturation,”
Petrophysics, vol. 59, no. 2, pp. 162–184, 2018.

[199] M. Baniassadi, S. Ahzi, H. Garmestani, D. Ruch, and
Y. Remond, “New approximate solution for n -point correla-
tion functions for heterogeneous materials,” Journal of the
Mechanics and Physics of Solids, vol. 60, no. 1, pp. 104–119,
2012.

[200] P. Smith and S. Torquato, “Computer simulation results for
the two-point probability function of composite media,”
Journal of Computational Physics, vol. 76, no. 1, pp. 176–
191, 1988.

[201] H. Izadi, M. Baniassadi, A. Hasanabadi et al., “Application of
full set of two point correlation functions from a pair of 2D
cut sections for 3D porous media reconstruction,” Journal
of Petroleum Science & Engineering, vol. 149, pp. 789–800,
2017.

[202] M. Baniassadi, H. Garmestani, D. S. Li, S. Ahzi, M. Khaleel,
and X. Sun, “Three-phase solid oxide fuel cell anode micro-
structure realization using two-point correlation functions,”
Acta Materialia, vol. 59, no. 1, pp. 30–43, 2011.

[203] A. Hajizadeh, A. Safekordi, and F. A. Farhadpour, “A
multiple-point statistics algorithm for 3D pore space recon-
struction from 2D images,” Advances in Water Resources,
vol. 34, no. 10, pp. 1256–1267, 2011.

[204] G. A. Papakostas, J. W. Nolan, N. Vordos, D. Gkika, M. E.
Kainourgiakis, and A. C. Mitropoulos, “On 3D reconstruc-
tion of porous media by using spatial correlation functions,”
Journal of Engineering Science and Technology Review,
vol. 8, no. 4, pp. 78–83, 2015.

[205] B. Lu and S. Torquato, “Lineal-path function for random het-
erogeneous materials,” Physical Review A, vol. 45, no. 2,
pp. 922–929, 1992.

[206] P. Čapek, V. Hejtmánek, J. Kolafa, and L. Brabec, “Transport
properties of stochastically reconstructed porous media with
improved pore connectivity,” Transport in Porous Media,
vol. 88, no. 1, pp. 87–106, 2011.

[207] J. Havelka, A. Kučerová, and J. Sýkora, “Compression and
reconstruction of random microstructures using accelerated
lineal path function,” Computational Materials Science,
vol. 122, pp. 102–117, 2016.

[208] Y. Wu, Z. Y. Zhao, Z. Q. Wang, C. Zuo, and Q. Z. Teng,
“Reconstruction of digital core and analysis of pore parame-
ters,” Journal of Terahertz Science and Electronic Information
Technology, vol. 13, no. 5, pp. 788–793, 2015.

[209] X. H. He, Y. Li, Q. Z. Teng, Z. J. Li, and L. B. Qing, “Learning-
based super-dimension (SD) reconstruction of porous media
from a single two-dimensional image,” in IEEE International
Conference on Signal Processing, Communications and Com-
puting, pp. 1–5, Hong Kong, China, 2016.

[210] Y. Wu, C. Lin, L. Ren et al., “Digital core modeling based on
multiple-point statistics,” Journal of China University of
Petroleum, vol. 42, no. 3, pp. 12–21, 2018.

[211] V. de Lapparent, M. J. Geller, and J. P. Huchra, “The mean
density and two-point correlation function for the CfA red-
shift survey slices,”Astrophysical Journal, vol. 332, p. 44, 1988.

[212] S. Torquato and G. Stell, “Microstructure of two-phase
random media. I. Then-point probability functions,”
Journal of Chemical Physics, vol. 77, no. 4, pp. 2071–2077,
1982.

[213] R. Hilfer, “Local porosity theory and stochastic reconstruc-
tion for porous media,” Lecture Notes in Physics, vol. 554,
no. 2, pp. 203–241, 2000.

[214] R. Piasecki, “Microstructure reconstruction using entropic
descriptors,” Proceedings of the Royal Society A: Mathemati-
cal, Physical and Engineering Sciences, vol. 467, no. 2127,
pp. 806–820, 2011.

[215] M. V. Karsanina, K. M. Gerke, E. B. Skvortsova, and
D. Mallants, “Universal spatial correlation functions for
describing and reconstructing soil microstructure,” PLoS
One, vol. 10, no. 5, article e0126515, 2015.

[216] J. Yao, C. Wang, Y. Yang, R. Hu, and X. Wang, “The con-
struction of carbonate digital rock with hybrid superposition
method,” Journal of Petroleum Science & Engineering,
vol. 110, no. 5, pp. 263–267, 2013.

[217] J. Ma, G. D. Couples, Z. Jiang, andM. I. J. Dijke,AMulti-Scale
Framework for Digital Core Analysis of Gas Shale at Millime-
ter Scales, Institute of Petroleum Engineering, Heriot-Watt
University, Edinburgh, UK, 2011.

[218] V. Hebert, C. Garing, L. Luquot, P. A. Pezard, and P. Gouze,
“Multi-scale X-ray tomography analysis of carbonate poros-
ity,” Geological Society, London, Special Publications,
vol. 406, no. 1, pp. 61–79, 2015.

[219] Y. Yang, C. Wang, J. Yao, and Y. Gao, “A new voxel upscaling
method based on digital rock,” International Journal for Mul-
tiscale Computational Engineering, vol. 13, no. 4, pp. 339–
346, 2015.

[220] K.M.Gerke,M.V.Karsanina, andD.Mallants, “Universal sto-
chastic multiscale image fusion: an example application for
shale rock,” Scientific Reports, vol. 5, no. 1, article 15880, 2015.

[221] L. Liu, J. Yao, H. Sun, and Y. Yang, “Take into account the
micro-crack crack of the number of words rock core core a
little bit more total planning of the construction of the con-
struction of the square method,” Chinese Science Bulletin,
vol. 63, no. 30, pp. 3146–3157, 2018.

[222] A. Mehmani, K. Milliken, and M. Prodanović, “Predicting
flow properties in diagenetically-altered media with multi-
scale process-based modeling: a Wilcox Formation case
study,” Marine and Petroleum Geology, vol. 100, pp. 179–
194, 2019.

[223] H. Sun, H. Belhaj, G. Tao, S. Vega, and L. Liu, “Rock proper-
ties evaluation for carbonate reservoir characterization with
multi-scale digital rock images,” Journal of Petroleum Science
and Engineering, vol. 175, pp. 654–664, 2019.

[224] L. Jiang, J. Sun, X. Liu, and H. Wang, “Study of different fac-
tors affecting the electrical properties of natural gas reservoir
rocks based on digital cores,” Journal of Geophysics and Engi-
neering, vol. 8, no. 2, pp. 366–371, 2011.

[225] B. Saad, A. Negara, and S. S. Ali, “Digital rock physics com-
bined with machine learning for rock mechanical properties
characterization,” in Abu Dhabi International Petroleum
Exhibition & Conference, Abu Dhabi, UAE, 2018.

[226] Y. Miao, S. Wang, L. Guo, and J. Li, “A method for quantify-
ing the packing function of particles in packed aggregate
blend,” Construction and Building Materials, vol. 188,
pp. 607–614, 2018.

[227] A. Assadi-Langroudi, S. Ng'ambi, and I. Smalley, “Loess as a
collapsible soil: some basic particle packing aspects,” Quater-
nary International, vol. 469, pp. 20–29, 2018.

[228] M. T. de Grazia, L. F. M. Sanchez, R. C. O. Romano, and R. G.
Pileggi, “Investigation of the use of continuous particle

28 Geofluids



packing models (PPMs) on the fresh and hardened properties
of low-cement concrete (LCC) systems,” Construction and
Building Materials, vol. 195, pp. 524–536, 2019.

[229] Y. T. Feng, T. Zhao, M.Wang, and D. R. J. Owen, “Character-
ising particle packings by principal component analysis,”
Computer Methods in Applied Mechanics and Engineering,
vol. 340, pp. 70–89, 2018.

[230] P. Estephane, E. J. Garboczi, J.W. Bullard, andO.H.Wallevik,
“Three-dimensional shape characterization of fine sands
and the influence of particle shape on the packing and
workability of mortars,” Cement and Concrete Composites,
vol. 97, pp. 125–142, 2019.

[231] H. Zhu, J. Shen, and F. Zhang, “A fracture conductivity model
for channel fracturing and its implementation with discrete
element method,” Journal of Petroleum Science and Engineer-
ing, vol. 172, pp. 149–161, 2019.

[232] A. Abdelaziz, Q. Zhao, and G. Grasselli, “Grain based model-
ling of rocks using the combined finite-discrete element
method,” Computers and Geotechnics, vol. 103, pp. 73–81,
2018.

[233] B. Majidi, P. Rolfe, M. Fafard, D. P. Ziegler, and H. Alamdari,
“Numerical modeling of compaction and flow of coke/pitch
mixtures using discrete element method,” Construction and
Building Materials, vol. 169, pp. 315–324, 2018.

[234] P. Tahmasebi, “Packing of discrete and irregular particles,”
Computers and Geotechnics, vol. 100, pp. 52–61, 2018.

[235] B. Majidi, J. Melo, M. Fafard, D. Ziegler, and H. Alamdari,
“Packing density of irregular shape particles: DEM simula-
tions applied to anode-grade coke aggregates,” Advanced
Powder Technology, vol. 26, no. 4, pp. 1256–1262, 2015.

[236] V. Sundararaghavan and N. Zabaras, “Classification and
reconstruction of three-dimensional microstructures using
support vector machines,” Computational Materials Science,
vol. 32, no. 2, pp. 223–239, 2005.

[237] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[238] S. Karimpouli and P. Tahmasebi, “Image-based velocity esti-
mation of rock using convolutional neural networks,” Neural
Networks, vol. 111, pp. 89–97, 2019.

[239] G. B. Huang, D. H. Wang, and Y. Lan, “Extreme learning
machines: a survey,” International Journal of Machine Learn-
ing and Cybernetics, vol. 2, no. 2, pp. 107–122, 2011.

[240] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A.
Bharath, “Deep reinforcement learning: a brief survey,” IEEE
Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[241] J. Long, J. P. Yin, E. Zhu, and W. T. Zhao, “A survey of active
learning,” Computer Research and Development, vol. 45,
no. S1, pp. 300–304, 2008.

[242] L. Mosser, O. Dubrule, and M. J. Blunt, “Stochastic recon-
struction of an Oolitic limestone by generative adversarial
networks,” Transport in Porous Media, vol. 125, no. 1,
pp. 81–103, 2018.

29Geofluids



Hindawi
www.hindawi.com Volume 2018

Journal of

ChemistryArchaea
Hindawi
www.hindawi.com Volume 2018

Marine Biology
Journal of

Hindawi
www.hindawi.com Volume 2018

Biodiversity
International Journal of

Hindawi
www.hindawi.com Volume 2018

Ecology
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Applied &
Environmental
Soil Science

Volume 2018

Forestry Research
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 International Journal of

Geophysics

Environmental and 
Public Health

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

International Journal of

Microbiology

Hindawi
www.hindawi.com Volume 2018

Public Health  
Advances in

Agriculture
Advances in

Hindawi
www.hindawi.com Volume 2018

Agronomy

Hindawi
www.hindawi.com Volume 2018

International Journal of

Hindawi
www.hindawi.com Volume 2018

Meteorology
Advances in

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Chemistry Scientifica
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Geological Research
Journal of

Analytical Chemistry
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/archaea/
https://www.hindawi.com/journals/jmb/
https://www.hindawi.com/journals/ijbd/
https://www.hindawi.com/journals/ijecol/
https://www.hindawi.com/journals/aess/
https://www.hindawi.com/journals/ijfr/
https://www.hindawi.com/journals/ijge/
https://www.hindawi.com/journals/jeph/
https://www.hindawi.com/journals/ijmicro/
https://www.hindawi.com/journals/aph/
https://www.hindawi.com/journals/aag/
https://www.hindawi.com/journals/ija/
https://www.hindawi.com/journals/amete/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ac/
https://www.hindawi.com/journals/scientifica/
https://www.hindawi.com/journals/jgr/
https://www.hindawi.com/journals/ijac/
https://www.hindawi.com/
https://www.hindawi.com/

