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ABSTRACT Federated Learning (FL) is a new technology that has been a hot research topic. It enables 

training an algorithm across multiple decentralized edge devices or servers holding local data samples, 

without exchanging them. There are many application domains where large amounts of properly labeled 

and complete data are not available in a centralized location, for example, doctors’ diagnosis from medical 

image analysis. There are also growing concerns over data and user privacy as Artificial Intelligence is 

becoming ubiquitous in new application domains. As such, very recently, a lot of research has been 

conducted in several areas within the nascent field of FL. A variety of surveys on different subtopics exist 

in current literature, focusing on specific challenges, design aspects and application domains. In this paper, 

we review existing contemporary works in the related areas in order to understand the challenges and topics 

that are emphasized by each type of FL surveys. Furthermore, we categorize FL research in terms of 

challenges, design factors and applications, conducting a holistic review of each and outlining promising 

research directions. 

INDEX TERMS Data privacy, Data security, Decentralized data, Distributed processing, Federated 

learning, Machine learning. 

I. INTRODUCTION 

In recent years, machine learning (ML) technologies have 

seen tremendous growth. The availability of large amounts of 

data is one of the reasons for this rapid growth of ML and 

Deep Learning (DL) based techniques/methods. However, 

not all application domains have large amounts of properly 

labeled and complete data available in a centralized location, 

for example, doctors’ diagnosis from medical image analysis. 

Curating such large high-quality datasets can be time 

consuming and tedious and often requires domain experts. 

Efforts from individual organizations result in data silos with 

each one having high-quality but small datasets. In these 

application domains, very few organizations manage to 

gather high-quality, complete, fully-labeled and large enough 

datasets that are required for DL applications to be effective. 

Traditionally, data used to be gathered in a centralized 

location to build ML models. However, due to concerns over 

data ownership and data confidentiality, user privacy, and 

new laws over data management and data usage like General 

Data Protection Regulation (GDPR), there is a need for 

distributed model training in a private, secure, efficient and 

fair way. 

Thus, instead of training on centralized data, separate 

models can be trained locally where the data resides in a 

distributed manner. Then, the respective local model updates 

can be communicated to obtain a global model. This is the 

idea behind Federated Learning (FL), where the process of 

communication is carefully designed such that the data of 

individual organization or device remain private. FL was first 

introduced by the researchers at Google to update language 

models [1], [2] in Google’s keyboard system for word auto-

completion. FL builds a joint model using data located at 

different sites, where each party contributes some data to 

train the model. It is important to note that the data belonging 

to each party does not leave their premises. The model is then 
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encrypted and shared among the participants so that no 

participant can reverse engineer others’ data. This resulting 

joint model’s performance is an approximation of the ideal 

model trained with centralized data. In practice, this added 

security and privacy results in some accuracy loss, but it is 

often worth it for specific application domains. In addition to 

the privacy and security benefits, collaborative training in FL 

can result in better models compared to models trained by 

individual organizations or devices. 

FL architecture can follow client-server model (see Fig. 1) 

or peer-to-peer model (see Fig. 2) at the fundamental level. In 

client-server model, there is a coordinator responsible for 

centrally aggregating model parameters using federated 

averaging. 

First, an initial model is sent by the coordinator to each 

participating client. Each client then locally trains individual 

learning models using their own local datasets and send the 

model updates back to the coordinator for aggregation. After 

aggregation, the combined model updates are again sent back 

to local participating client. This process repeats until the 

model converges or preset number of iterations is reached. 

The client- server architecture incurs less communication 

overhead. On the other hand, the peer-to-peer architecture is 

even more secure since the participating clients communicate 

directly without a third-party coordinator. The trade-off, 

however, is that peer-to-peer architecture requires more 

computation for message encryption and decryption. 

There are three fundamental categories of FL that depend 

on data partitioning among participants in feature and sample 

FIGURE 1.  Client-server FL architecture 

 

FIGURE 2.  Peer-to-peer FL architecture 

 

FIGURE 3.  Horizontal FL architecture 

 

FIGURE 4.  Vertical FL architecture 

 

FIGURE 5.  Federated Transfer Learning (FTL) architecture 
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spaces – Horizontal FL (see Fig. 3), Vertical FL (see Fig. 4), 

and Federated Transfer Learning (FTL) (see Fig. 5). For 

Horizontal FL, there is alignment in data features across 

participants, not in data samples. The exact opposite applies 

for Vertical FL where there is alignment in data samples, not 

in data features. Horizontal and Vertical FL can be 

ineffective when the data is highly heterogeneous. In such 

cases, FTL is an effective approach where it transfers 

knowledge learned from source domain to a target domain. 

FTL is inspired by transfer learning, where machine learning 

models that are trained on a dataset belonging to one domain 

are re-used and fine-tuned to solve a problem of a related 

domain. 

The aforementioned architecture and FL categories are 

only the tip of the iceberg in the field of FL. There are 

numerous research thrusts such as novel architectures, data 

partitioning schemes and aggregation techniques. Moreover, 

current research efforts aim to mitigate the core challenging 

issues in FL like privacy and security, communication costs, 

system and statistical heterogeneity, personalization 

techniques, among others. Depending upon the application 

area where FL method gets utilized, unique application and 

domain-specific challenges and considerations also arise. 

A lot of research has already been conducted in the field of 

FL in recent years. Consequently, numerous survey papers 

have also been written to summarize different focus areas. In 

this paper, we first conduct a review of existing surveys. The 

surveys cover a variety of domains and focus areas in FL 

research. 

Several core challenges such as privacy, security, 

communication cost, system and statistical heterogeneity, 

architecture and aggregation algorithm designs, etc. vary by 

domain and specific use cases. The motivation of this paper 

is to review the current body of literature and summarize the 

current state-of-the-art approaches that have recently been 

developed to deal with these challenges. Our work also 

identifies the gaps in the reviewed FL surveys and fills them 

by surveying the latest developments in all aforementioned 

FL areas of research. We conduct a holistic review of the 

challenges, applications and design factors, and outline 

promising future research directions. 

We have studied papers in the related areas and also have 

reviewed in depth most of the contemporary survey papers in 

these areas. We classify the topics in the FL survey papers 

according to the following categories: communication cost, 

statistical heterogeneity, systems heterogeneity, 

privacy/security as the core challenges; data partitioning, FL 

architectures, algorithms/aggregation techniques, 

personalization techniques as the implementation details; and 

applications of FL in different industries and domains. 

 

Our contributions in this paper are as follows: 

1) Thoroughly investigated and analyzed contemporary 

FL survey papers. 

2) Classified FL research into broad categories of design 

aspects, challenges, and application areas. 

3) Conducted a holistic survey of the design aspects – 

data partitioning, FL architectures, aggregation 

techniques, personalization techniques; the core 

challenges – communication cost, systems 

heterogeneity, statistical heterogeneity, 

privacy/security; and, different application areas. 

4) Discussed open issues and challenges in FL research. 

The remainder of the paper is organized as shown in Fig. 

6. In Section II, we discuss the Related Works. Section III 

illustrates the Taxonomy of the survey papers and discusses 

them in detail. Discussion and Analysis of all topics under 

each category are covered in Section IV. Section V discusses 

the Open Issues and Challenges in FL. Finally, Section VI 

concludes the paper. 

II. RELATED WORKS 

In this section, we investigate and analyze most of the 

contemporary survey papers. The reviewed papers are listed 

in Table I along with their summary and main focuses. 

Li, Sahu et al. [3] discuss about how federated learning 

(FL) is different from standard distributed Machine Learning 

(ML). FL’s unique characteristics and challenges are 

discussed, along with its current methods and future scopes. 

The paper does not focus on any specific domains and 

discusses approaches that deal with 4 core challenges, 

namely expensive communication, systems heterogeneity, 

statistical heterogeneity and privacy/security. Local updating 

[1], [4] is one approach to reduce the number of 

communication round. Compression schemes [5], on the 

other hand, reduce the message sizes at each rounds of 

communication. And, decentralized training [6], [7] 

decreases the burden on the central server in terms of 

communication. For systems heterogeneity challenges 

asynchronous communication [8]–[10] reduces stragglers, 

active sampling selects or influences participating devices 

based on system resources and overheads incurred, and fault 

tolerance [11]–[16] ignores failed devices utilizing 

algorithmic redundancy. Statistical heterogeneity issues are 

dealt by modeling heterogeneous data using methods like 

meta-learning, multi-task learning, adapting selection 

between global model and device-specific models, transfer 

FIGURE 6.  Organization of the paper 
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learning for personalization. Studies also focus on 

convergence guarantees for non-independent and identically 

distributed data (non-IID) data [4], [10], [17], [18]. Lastly, 

this survey covers Secure Multi Party Computation (SMC) 

[19], [20] and Differential Privacy (DP) [21]–[24] 

approaches. 

In [25], the focus area is Mobile Edge Networks. The core 

challenges in this survey include expensive communication, 

systems heterogeneity and privacy/security. Under 

communication cost challenges, approaches discussed 

include compression schemes such as model compression 

[26], [27], importance-based updating for selective gradients 

[28] or local model updates [29], and local updating [1], 

[30]–[32] focused on edge and end computation. Works 

mitigating systems heterogeneity include active sampling 

based on computation capabilities [33], data characteristics  

[34], resource consumption [35] and allocation [36], [37]; 

joint radio and computation resource management by using 

superposition property of multiple-access channel [38]–[40]; 

asynchronous communication [41] for model aggregation; 

adaptive aggregation based on resource constraints [42], 

incentive mechanisms such as Stackelberg game [43]–[46], 

contract theoretic approach [47], [48], reputation mechanism 

[49] to encourage source contribution, and effective worker 

selection. For privacy/security challenges, information 

exploiting attacks are countered by DP [23], [50], selective 

participants [50], selective parameter sharing [51], secret 

sharing scheme [52], GAN model training [53]; data 

poisoning attacks are countered by distinguishing honest 

participants based on their gradient updates [54]; model 

poisoning attacks are countered by comparing updated 

models [55]; and free-riding attacks are countered by 

verifying local model updates [56]. 

The primary focus of [57] is privacy/security for Internet-

of-Things (IoT). The approaches discussed in this survey are 

limiting the effects of individual client updates [57], [58], 

distinguishing honest participants [54], DP [23], [50], [51], 

SMC [19], [54], and Homomorphic Encryption (HE) [59]. 

 Privacy/security is the main focus area of [60], 

particularly approaches like HE [61], [62], SMC [19], [63] 

and DP [64], [65] are covered in this survey. Data 

partitioning schemes, namely Horizontal FL [66], Vertical 

FL [67]–[70] and Hybrid FL [71], [72], as well as centralized 

[11], [73] and decentralized [74] design for communication 

architecture, and cross-silo [75] vs cross-device [76], [77] FL 

for scale of federation are the other challenges and 

approaches discussed here. 

 Work by Li et al. [78] is centered around applications, 

particularly in the domains of mobile devices, industrial 

engineering and healthcare. Applications of FL in mobile 

devices – predict user input [66], [79], [80], emoji [81], 

human trajectory [82], human behavior [83]; reduce network 

congestion [84]; detect physical hazards (smart-home IoT) 

[85]; industrial engineering – Environmental monitoring 

[86]; visual inspection [87]; malicious attack detection 

(Unmanned Aerial Vehicles); prevent energy congestion 

(charging stations); detect credit card fraud; spam filtering; 

sentiment analysis; healthcare – predict future 

TABLE I 

SUMMARY TABLE OF SURVEY PAPERS AND MAIN FOCUS 

Survey Paper Summary Main Focus 

Li, Sahu, et al. [3] Discusses the unique characteristics and challenges of FL, provides details of current approaches, 

outlines directions of future work. 

Challenges 

Lim et al. [4] Highlights challenges of FL implementation and existing solutions and presents applications of FL for 

mobile edge network optimization. 

Mobile edge 

networks 

Briggs et al. [5] Focusing on IoT, covers works related to FL challenges and privacy preserving methods, identify the 
strengths and weaknesses of different methods applied to FL, and outlines future directions. 

IoT, privacy/security 

Li, Wen, et al. [6] Categorizes FL systems according to six different aspects to facilitate and guide the design of FL 

systems, provides case studies and future research opportunities. 

FL systems 

Li, Fan, et al. [7] Illustrates the evolution of FL and reviews existing applications of FL in industrial engineering, mobile 

devices and healthcare. 

Applications 

Kurupathi, Maass [8] Highlights existing privacy techniques and proposes applications of FL in industries. Privacy/security, 

applications 

Yang et al. [9] Introduces a secure FL framework, which includes horizontal FL, vertical FL and federated transfer 

learning, and proposes building data networks among organizations based on federated mechanisms. 

Architecture, 

applications 

Xu et al. [10] Provides a review for FL technologies mainly for biomedicine, and discusses the challenges, issues and 

potential of FL in healthcare. 

Healthcare 

Kulkarni et al. [11] Highlights the need for personalization in FL and surveys research on the topic. Personalization 

Lyu et al. [12] Introduces taxonomy of threat models and major attacks on FL, highlighting intuitions, techniques and 
assumptions adopted by different attacks and discusses future research directions. 

Threat models and 
attack types 

Aledhari et al. [13] Provides a thorough summary of relevant protocols, platforms, challenges and real-life uses cases of FL. Platforms, protocols, 

applications 

Mothukuri et al. [14] Provides a detailed study of security and privacy, and presents current approaches, challenges and future 

directions in FL. 

Privacy/security 
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hospitalizations, mortality and hospital stay time, mortality 

over drug utilization data; similar patient matching. 

Another privacy/security focused survey [88] elaborates on 

the current approaches such as SMC, DP, HE, Private 

Information Retrieval. [89] also covers privacy/security 

approaches, namely SMC [90], DP [23], HE [91]. Moreover, 

the paper also discusses approaches for data partitioning – 

Horizontal FL [92], Vertical FL, FTL. 

 The challenges and approaches discussed in [93] is 

centered around healthcare domain. Consensus [37], [94] and 

pluralistic [95] solutions are mentioned to tackle statistical 

heterogeneity; client selection [33], compression schemes, 

updates reduction and peer-to-peer learning for expensive 

communications challenges; and SMC and DP for 

privacy/security challenges. The focus of [96] is on 

personalization techniques. The techniques discussed in this 

survey are adding user context [97], transfer learning [98], 

multi-task learning [99], meta-learning [100], knowledge 

distillation, base + personalization layers, mixture of global 

and local models. Article [101] is also based on 

privacy/security challenges. Specifically, it includes studies 

on threat models, different types of poisoning attacks and 

inference attacks. 

Aledhari et al. [102] mainly focus on architecture options 

for FL based models – Horizontal FL [89], Vertical FL [89], 

MMVFL [103], FTL [71], FEDF [104], PerFit [105], 

FedHealth [106], FADL [107], Blockchain-FL [108], 

whereas a primary focus of [109] is on aggregation 

techniques – FedAvg [1], SMC-avg [19], FedProx [4], 

TABLE II  

COMPARISON OF TOPICS COVERED BY SURVEY PAPERS 

Survey Paper Data 

Partition-

ing 

FL 

Architec-

tures 

Aggrega-

tion 

Technique
s 

Personaliz-

ation 

Technique
s 

Communic

-ation Cost 

Systems 

Hetero-

geneity 

Statistical 

Hetero-

geneity 

Privacy 

/Security 

Applica-

tion Areas 

Li, Sahu, et al. [3] 
        

Lim et al. [4] 
        

Briggs et al. [5] 
        

Li, Wen, et al. [6] 
        

Li, Fan, et al. [7] 
        

Kurupathi, Maass [8] 
      

 

Yang et al. [9] 
    



  

Xu et al. [10] 
    



  

Kulkarni et al. [11] 
     



 

Lyu et al. [12] 
      





Aledhari et al. [13] 
      





Mothukuri et al. [14] 
     



 

This work 
        

FIGURE 7.  Classification of the reviewed survey papers 
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FedMA [110], Scaffold: Stochastic Controlled Averaging for 

FL [58], Tensor Factorization [111], FedBCD [31], 

Federated Distillation (FD) and Federated Augmentation 

(FAug) [18], Co-Op, LoAdaBoost [17], HybridFL [34], 

FedCS [112], PrivFL [113], VerifyNet [114]. 

The reviewed survey papers do not cover all the subtopics 

as highlighted in Table II. In particular, less than half of the 

surveys thoroughly reviewed FL architectures and 

personalization techniques. Our work classifies the topics as 

design aspects, core challenges, and application areas as 

shown in Fig. 7; and provides an in-depth discussion and 

analysis on all the subtopics. 

III. TAXONOMY 

The taxonomy of FL research, in terms of design aspects, 

core challenges and application areas, is portrayed in Fig. 7. 

Design aspects include data partitioning, FL architectures, 

aggregation techniques and personalization techniques. 

Communication cost, systems heterogeneity, statistical 

heterogeneity and privacy/security are among the core 

challenges. And, the reviewed survey papers mainly focus on 

the application areas of industrial engineering, mobile 

devices, healthcare, and IoT and edge devices. Comparison 

of topics covered by the survey papers is shown in Table II. 

Data partitioning classifies FL as HFL, VFL or FTL as 

explained in the Introduction. Beyond these variants based on 

data partitioning, several specialized FL architectures have 

been developed to improve accuracy, training speed, 

efficiency, generalization, applicability, etc. for different 

areas like IoT, healthcare, Electronic Health Records 

(EHRs), privacy/security among others. Depending on the 

FL architecture used, aggregation techniques/algorithms are 

employed to integrate the local model updates from all 

participating clients during training to get the global model. 

Different aggregation techniques/algorithms have different 

priorities like increased privacy, optimal communication 

bandwidth, support of asynchronous updates, etc. 

Personalization is another design aspect that needs to be 

considered for certain scenarios, namely, device 

heterogeneity (storage, computation, and communication), 

data heterogeneity (i.e., non-IID data) and model 

heterogeneity (customized models depending on client’s 

environment). 

Expensive communication is a major challenge in FL 

systems. There can be a large number of devices in a 

federated network, which means that network 

communication is much slower than local computation. 

Therefore, a large body of work addresses communication 

efficiency. Moreover, there can be varying communication 

capabilities of devices in federated networks due to systems 

heterogeneity. The different devices may also have varying 

compute and storage capacities. Due to system and network 

constraints in a number of settings, only a few selected 

devices may participate during a training iteration, and some 

devices may even drop out during an iteration due to 

connectivity or power issues. Thus, FL techniques need to 

overcome such systems heterogeneity challenges. On the 

other hand, statistical heterogeneity issues arise due to 

violation of independent and identically distributed (IID) 

assumptions in distributed optimization. The violation occurs 

because different devices across the network often have non-

identically distributed data. The number of data points across 

devices also vary. Therefore, FL approaches must handle 

statistical heterogeneity of data. Lastly, privacy/security 

issues are at the core of FL applications. Increased 

privacy/security using novel methods often comes at the cost 

of decreased system efficiency or model performance. 

All these tradeoffs between the various application-specific 

challenges and design aspects need to be carefully considered 

and have to well-balanced to obtain effective privacy-

preserving FL systems. These topics are discussed in greater 

detail in the following section. 

IV. DISCUSSION AND ANALYSIS 

In this section, we review and discuss the design aspects, 

core challenges and application areas to provide a 

comprehensive summary of subtopics – data partitioning, FL 

architectures, aggregation techniques, personalization 

techniques, communication cost, systems heterogeneity, 

statistical heterogeneity, privacy/security, and application 

areas. 

A. DESIGN ASPECTS 

Data partitioning: The data that are used for training FL 
is non-identical as the data is on various devices. The sample 
space of a dataset consists of all the dataset instances, while 
the feature space consists of the different dataset attributes. 
For instance, two hospitals may have records of different 
sets of patients (sample space), and they may also have 
different types of information stored about each patient in 
their electronic health records (feature space). Based on how 
the data is allocated over the sample and feature spaces 
across multiple participating devices in the FL process, 
FLSs can be typically categorized as horizontal, vertical and 
hybrid FL (aka FTL) [89]. 

1) Horizontal Federated Learning (HFL) is used in the 

scenarios in which the feature space of the datasets is 

same but the sample space differs. In HFL, the datasets 

belonging to different organizations have same feature 

space but the sample space are not that related. This 

type of is data partitioning is suitable for cross-device 

mode, where individual users use FL to try and 

enhance the performance of their model on a task. In 

FL, the horizontal partitioning is more common. Since 

the local data overlaps feature space, each individual 

user can train their local models using the duplicate 

model architecture. For example, two regional 

branches of an organization have different group of 

users but they have the same feature spaces as the 
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business is same. At present, the primary focus area of 

FLSs are smart devices and devices in the IoT. This 

work on FL from Google [78] falls into horizontal 

partitioning paradigm. In this framework, an individual 

user in android platform changes the model parameters 

locally and sends the updated parameters to the cloud 

server. This enables to train the centralized model 

along with other users. Furthermore, to deal with the 

issue of finite labeled entities, hierarchical 

heterogeneous HFL framework is proposed in [115]. 

Heterogeneous framework can address the shortage of 

label by adapting each user multiple times as target 

domain. The authors in [51] suggested a collaborative 

deep-learning framework where each user train 

independently and only share a subset of parameters 

for updating.Classified FL research into broad 

categories of design aspects, challenges, and 

application areas. 

2) In Vertical Federated Learning (VFL), the datasets 

across institutions share same or similar sample space 

but their feature spaces do not have much in common. 

In this setting, all the participants have homogeneous 

data which implies that they differ in feature space but 

have partial match on sample space. For example, two 

different organizations in a certain area want to train a 

machine learning model in collaboration. They have 

identical clients but the data of each organization are of 

distinct types. Due to privacy and security concerns, 

they cannot interchange their data. In scenario like this, 

VFL is suitable to train the model. VFL models 

aggregate these distinct features and calculates the 

model parameters in a privacy-preserving manner. 

Finally, it constructs a model by combining the data 

from both parties. An approach using linear regression 

was proposed by the authors in [116], [117] for data 

having vertical partitioning. Moreover, for such data, 

several secure models including k-means [70], 

association rule mining [67], decision tree [69] and 

naive bayes classifier [68] were proposed by Vaidya et 

al. Usually, VFL systems perform entity alignment 

[118], [119] to combine the common samples of 

different institutions. Then, employing encryption, the 

combined data are used for training the model. Cheng 

et al. [120] propose a lossless VFL system to enable 

joint training of gradient boosting decision trees. To 

recognize common users between two distinct parties, 

they make use of privacy-preserving entity alignment. 

Finally, those selected samples are used to train the 

decision trees collaboratively. 

3) Federated transfer learning (FTL) is used in situations 

where two datasets differ in sample as well as feature 

space. FTL was first proposed in [71]. FTL enhances 

existing FL systems and can deal beyond the scope of 

existing FL algorithms. FTL gained enormous attention 

in various industries, especially in healthcare sector 

[121]. Various information related to treatment and 

diagnosis can be shared between hospitals to diagnose 

different diseases with the help of FTL. In general, 

transfer learning comprehends a common 

representation between the features of two different 

parties. Both parties still need to calculate the 

prediction results at the time of prediction. Hence, 

transfer learning [72] techniques can be adopted for the 

entire feature and sample space under a federated 

environment. To avoid the possibility of exposing the 

client data, FTL takes advantages of encryption and 

approximation to make sure the privacy is safeguarded. 

Hence, both the actual sensitive data and models are 

preserved locally [122]. Sharma et. al. work on 

improvement for FTL by integrating a secret sharing 

technology [123]. Authors of [124], [125] build a 

FedHealth model which collects data from different 

institutions via FL and provides customized services 

for healthcare by utilizing transfer learning. 

There are advantages and benefits of using each of the 

afore-mentioned data partitioning paradigms. For example, 

two different clinics or hospitals can benefit from securely 

sharing data with each other based on either the number of 

instance or features that they need. One clinic could own 

millions of patient records, but it is possible that they only 

have very specific information about these patients based on 

their specialty, e.g., oncology. On the other hand, another 

clinic could be relatively new with a much smaller number of 

patient records in their possession. However, if this is a 

general clinic without a specialty, then it is likely that they 

own different types patient information. The first clinic 

would benefit from VFL, while the second one would benefit 

from HFL. Finally, via FTL, healthcare providers can 

provide more personalized care if they are given access to 

data from users’ wearable devices for personal fitness. 

FL architectures represents how different components are 

integrated to form an FL environment. Two common 

architectures of FL are client-server architecture and peer-to-

peer architecture. 

1) In client server architecture, as illustrated previously in 

Fig. 1, a central server initiates a global model that it 

shares with the clients to train on their local dataset. 

After local training, trained models from the clients 

that are involved in the FL environment, are collected 

by the server. The server then aggregates the models’ 

parameter to build a global model, and shares it back 

with all clients. Client-server architecture is also 

known as centralized architecture for FL. Here the 

server coordinates the learning process which is 

continuous. In the conventional client-server 

architecture, the server hosts a model and trains the 

model on shared data. However, the server in the 

federated learning setting operates only on the local 
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models received from the clients synchronously or 

asynchronously. The main advantage of this 

architecture is it incurs less communication overhead. 

Google used this architecture to develop a virtual 

keyboard called Gboard for Android. Currently, almost 

all implementation of FL use client-server architecture. 

2) As illustrated in Fig. 2, there is no concept of a central 

server in peer-to-peer architecture like in the client-

server architecture for model aggregations. The role of 

central sever is replaced with algorithms to ensure 

security and reliability. Each participant in FL 

environment has its model. A participant improves its 

model by using the information from its neighbors 

[126]. In the adopted peer-to-peer topology, a protocol 

is established using a central authority. During training 

rounds, the network follows this protocol. Such 

architecture is more secure since the participating 

clients communicate directly without a third-party 

coordinator [127]. However, it requires more 

computation for message encryption and decryption. 

The aggregation algorithm describes how the global 

model is formed by combining the local model updates from 

all the clients that participated in the train round. It plays a 

significant role in horizontal federated learning based on a 

centralized architecture. The most popular aggregation 

algorithms are compared in Table III and summarized below. 

1) The Federated averaging (FedAvg) algorithm [1] 

proposed by Google is based on an Stochastic Gradient 

Descent (SGD) optimization algorithm. This 

aggregation algorithm is the best fit for HFL with a 

client-server architecture. In this algorithm, the server 

starts the training process by sharing the global model 

parameters with a group of clients selected randomly 

from a pool of clients. The clients then perform 

multiple epochs of SGD on their local dataset to train 

the global model and share the locally trained model 

with the server.  The server next computes the 

weighted average of all the local models to generate a 

new global model. This process is repeated for several 

rounds. It is robust to unbalanced and non-IID data 

distribution. Although FedAvg has achieved great 

success, it has some convergence issues in some 

settings due to the factors like client drifting [58] and 

lack of adaptive learning rate [128]. 

2) Scaffold (Stochastic Controlled Averaging Federated 

Learning) [58] solves the problem of client drifting 

using variance reduction technique in its local update. 

It estimates the update direction of the server model 

and update direction of each client. From the difference 

it measures the client drifting which is then used to 

local update. This strategy helps to overcome the 

problem of client heterogeneity and reduce the 

communication round in model convergence.  

3) Adaptive Federated Optimization [128] proposed by 

Google Research team introduces the adaptability in 

server optimization. The server optimization is more 

informed as the adaptive learning rates allow 

knowledge to be incorporated from previous iterations. 

In this optimization framework, a client optimizer 

minimizes the loss using local data over multiple 

training epochs. Then, to update its global model, the 

server performs gradient-based optimization on the 

average of the model updates of clients. FedAvg is the 

special case when SGD is used as both client and 

server optimizer with server learning rate being 1. 

Although it incorporates adaptive learning rates in the 

server optimization, it does not increase client storage 

or communication costs. Moreover, it is compatible 

with cross-device FL. However, it does not completely 

remove the effect of client heterogeneity. But for 

moderate, naturally arising heterogeneity, adaptive 

optimizer is quite effective, especially in cross-device 

setting. 

4) FedBoost [129] is a communication-efficient algorithm 

for FL based on ensemble learning technique. In this 

approach an ensemble of pre-trained base predictors is 

trained via FL. It reduces the cost of both server-client 

and client-server communication without gradient 

TABLE III 

COMPARISON OF AGGREGATION ALGORITHMS 

Aggregation algorithm Overcome 
client drifting? 

Adaptive 
learning rate? 

Cross-device 
compatible? 

Communica-
tion-efficient? 

Address client 
heterogeneity? 

Ensure 
privacy? 

FedAvg [1] 
      

Scaffold [67]       

Adaptive Federated Optimization [128] 
      

FedBoost [129]       

FedProx [15]       

FedMA [110] 
      

Secure Aggregation [30] 
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compression and model compression approach. In 

addition to communication efficiency, other advantages 

of this method include computational speedups, 

convergence guarantees, privacy and optimality of the 

solution for density estimation for which language 

modelling is a special case. 

5) FedProx [4] addresses the two inherent challenges of 

FL. First one is system heterogeneity which means 

significant variable characteristics of system or device 

participating in FL. Second one is statistical 

heterogeneity that implies non-IID data across the 

network. It is a re-parametrized and generalized 

version of FedAvg. Specifically, FedProx is modified 

in two ways. First, it enables partial work to be 

tolerated. Based on availability of resources, a device 

can perform variable amounts of work locally, e.g., 

each device can run a variable number of local epochs.  

The partial solutions from the resource-constrained 

devices are accepted for aggregation. Secondly, a 

proximal term is introduced in a device’s local solver 

objective to control the impact of the variable amounts 

of local updates. 

6) Federated Matched Averaging (FedMA) [110] 

algorithm is proposed for introducing FL in modern 

network architectures for deep learning. Matching and 

averaging, based on similarity of features, is performed 

layer-wise across the channels of convolutional layers, 

across the hidden states of Long Short-Term Memory 

(LSTM) networks, and across fully-connected layer 

neurons to construct the shared global model at the 

server. FedMA can also handle client heterogeneity. 

Within a few rounds of training, it performs better than 

FedProx and FedAvg. 

7) Secure Aggregation [19] algorithm is developed based 

on the principle of Secure Multiparty Computation 

(SMC) algorithm. It does not share any information 

with each other except the learnable parameters derived 

from aggregation and thus defends the privacy of each 

client's model. It is fault-tolerant up to 1/3rd of users, 

i.e., it works well even if 1/3rd of the clients fails to 

engage in the aggregation. 

Personalization techniques: In FL, the goal is to train 

models with a central repository without changing their data 

samples. Personalization needs to adapt global model for 

individual client and permit users to acquire a richer model 

so that users’ models are trained over a bigger set of data 

samples. Wu et al. [105] mention three major challenges 

handled by FL process during personalization. The 

challenges are: 1) device heterogeneity for communication 

capabilities, storage and computation, 2) data heterogeneity 

because of non-IID, and 3) model heterogeneity for different 

model at personalized situation. 

Adding contextual features to datasets in a privacy-

preserving manner can lead to predictions that are more 

personalized. Moreover, based on similarity of clients’ data, 

different groups can be formed and a different model can be 

trained for each similar cluster [97]. Transfer learning can 

also be used in a federated setting for model personalization 

[130]. In transfer learning, the knowledge from a global 

model is transferred to local models. The local model 

parameters are then fine-tuned using local data. Other 

approaches like multi-task learning and meta-learning solve 

multiple tasks simultaneously. The joint learning in multi-

task learning enables the model to make use of the 

differences and similarities across the tasks. Meta-learning 

produces models that are quite adaptive, and can solve new 

task with much less training data. Both meta-learning [99] 

and multi-task learning [100], [131], [132] algorithms have 

been proposed in the federated setting to achieve greater 

personalization. Knowledge distillation is another method 

where a student network mimics a larger teacher network. 

Using transfer learning and knowledge distillation, Li et al. 

[133] propose an FL framework that allows clients to design 

their own networks independently. Arivazhagan  et al. [134] 

propose a neural network architecture, where global data is 

used to train only the base layers, while the personalization 

layers are trained on local data. A new gradient descent 

variant called Loopless Gradient Descent (LLGD) by 

Hanzely et al. [135] allow each device to learn a mixture of  

its own local model and the global model. We summarize the 

different techniques of personalization in Table IV. 

B. CORE CHALLENGES 

Communication is a basic bottleneck in federated 

networks, which coupled with security concerns over sending 

crude information, requires that information produced on 

TABLE IV 

SUMMARY OF PERSONALIZATION TECHNIQUES 

Research article Personalization 

technique 

Algorithm 

McMahan et al. [133] 
Adding user context 

Context featurized 

Mansour et al. [100] Clustering 

Wang et al. [134] Transfer learning  

Smith et al. [102] Multi-task learning MOCHA 

Finn et al [135] 

Meta-learning 

MAML 

Fallah et al. [103] Per-FedAvg 

Khodak et al. [136] ARUBA 

Li et al. [137] Knowledge distillation FedMD 

Arivazhagan et al. 
[138] 

Base and 
personalization layers 

FedPer 

Hanzely et al. [139] Mixture of global and 
local models 

LLGD 
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each device stay local. To overcome this, researchers have 

come up with several strategies some of which involve local 

updating, compression schemes, decentralized training, and 

importance-based updating. 

Local-updating schemes tackle communication costs by 

performing additional work on the client that generates and 

consumes the machine learning model. As an extension of 

classical stochastic methods, mini-batch optimization 

methods have proven to be successful in many cases [136]. 

For both convex and non-convex objectives, distributed 

local-updating primal methods have also been applied with 

success [137]. Since the pivotal FedAvg algorithm proposed 

in [1], many directions have been taken that include 

quantizing uploads from edge devices [138]. 

Sketched and structures updates are among the 

compression schemes that enable the reduction of the model 

update size communicated to the FL server from the 

participating clients during each round [26], [139]. 

Subsampling, probabilistic quantization, and sparsification 

are also considered in [140]. The authors in [27] further 

extend the work of [26] to reduce the cost of communication 

from the server to participant, employing approaches such as 

federated dropout and lossy compression. The accumulation 

of error and momentum is handled by the central aggregator 

instead of the clients in [141]. 

Recent works like [6] have carried out decentralized 

training over heterogeneous data. Hierarchical 

communication patterns [142] is another approach that 

reduces the dependency on central server. First, updates from 

edge devices are aggregated on the edge servers. Then, from 

the edge servers, the updates are aggregated on the cloud 

servers. 

Important-based updating utilizes the fact that most 

parameter values of a deep neural network model are 

sparsely distributed. Edge Stochastic Gradient Descent 

(eSGD) algorithm has been proposed in [28]. For updating 

parameters in each round of communication, only selected 

important gradients are sent to the server. Authors in [29] 

have come up with the Communication-Mitigated Federated 

Learning (CMFL) algorithm, which reduces the cost of 

communication by only uploading updates of the local model 

that are relevant. Global convergence is still guaranteed. A 

comparison is first made between the local update of a 

participant and the global update during every iteration, in 

TABLE V 

STRATEGIES AND APPROACHES TO REDUCE COMMUNICATION COSTS 

Research 

article 

Strategies Contributions Future concerns 

Rothchild et 
al. [130] 

Compression A Count Sketch is used to compress the updates of 
model. Then, leverages sketch mergeability. 

Explore effective ways to combine efficiency within a 
round and efficiency in number of rounds. 

Reisizadeh et 
al. [131] 

Local Updating Method with models periodically averaged at the server 
and quantized uploads from edge devices. 

Can experiment further with the trade-offs made between 
communication and computation. 

Konecny et al. 
[36] 

Compression Structured updates from a restricted space; sketched 
updates using multiple techniques together like random 
rotations, subsampling and quantization. 

Experimentation with selection of variables used to 
parametrize space. 

McMahan et 
al. [1] 

Local Updating Locally computed SGD updates on each client is sent to 
a server, which then performs model averaging. 

Mitigating the straggler problem. 

Han et al. 
[132] 

Compression Pruned the network, quantized the weights and applied 
Huffman coding. 

The quantized network with weight sharing needs to 
benchmarked on various hardware. 

TABLE VI 

STRATEGIES AND APPROACHES FOR MANAGING SYSTEMS HETEROGENEITY 

Research 

article 

Strategies Contributions Future concerns 

Yang et al. 
[140] 

Client Participation, concerned with number 
of clients 

FLASH, an FL simulation platform for 
developers and researchers. 

Experiments were conducted using 
geo-specific data, yet to try with more 
diverse data. 

Nishio et al. 
[43] 

Client Participation, concerned with number 
of clients 

FedCS, Federated Learning with client 
selection. 

Yet to train a more complex model 
with several million parameters. 

Anelli et al. 
[141] 

Client Participation, concerned with amount 
of data interaction by clients 

Improved aggregation by measuring 
contribution of each device based on 
multiple criteria. 

Identification of other local criteria, 
both general purpose and domain-
specific. 

Xu et al. [142] Client Participation, concerned with amount 
of data interaction by clients 

ELFISH, a “soft training” method for 
straggler acceleration, with corresponding 
aggregation scheme. 

Needs further exploration with non-IID 
datasets. 

Caldas et al. 
[37] 

Client Participation, concerned with amount 
of data interaction by clients 

Federated dropout, facilitates efficient local 
training by allowing users to train on subsets 
of the global model. 

Studying the effect of adaptively using 
these strategies to prevent unfairly 
biased models. 
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order to assign a relevance score to the update. Strategies and 

approaches for reducing communication costs are 

summarized in Table V. 

Systems heterogeneity: Due to having differences in 

connectivity of network, memory, CPU, battery power level, 

etc., participants in a federated network often have varying 

capacity in terms of communication, computation and 

storage. Straggler mitigation and other challenges are further 

compounded due to these system-level characteristics. 

Popular approaches include asynchronous communication, 

client participation, and fault tolerance. 

Straggler mitigation in heterogeneous environments using 

asynchronous communication schemes [10] is a promising 

approach. When there is device variability, synchronous 

approaches are more susceptible to stragglers. However, 

asynchronous communication also suffers from bounded-

delay assumptions made to control the measure of staleness. 

Client participation schemes involve actively selecting 

participating devices based on systems resources like FedCS 

[33] and quality of data [47] at each round. The FedCS 

protocol is extended by the authors in [20]. Their Hybrid-FL 

protocol addresses the differences that exists in data 

distributions of participating clients. Deep Q-Learning [35] is 

also used to optimize allocation of resources needed for 

training models. Client participation is controlled on the 

aspect of the number of clients in [143] and on the aspect of 

the amount of data contributed or consumed by clients in 

[27], [144], [145]. 

Fault Tolerance [99] is used because learning over remote 

devices becomes more critical as some devices in the 

network often drop out even before an iteration is completed. 

Introducing algorithmic redundancy to tolerate device 

failures is another option known as coded computation. 

Authors in [15] have explored using codes to increase the 

speed of distributed training. Strategies and approaches for 

managing systems heterogeneity are summarized in Table 

VI. 

Statistical heterogeneity refers to the existence of non-IID 

data across the network. The data that is generated and 

collected by the devices in the network are usually non-

identically distributed. This causes complexity in terms of 

analysis, modeling, and evaluation. The usage patterns of 

different users are distinct. For some clients, the global 

shared model does not perform as well as local models that 

are trained locally. So, they are disincentivized to take part in 

the federated network. Moreover, there can be significant 

variance in terms of the amount of data per device. Also, 

possible presence of underlying structures can capture the 

relationship between the devices and their distributions.  

In general, an FL system focuses on learning a single 

global model. There also exists other approaches such as 

learning distinct local parameters simultaneously via multi-

task learning frameworks [99]. The authors of [146] have 

developed tools to measure statistical heterogeneity using 

metrics such as local dissimilarity. Although, calculating 

these metrics is quite difficult for a federated network before 

the training begins. The significance of these metrics 

influences future directions to the development of efficient 

algorithms to quickly quantify the heterogeneity in an FL 

system. 

TABLE VII 

SUMMARY OF FL THREAT MODELS 

Research article Attack type Threat model Attack strategies Attack target 

Shafahi et al. 
[148] 

Poisoning 
Attack 

Data Poisoning 

“Watermarking” strategy (frog image) 

Data 

Gu et al. [149] Backdoor attack 

Bhagoji et al. 
[65] 

Model Poisoning 

Stealth metrics, boosting of malicious agent’s updates, 
parameter estimation for the benign agents’ updates 

Model 
Fang et al. 
[150] 

Manipulate global model via local model parameter 
manipulation on compromised devices 

Bagdasaryan et 
al. [151] 

Backdoored image-classification model, backdoored word-
prediction model 

Melis et al. 
[152] 

Inference 
Attack 

Membership inference, 
inferring properties 

Gradient exchange 

Data 

Pyrgelis et al. 
[153] 

Membership inference ML classifier 

Zhu et al. [154] Inferring training inputs (and 
labels; inconsistently) 

DLG 

Zhao et al. 
[155] 

Inferring training inputs and 
labels 

iDLG 

Hitaj et al. 
[156] 

Inferring class representative GAN attack 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3111118, IEEE Access

 

VOLUME XX, 2017 1 

To tackle statistical heterogeneity, the authors in [134] 

utilizes the concepts from multitask learning. In FEDPER 

approach, the participants use a set of base layers pre-trained 

with the FedAvg [1] algorithm. Finally, each participant 

individually trains another set of layers using their local data. 

The authors empirically show that the FEDPER approach 

outperforms a pure FedAvg approach using the Flickr-AES 

dataset [134] considering the personalization layers are 

capable of representing the personal predilection of an FL 

user. 

FL threat models: FL offers an emerging paradigm for 

facilitating multiple organization data collaboration without 

revealing their private data to each other. But recent research 

demonstrated that FL may not always provide sufficient 

privacy guarantee during model update. FL may face several 

vulnerabilities from both server and participants. As 

summarized in Table VII, per the threat models, two 

prominent forms of attacks that take place are: 

1) Poisoning Attacks may be executed either on the 

training phase of the model or on the data. Two types 

of poisoning occur: 

a) Data poisoning take place for the period of 

collecting local data. Data poisoning attacks may 

occur in two ways such as clean-label attack 

(adversary can poison correct class of data sample) 

and dirty-label attack (adversary try to misclassify 

the target label of training dataset) [147], [148]. 

b) Model poisoning take place for the period of 

model training. According to Bhagoji et al. [55], 

model poisoning is accomplished by an adversary 

controlling few malicious representatives with the 

aim to misclassify specific inputs with high 

confidence. Bagdasaryan et al. [149] introduced a 

new scope of vulnerability of FL, inserting 

backdoor to the joint model. FL models are more 

vulnerable for model poisoning attack than data 

poisoning attack. This form of attack can be used 

to cause misclassification in image and next word 

prediction problem. 

2) Inference Attacks: Serious privacy leakage may occur 

in FL during update of the model. When exchanging 

gradient, private information of participant may be 

exposed to the adversary [62], [150]–[152]. Pyrgelis et 

al. [153] also conduct membership inference attack to 

identify the vulnerability at aggregate location. 

According to the survey of threat model by Lyu et al. 

[101], the inference attack falls into two categories – 

white-box attack and black-box attack. Deep Leakage 

from Gradients (DLG) [152] obtained the private 

training data at the inference phase. Another algorithm, 

iDLG also expose the label of training inputs [154]. 

Hitaj et al. [155] apply GAN attack which allows the 

adversarial party in the training process of FL to 

fabricate inferring class representative. 

Privacy is one of the most critical parts of FL. In this 

section, we briefly review different types of privacy and 

security techniques for FL: 

1) Secure Multiparty Computation (SMC) is one of 

privacy mechanisms used in FL. SMC model 

comprises of multiple parties and provide proper 

security. This model assures that every party only 

knows its inputs and outputs. Every party knows 

nothing about other parties. Bonawitz et al. designed a 

communication-efficient SMC protocol for high-

dimensional data to protect the privacy of users’ model 

gradients [19]. 

2) Differential Privacy (DP) is a privacy preserving 

mechanism which protects individual privacy by 

adding noise in the data. There are various types of DP: 

a) Local DP: Each individual data point is distorted 

with noise. 

b) Global DP: To protect privacy of individuals, the 

output of the dataset query is distorted with noise. 

c) Hybrid DP: Combine multiple trust model by 

partitioning users by their trust model preferences. 

Geyer et al. [4] developed a method to obtain differential 

privacy at client level for FL. Wei et al. [156] proposed an 

aggregation algorithm called NbAFL where they add noise to 

client-side parameters before aggregation. Authors in [157] 
used both SMC and Differential privacy mechanism to avoid 

differential attack. 

3) Homomorphic Encryption (HE) is another security 

mechanism in FL. It protects user data by changing 

parameter under the encryption method. HE is a 

cryptographic technique that perform mathematical 

operations on data as if it was unencrypted. Many 

researchers worked with Homomorphic encryption for 

preserving privacy [158], [159]. In order to guarantee 

the privacy of users’ local gradients during FL, Xu et 

al. [114] proposed a double-masking protocol. 

Applications: Although FL faces some limitations and 
severe challenges, it has been implemented successfully in 
several real-life applications: 

1) Applications in NLP: FL has become a hot topic to 

researchers since the concept was first introduced by 

Google to predict next word in virtual keyboard for 

smartphones [160]. Further improvement in predicting 

next word using pretrained word embeddings was 

made by other researchers [80]. Wake word detection 

was also another contribution by David et al. [66]. 

Emoji prediction from text typed on a mobile keyboard 

was introduced by Swaroop et al. [81]. Besides, some 

researchers worked on learning out of vocabulary 

words in virtual keyboard for smartphones [79] 

whereas some tried to improve virtual keyboard search 

suggestion quality [161]. 
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2) Applications in healthcare: Huang et al. [17] predicted 

the mortality rate of patients suffering from heart 

disease by using electronic medical records from 

multiple hospitals. Brisimi et al. [74] use electronic 

health record (EHR) to determine whether a heart 

disease patient would be hospitalized or not. Li et al. 

[162] also worked on mortality and hospital stay time. 

Using health records, Lee et al. [163] proposed a way 

to find similar patients from different hospitals while 

preserving the patients’ privacy. They used a federated 

patient hashing framework. 

3) Applications in computer vision: Another important 

application area of FL is computer vision. Shao et al. 

[164] proposed Federated Face Presentation Attack 

Detection method. Liu et al. [165] worked on smart 

city safety monitoring solutions based on computer 

vision. 

4) Applications in transportation: Development of 

intelligent transportation systems using FL is explored 

by Elbir et al. [166]. Lim et al. [167] proposed an FL 

based approach in UAV enabled internet of vehicles 

(IoV) for developing applications like management of 

car parking occupancy, and traffic prediction. 

V. OPEN ISSUES AND CHALLENGES 

There are several open issues and challenges in FL [168]. 

Tradeoffs among accuracy, privacy, communication cost, 

level of personalization, etc. have to be carefully considered 

when designing an FL system. Often such considerations are 

dependent upon the specific use case or application area. In 

this section, we discuss some open issues related to design 

aspects, core challenges and application areas. 

A. DESIGN ASPECTS 

Data Partitioning and FL Architectures: In addition to 

the primary forms of data partitioning schemes and FL 

architectures discussed in this work, other variations in FL 

architectures have recently been developed. For instance, 

PerFit [105] is cloud-based and enables personalized FL 

approaches to be selected flexibly, thus making it suitable for 

IoT applications. Another architecture is FedHealth [106], 

which uses FTL framework for wearable healthcare to build 

personalized models, thus enabling personalized healthcare 

services. Future works can focus on developing FL 

architectures schemes that facilitate the specific requirements 

of different industries and application areas to be met. 

Aggregation Techniques: Developers who wish to 

implement FL solutions can benefit from toolkits that would 

offer standardized and pre-configured aggregation algorithms 

that are suitable for their specific application areas and use 

cases. Much like AutoML solutions, such a toolkit for FL 

would lower the barrier of entry for non-specialist 

developers. 

Personalization Techniques: Adding suitable user and 

context features to the shared global model is a possible 

alternative to having device-specific personalization. For 

example, the order of the filters in applications like Snapchat 

can be arranged according to certain features of the user like 

browsing history, age, sex, likes and dislikes, usage patterns, 

etc. Thus, developing architectures that can accommodate 

such user and context features effectively for different tasks 

is another open problem. 

Moreover, it is observed from [169] that a gap exists 

between the accuracy of personalized and global models, 

making a case for personalization techniques to be one of the 

important research areas in FL. Nevertheless, no clear 

metrics have yet been formulated to measure the 

performance of personalization techniques. Wang et al. [130] 

evaluate conditions under which personalization yields 

desirable models. Further research is required to develop 

comprehensive metrics to assess the effective of 

personalization approaches. 

B. CORE CHALLENGES 

Communication: There is a tradeoff between 

communication cost and accuracy in FL. Benchmarks in 

machine learning do not usually set any restriction criteria. It 

is worth considering setting the communication budget as a 

restriction criterion in communication-focused FL 

benchmarks. For example, [170], [171] explores one-shot or 

few-shot communication schemes in FL, and [171] tries to 

maximize performance for fixed rounds of communication 

(i.e., single or few rounds). Additionally, these methods need 

to be thoroughly evaluated and analyzed for the FL setting 

where the networks can be highly heterogenous. 

In cross-device FL, often only a few devices are active 

during an iteration. There is scope for in-depth analysis of the 

consequences of this asynchronous communication scheme, 

where the devices become active based on certain events. 

Systems Heterogeneity: Various algorithms [33], [35] 

have been proposed to address systems heterogeneity. 

However, wireless connectivity might not be available 

consistently, and as such many participating devices may 

drop from the FL system during training. Future works can 

design new FL algorithms that are more robust even when a 

larger number of devices drop out from the network due to 

connectivity issues. 

Statistical Heterogeneity: Eichner et al. [95] developed a 

pluralistic solution to alleviate a form of data heterogeneity 

where devices exhibited different characteristics during the 

day versus at night. Further research can be conducted to 

explore similar methods to tackle diurnal variations at more 

granular times of day (instead of only day versus night) or at 

different times of the week. 

Privacy/Security: While device-specific local or global 

level privacy is well studied and understood, finer privacy 

requirements at the sample level is promising, ongoing 
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research. Sample-specific privacy guarantee technique by Li 

et al. [172] trade off privacy for a greater accuracy. Hybrid 

methods need be explored that deal with both sample and 

device level privacy requirements. 

C. APPLICATION AREAS 

FL has mainly been applied to supervised learning 

problems. Future research could attempt to tackle the 

challenges that may arise when using FL in applications that 

calls for data exploration, unsupervised, semi-supervised, and 

reinforcement learning. 

The challenges faced in the implementation of FL 

solutions for different application areas have not yet been 

thoroughly studied, with the focus of current studies being 

primarily on the training of FL models. In addition to the 

core challenges discussed in this paper, issues that are 

specific to the industry domain or application area also needs 

to be considered. For instance, there are application areas like 

Mobile Edge Networks that would require energy-efficient 

communication to be greatly emphasized. 

VI. CONCLUSION 

FL allows participating organizations to collaboratively train 

prediction models without having to share their data. There 

has been a growing interest in FL research in both industry 

and academia in recent years. FL enables certain industries 

like healthcare to overcome challenges related to data 

collection and privacy. 

This growing interest in FL motivated us to review most of 

the contemporary survey papers in FL and to classify FL into 

several topics under design aspects, core challenges and 

application domains. We thoroughly investigated and 

analyzed the FL survey papers, and conducted a holistic 

review of each FL topic. Finally, we outlined promising 

future research directions. This work will hopefully help 

future researchers in FL and related areas to scope their 

work. 
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