
Challenges, Design and Analysis of a Large-scale P2P-VoD
System

Yan Huang∗, Tom Z. J. Fu†, Dah-Ming Chiu†, John C. S. Lui‡ and Cheng Huang∗
∗{galehuang, ivanhuang}@pplive.com, Shanghai Synacast Media Tech.
†{zjfu6, dmchiu}@ie.cuhk.edu.hk, The Chinese University of Hong Kong

‡cslui@cse.cuhk.edu.hk, The Chinese University of Hong Kong

ABSTRACT
P2P file downloading and streaming have already become
very popular Internet applications. These systems dramat-
ically reduce the server loading, and provide a platform for
scalable content distribution, as long as there is interest for
the content. P2P-based video-on-demand (P2P-VoD) is a
new challenge for the P2P technology. Unlike streaming live
content, P2P-VoD has less synchrony in the users sharing
video content, therefore it is much more difficult to allevi-
ate the server loading and at the same time maintaining
the streaming performance. To compensate, a small storage
is contributed by every peer, and new mechanisms for co-
ordinating content replication, content discovery, and peer
scheduling are carefully designed. In this paper, we describe
and discuss the challenges and the architectural design issues
of a large-scale P2P-VoD system based on the experiences
of a real system deployed by PPLive. The system is also
designed and instrumented with monitoring capability to
measure both system and component specific performance
metrics (for design improvements) as well as user satisfac-
tion. After analyzing a large amount of collected data, we
present a number of results on user behavior, various system
performance metrics, including user satisfaction, and discuss
what we observe based on the system design. The study of
a real life system provides valuable insights for the future
development of P2P-VoD technology.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems

General Terms
Design, Measurement, Performance

Keywords
Peer-to-Peer/Overlay Networks, Video-on-Demand, Content
Distribution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

1. INTRODUCTION AND CONTRIBUTION
The effectiveness of using the P2P approach for content

distribution has been proven by many deployed systems [1,
2, 3, 4, 9, 21]. These P2P systems offer many different ser-
vices. One type of service is P2P file downloading, for exam-
ple implemented by BitTorrent [9] and Emule [1]. When a
file is downloaded by many users, these users help each other
so that the server load is significantly reduced. The peers
may experience different downloading rates, often depend-
ing on how much they are able to contribute to the process.
Another type of service is P2P live streaming (for example
implemented by a university project Coolstreaming [21] and
many commercial systems such as PPLive [2]). When a live
video is watched by many users, again these users can help
each other to alleviate the load on the server. In this case,
the new challenge to system design is to ensure all peers can
receive the streamed video at the playback rate.

More recently, the interest has turned towards a new kind
of service, P2P video-on-demand (P2P-VoD). Based on a
detailed analysis of a current client-server VoD system at
Microsoft, it was pointed out in [17] that P2P-VoD could
bring significant savings in server loading. Apparently this
conclusion was already shared among P2P-VoD developers,
since a number of P2P-VoD systems were deployed at about
the same time as the publication of [17]. These P2P-VoD
systems are already enjoying a large viewer population [3,
4, 5, 6, 7]. Like P2P streaming systems, these P2P-VoD
systems also deliver the content by streaming, but peers can
watch different parts of a video at the same time, hence di-
luting their ability to help each other and offload the server.
To compensate, this new genre of P2P systems requires each
user to contribute a small amount of storage (usually 1GB)
instead of only the playback buffer in memory as in the P2P
streaming systems. This additional resource opens up vast
new opportunities for arranging suitable patterns of content
replication to meet diverse user demands. Essentially, the
new system is a highly dynamic P2P replication system, plus
a sophisticated distributed scheduling mechanism for direct-
ing peers to help each other in real time.

In this paper, we conduct an in-depth study of P2P-VoD
based on a real-world P2P-VoD system built and deployed
by PPLive in the fall of 2007. Since the deployment of this
P2P-VoD service, the system has been keeping track of the
number of users. As of late November 2007, a total of 2.2
million independent users had tried the system. A total
of 3900 movies were published in November and December
of 2007, with around 500 movies on-line simultaneously. In
late January 2008, the number of simultaneous users reached

375

over 150K and was still growing. The point is that this is
a system with a reasonable scale, and there are valuable
lessons to be learned by measuring and analyzing its behav-
ior.

The organization of the paper is as follows. In Section
2, we first describe a general architecture and its impor-
tant building blocks. This general model serves to provide a
framework and taxonomy for studying different design issues
in a P2P-VoD system; for example, strategies for replication,
information search and lookup, peer service scheduling, and
other building blocks. In Section 3, we discuss metrics for
evaluating a P2P-VoD system, and how to instrument the
measurement in a real-life system. Real-life measurement
data were collected from the deployed PPLive VoD system.
In Section 4, we show the collected data, and analyze user
demand, the effectiveness of the system design (for exam-
ple the replication and transmission scheduling strategies)
to satisfy user demand, and user satisfaction. Finally, we
discuss related work and conclusions.

2. DESIGN AND BUILDING BLOCKS
In this section, we describe the general architecture of a

P2P-VoD system in terms of various building blocks. In
the process, we explain many specific design decisions in
the PPLive P2P-VoD system, as specific examples. We also
compare the P2P-VoD building blocks to those of P2P file
downloading and streaming: there are some similarities, but
also some notable differences.

2.1 Major components of the system
Similar to many P2P file sharing or streaming systems, a

P2P-VoD system has the following major components: (a)
a set of servers as the source of content (e.g., movies); (b) a
set of trackers to help peers connect to other peers to share
the same content; (c) a bootstrap server to help peers to find
a suitable tracker (e.g. based on which geographical region
the peer is located), and to perform other bootstrapping
functions; (d) other servers such as log servers for logging
significant events for data measurement, and transit servers
for helping peers behind NAT boxes. These servers are typ-
ically provided by the P2P-VoD operator.

The other major component, of course, is the set of peers.
They typically run software downloaded from the P2P-VoD
operator. The P2P-VoD peer software comes with protocols
to talk to all the servers above, as well as protocols to talk
to other peers to share content. The peers also implement
DHT (distributed hash table) function to back up certain
bootstrapping servers.

2.2 Segment sizes
In the design of a P2P-VoD system, a fundamental deci-

sion is about segmentation of content, or how to divide a
video into multiple pieces. There are many considerations
for making this decision. From a scheduling point of view,
it is desirable to divide the content into as many pieces as
possible (i.e., small segment size), so that it gives the most
flexibility to schedule which piece should be uploaded from
which neighboring peer. This is specially so when peers all
have different upload capacity. From the overhead point of
view, the larger the segment size the better, to minimize
overheads. There are several types of overheads including:
(a) Each piece of content comes with some header to de-
scribe the content, for example its sequence number and

Segment Designed for Size
movie entire video > 100MB
chunk unit for storage 2MB

and advertisement
piece unit for playback 16KB

sub-piece unit for transmission 1KB

Table 1: Different units of a movie

timestamp, and authentication information. The larger the
segment, the smaller the header overhead. (b) Each peer
needs to let other (neighboring) peers know which pieces
it is holding. This information is usually represented by a
bitmap, for ease of processing. The larger the segment size,
the smaller the size of the bitmap, hence this is advertizing
overhead. (c) In order for a peer to get a piece of content
from another peer, there will be some protocol overhead,
in terms of request packets or other protocol packets. The
larger the segment size the smaller is such protocol over-
heads. A third perspective is due to the real-time nature of
streaming. The video player expects a certain minimum size
for a piece of content to be viewable (so a viewable piece al-
ways consists of multiple packets), and such viewable units
must be delivered to the player with deadlines. By mak-
ing these units (exchanged between the transport and the
player) too large, it increases the chance that the transport
fails to collect a complete viewable unit of content before
the deadline.

Due to these conflicting requirements, there are three lev-
els of segmentation of a movie in PPLive’s VoD system, as
defined in Table 1.

The size of piece is dictated by the media player and a
size of 16KB is chosen. PPLive uses the WMV format for
video encoding. The source video rate is usually between
381 to 450 Kbps. For high-definition video, the rate can go
up to 700 Kbps or higher. Using the 16KB size, a piece will
contain a viewable segment as long as the source rate is less
than 1.4 Mbps.

The size of piece is too large for efficient scheduling of
transmission, so sub-piece is used. If piece is advertised to
other peers, then a bitmap of thousands of bits would be
needed (e.g., a 2GB movie would need a bitmap of size 64K
bits. So chunk is defined and used for the purpose of ad-
vertizing to neighbors what parts of a movie a peer holds.
In summary, a movie is composed of a number of chunks, a
chunk is composed of a number of pieces, while a piece is
composed of a number of sub-pieces.

Given these choice of segment sizes, PPLive experiences
an overhead rate of 6.2%, considering all three types of over-
heads mentioned above, but assuming operating under per-
fect conditions with no losses, no unnecessary requests and
no duplicate transmissions. Under real-life network condi-
tions, the average overhead rate is about 10%.

2.3 Replication strategy
Each peer is assumed to contribute a fixed amount of hard

disc storage (e.g., 1GB). The entire viewer population thus
forms a distributed P2P storage (or file) system. A chunk is
the basic unit for storing movies on a hard disc. Only when
all the pieces in a chunk are available locally, the chunk is
advertised to other peers.

The goal of the replication strategy is to make the chunks

376

as available to the user population as possible to meet users’
viewing demand while without incurring excessive additional
overheads. This is probably the most critical part of the
P2P-VoD system design. There are many possible replica-
tion strategies, many exploiting the various user demand
characteristics. This is an important area for continued re-
search.

The first design issue is whether to allow multiple movies
be cached if there is room on the hard disc. If so, a peer
may be watching one movie while providing uploading to an-
other movie at the same time. This is referred to as multiple
movie cache (MVC) rather than single movie cache (SVC).
The design of SVC is simpler, but MVC is more flexible for
satisfying user demands and is the choice by PPLive VoD.

The next important design consideration is whether to
pre-fetch or not. Without pre-fetching, only those movies
already viewed locally could possibly be found in a peer’s
disk cache. While Pre-fetching may improve performance,
it may also unnecessarily waste precious peer uplink band-
width. Also, for ADSL (commonly found in China), a peer’s
capacity to provide upload can be affected if there is simul-
taneous downloading. Furthermore, it is observed that the
visit duration for the majority of peers is currently no more
than one hour, which increases the risk of wastage. For these
reasons, the design choice is no pre-fetching.

Another important choice by the replication algorithm is
which chunk/movie to remove when the disk cache is full.
In PPLive’s case, this decision is primarily made on a movie
basis. This means once a movie has been chosen as the next
one to go, all the chunks of the movie immediately become
candidates for removal one by one. Doing it at a chunk
level would incur more overheads (for collecting necessary
information about different chunks). How is the next movie
picked? The favorite choices by many caching algorithms
are least recently used (LRU) or least frequently used (LFU).
Indeed, LRU is the original choice in PPLive VoD. After
further studies, the simple LRU is replace by a weight-based
evaluation process.

Each movie is assigned a weight based on primarily two
factors: (a) how complete the movie is already cached lo-
cally; (b) how needed a copy of the movie is. The need level
is determined by the availability to demand ratio (ATD).
Suppose a movie is cached (including being viewed) by c
peers and being viewed by n peers; then the ATD is c/n.
The need of a movie is then defined as a decreasing function
of its ATD, reaching a maximum value for all ATD beyond
6 (or 8). The value of this threshold (6-8) is determined
by the prevailing uplink bandwidth contributed by peers,
normalized by the source bitrate. For current situation in
China, many peers have relatively low uplink bandwidth to
contribute, therefore it takes 6-8 peers to offload the source
(server).

The ATD information for weight computation is provided
by the tracker. So the implementation of the weight-based
replication strategy incurs additional overheads. This over-
head depends on how often the caching decision is made. In
current systems, the average interval between caching deci-
sions is about 5 to 15 minutes, so this is not a significant
overhead. The benefit of weight-based replication over LRU
is significant. It improves the server loading from 19% down
to a range of 11% to 7%. This is the biggest performance
improvement achieved by a design change.

More detailed discussion of how to measure the effective-

ness of the replication algorithms, will be discussed in sec-
tion 3. Measurement results and analysis will be included
in section 4.

2.4 Content Discovery and Peer Overlay Man-
agement

It is not enough to have good replication of content -
peers must also be able to discover the content they need
and which peers are holding that content. The challenge
is to accomplish this with the minimum overhead. With-
out exception, P2P systems rely on the following methods
for content advertising and look-up: (a) tracker (or super
node); (b) DHT; (c) gossiping method. These methods pro-
vide different levels of availability, freshness and robustness,
with commensurate levels of overhead. In PPLive VoD, all
these mechanisms are used to some extent, depending on
the different requirements for the information.

Trackers are used to keep track of which peers replicate
a given movie (or part of that movie). As soon as a user
(peer) starts watching a movie, the peer informs its tracker
that it is replicating that movie; conversely, a peer also tells
its tracker when it no longer holds a movie in its cache.
When a peer wants to start watching a movie, it goes to
the tracker to find out which other peers have that movie.
Those other peers become this peer’s neighbors.

The information about which chunks a peer has is kept in
a Chunk Bitmap. A peer asks its neighbors for their Chunk
Bitmaps. Based on this information, it selects which neigh-
bor to download from. So discovering where chunks are is
by the gossip method. This cuts down on the reliance on
the tracker, and makes the system more robust. Even if the
tracker is not available, a peer can switch to the gossip mode
to find other peers watching the same movie.

In fact, each peer also regularly sends keep-alive messages
to a tracker to report its chunk bitmap and other statistics.
This information is collected for monitoring and manage-
ment purposes, rather than for operational reasons. We will
describe how this information is used to compute a (replica-
tion) health index.

Originally, DHT (implemented by tracker nodes) is used
to automatically assign movies to trackers to achieve some
level of load balancing. In later versions, peers also imple-
ment DHT so as to provide a non-deterministic path to the
trackers. This prevents the trackers to be possibly blocked
by some ISPs.

2.5 Piece selection
A peer downloads chunks from other peers using a pull

method. For P2P-VoD, there are three considerations for
selecting which piece to download first:

1. sequential : Select the piece that is closest to what is
needed for the video playback.

2. rarest first : Select the piece that is the rarest (usually
the newest piece in the system). Although it seems
counter-intuitive for streaming, selecting the rarest piece
helps speeding up the spread of pieces, hence indirectly
helps streaming quality. This strategy tends to help
the system scale, which is clearly explained in [22].

3. anchor-based : In VoD, users may skip parts of a movie
and jump forward (backward). To support such VCR
features, a number of video anchor points are defined

377

for a movie. When a user tries to jump to a particular
location in the movie, if the piece for that location is
missing then the closest anchor point is used instead.

In PPLive’s system, a mixed strategy is used, giving the first
priority to sequential, then rarest-first. The anchor-based
method is not used in current design for two reasons. (a)
From current experience, users do not jump around much.
On average, only 1.8 times per movie is observed. (b) By
optimizing the transmission scheduling algorithm, the initial
buffering time after a jump can be reduced to an acceptable
level1 without implementing anchoring. For these reasons,
the anchoring idea is still under study for future implemen-
tation.

2.6 Transmission strategy
After selecting a particular chunk to download, suppose

this chunk is available at a number of neighbor peers, how to
select which neighbor to download from? How many neigh-
bors to use for simultaneous download? How to schedule
requests and set timeouts to multiple neighbors for simulta-
neous download? All these are accomplished by the trans-
mission scheduling algorithm.

There are two (sometimes conflicting) goals in designing
the transmission algorithm: (a) maximize (to achieve the
needed) downloading rate; (b) minimize the overheads, due
to duplicate transmissions and requests.

In a data-driven overlay, the neighbors a peer connects to
can be highly dynamic, since each neighbor may be answer-
ing to multiple requests at a time. So a peer must constantly
juggle how to send download requests to different neighbors
and how to deal with timeouts. There are different levels of
aggressiveness: (i) a peer can send a request for the same
content to multiple neighbors simultaneously, to ensure it
gets the content in time; (ii) a peer can request for different
content from multiple neighbors simultaneously; when a re-
quest times out, it is redirected to a different neighbor; (iii)
work with one neighbor at a time; only when that neighbor
times out, try to connect to a different neighbor.

Strategy (i) is very aggressive for achieving the deadline
for downloads, but invariably generates duplicate transmis-
sions. Strategy (iii) is very conservative in resource utiliza-
tion. Both strategy (ii) and (iii) may still general dupli-
cate transmissions because of timeouts, but the likelihood is
much lower than (i). PPLive VoD’s transmission algorithm
is based on strategy (ii). In implementing strategy (ii), the
algorithm tries to proportionally send more requests to the
neighbor based on response time. A critical parameter for
tuning is the number of simultaneous neighbors to send re-
quests to. For playback rate of around 500Kbps, our experi-
ence is that 8-20 neighbors is the sweet spot. More than this
number can still improve the achieved rate, but at the ex-
pense of heavy duplication rate. If the desired rate is 1Mbps,
then 16-32 simultaneous neighbors tends to provide the best
result. These numbers are highly empirical, depending on
the prevailing uplink bandwidth of peers and many other
factors. Overall, how to design the best transmission algo-
rithm is an interesting topic for further research.

Finally, it should be pointed out that when the neigh-
boring peers cannot supply sufficient downloading rate, the
content server can always be used to supplement the need.

1In recent tests, the average buffering time is around 18
seconds.

2.7 Other design issues
After describing the basic design for normal networking

conditions, we describe a number of mechanisms designed
to deal with abnormal operating conditions. These include:
incentives for contribution; traversing NAT and firewalls;
and content authentication.

It is well-known that the P2P file downloading protocol
BitTorrent [9] uses tit-for-tat as incentive to induce peers to
help each other. In P2P streaming, this does not work since
many peers cannot contribute uploading bandwidth greater
than or equal to the playback rate. So what incentives are
used? In the PPLive system, the users do not have any built-
in controls for adjusting their contribution levels. In order
for the software to continue to deliver content for playback,
the client software must regularly advertise its chunk bitmap
to the tracker; else playback would be automatically turned
off.

Another impediment to P2P overlay networks is the NAT
boxes and firewalls. The PPLive VoD system uses standard
methods2 for peers to discover different types of NAT boxes
on their path to the Internet, and advertize their addresses
accordingly. This is quite necessary in the current Internet
since about 60%-80% of peers are found to be behind NAT.
We have included some data to show the distribution of the
NAT types in section 4.

Also, a significant number of peers are protected by fire-
walls. For this reason, the PPLive software carefully pace
the upload rate and request rate to make sure the firewalls
will not consider PPLive peers as malicious attackers.

It is important for the P2P-VoD system to include mecha-
nisms to authenticate content, so that the system is resistant
to pollution attacks [10]. Such authentication can be imple-
mented based on message digest or digital signature. In the
case of a proprietary system, it is not difficult for the oper-
ator to implement some means to distribute a key for each
movie.

Authentication can be done at two levels: chunk level or
piece level. If chunk level, authentication is done only when
a chunk is created and is stored to the hard disc. In this
case, some pieces may be polluted and cause poor viewing
experience locally at a peer. However, further pollution is
stopped because the peer would detect a chunk is bad and
discard it. The advantage of the chunk level authentication
is its minimal overhead.

Chunk-level authentication has at least two significant
drawbacks. Sometime, polluted pieces may cause more dam-
age than poor viewing experience, for example it may crash
or freeze the player. Secondly, chunk is a rather large seg-
ment of content. There is some non-zero probability that a
piece is bad not due to pollution; but this would cause the
entire chunk to be discarded. For these reasons, it is wise
to do authentication at the piece level to ensure good video
quality. In the current version of PPLive VoD, a weaker form
of piece level authentication is also implemented, leveraging
on the same key used for chunk level authentication.

3. PERFORMANCE METRICS AND MEA-
SUREMENT METHODOLOGY

An important goal of this paper is to study a large-scale
real-life P2P-VoD system through measurement. A large

2Similar to the STUN protocol.

378

User ID Movie ID Start time End time Start pos.

Table 2: MVR format

amount of information was measured, and we will focus on
those aspects most interesting. In this section, we first de-
scribe what we try to measure and the metrics used for mea-
surement. Then we explain how we collected the data.

3.1 What to measure
What we measure can be roughly grouped into three areas:

1. User behavior : This includes the user arrival patterns,
and how long they stayed watching a movie. One ma-
jor difference between VoD and live streaming is that
users may not be watching the same thing at the same
time, but there is often some overlap (for example,
they are watching different parts of the same movie).
Another important difference is in VoD users can jump
from one position to another in a movie, while skipping
the content in between. Understanding these kinds of
user behavioral information can be used to improve
the design of the replication strategy.

2. External performance metrics: This includes user sat-
isfaction and server load. Server load can be objec-
tively defined in terms of CPU, memory, and band-
width resources needed from the server at different
loading (number of peers). The definition of user sat-
isfaction is more subjective. These metrics are used to
measure the system performance perceived externally.

3. Health of replication: In comparison to P2P streaming
or file downloading, replication is a new aspect of P2P
technology designed for VoD. It is therefore particu-
larly important and interesting to design yardsticks to
measure how well a P2P-VoD system is replicating a
content. This is an internal metric used to infer how
well an important component of the system is doing.

3.2 Measuring User Behavior
In a P2P-VoD system, a typical user does not just watch

a movie sequentially, but rather, he is allowed to jump from
one movie to another; and when viewing one movie, is al-
lowed to skip parts of the movie and jump to a new position
in the movie. Therefore, the most basic user activity is the
continuous viewing of a stretch of a movie. This basic ac-
tivity is recorded in a movie viewing record (MVR). The
important parts of an MVR record are shown in Table 2,
where ST is the starting time, ET is the ending time, and
SP is the starting position.

Each user has a unique User ID, which is included as part
of the MVR. To ensure uniqueness, part of this ID is derived
from the hardware component serial numbers (HCSN) of the
computer (or the memory module on that computer) that is
running the P2P-VoD client software. Each movie also has
a unique ID, which is usually a hash of the movie content.
The MVR records the starting time (ST) and ending time
(ET), as well as the starting position (SP) of a particular
continuous viewing activity. Based on these three numbers,
the ending position can also be computed. In most cases, as
soon as a user finishes recording one MVR, a new MVR is
initialized to record the next viewing activity.

t
0

t
1

t
2 t3

Start
watching
from the
beginning

Jump to
30% of
the
movie

Jump to
65% of
the
movie

Stop
watching

T

U1 M1 t
0

t
1

0%
U1 M1 t1 t2 30%
U1 M1 t2 t3 65%

MVR1:

MVR2:
MVR3:

UID MID ST ET SP

Figure 1: Example to show how MVRs are gener-
ated

Figure 1 illustrates how MVRs are generated based on
a sequence of user viewing activities. In this example, the
user’s ID is U1 and the movie’s ID is M1. The user starts
to watch the movie at t0 from the beginning of the movie.
After watching for a duration of (t1 − t0), he/she jumps to
position 30% of the movie (i.e., if the length of the movie
is 5000 seconds, this user jumps to the 1500th second of
the movie). At t2, the user jumps again to start watching
at position 65% (or the 3250th second of the 5000-second
movie) and he stops watching at t3. As a result of this
sequence of activities, three MVRs are generated as shown
in Figure 1.

Clearly, a complete user behavior information can be rep-
resented by these MVR records. We explain later how this
information is collected.

3.3 User satisfaction
From the MVRs, we can determine the total viewing time

of each user for each movie. A very crude statistic for the
P2P-VoD service is the total viewing time (TVT) for all users
and all movies.

TVT gives us the total amount of service provided by the
P2P-VoD system, but it does not tell us the level of user
satisfaction. How to measure user satisfaction is in itself an
interesting research problem.

Let us first consider a simple version of user satisfaction.
Given an MVR, actually part of the duration between start
time and end time is not spent on viewing, but on buffer-
ing. Assume this information is captured by the P2P-VoD
client software together with the MVR, denoted as BT (for
buffering time). Let R(m, i) denote the set of all MVRs for a
given movie m and user i, and n(m, i) the number of MVRs
in R(m, i). Let r denote one of the MVRs in R(m, i). Then
we can define the fluency F (m, i) for a movie m and user i
to be:

F (m, i) =

∑
r∈R(m,i)(r(ET)− r(ST) − r(BT))

∑
r∈R(m,i)(r(ET) − r(ST))

. (1)

In simple words, F (m, i) measures the fraction of time a user
spends watching a movie out of the total time he/she spends
waiting for and watching that movie.

Ideally, we want something more refined than fluency to
guage the user satisfaction. For the time spent viewing a
movie, a user may not be satisfied with the quality of the

379

delivery of the content3. Let us go one step further and
assume that the user gave a grade for the average viewing
quality for an MVR r, denoted as r(Q). Let the value of
the grade be in the range of [0, 1]. The fluency expression
in Eq. (1) can be rewritten in terms of the contribution of
each MVR:

F (m, i) =

n(m,i)∑

k=1

Wk, (2)

where each k indexes a particular MVR for movie m and
user i, and

Wk =
(rk(ET) − rk(ST) − rk(BT))
∑

r∈R(m,i)(r(ET) − r(ST))
.

Now, we can define a more sophisticated version of user sat-
isfaction index, S(m, i), as:

S(m, i) =

n(m,i)∑

k=1

Wkrk(Q). (3)

To illustrate, consider the example in Fig. 1, and assume
there is a buffering time of 10 (time units) for each MVR.
The fluency can be computed as:

F =
(t1 − t0 − 10) + (t2 − t1 − 10) + (t3 − t2 − 10)

(t3 − t0)
.

Suppose the user grade for the three MVR were 0.9, 0.5,
0.9 respectively. Then the user satisfaction index can be
calculated as:

S =
0.9(t1−t0−10)+0.5(t2−t1−10)+0.9(t3−t2−10)

(t3−t0)
.

In reality, it is not likely (or even possible) for the P2P-
VoD software to get explicit user feedback for his viewing
experience. Instead, what can be done is for the P2P-VoD
client software to infer/estimate user satisfaction for each
MVR based on user actions. For example, if the user’s view-
ing duration for the MVR exceeds a certain minimum time
Tmin, that may indicate that the user is basically satisfied
with the viewing and the subsequent jump is not due to poor
viewing quality but due to content reasons. Another exam-
ple is if the termination of the viewing is due to a manual
control to ”STOP” the viewing altogether, it may also be
inferred that the user is likely to be terminating the viewing
session for some other activities rather than poor viewing
quality. Based on these kinds of additional events and infer-
ences, it is possible to estimate a suitable value for r(Q). A
detailed study of this topic, however, is beyond the scope of
this paper. It is a good topic for further research. For the
data analysis in the next section, we simply take fluency as
the indicator for user satisfaction.

3.4 Health of Replication
The health index (for replication) can be defined at three

levels:

a. Movie level : For a given movie m, the movie level
health index is defined simply as the number of ac-
tive peers who have advertised storing chunks of that
movie. This is basically the information that the tracker
collects about movies.

3Note, this is different than when the user is not happy with
the content itself.

b. Weighted movie level : The movie level index is very
coarse. Some peers may store a very small part of a
movie but are still counted towards the index. So the
weighted movie level index takes the fraction of chunks
a peer has into account in computing the index. If a
peers stores 50 percent of a movie, it is counted as 0.5.

c. Chunk bitmap level : The movie level indexes do not
show how well individual chunks are replicated. The
chunk level health index is in fact a vector representing
the number of copies each chunk of a movie is stored
by peers in a P2P-VoD system. Given the chunk level
health index, various other statistics can be computed.
For example, the average number of copies of a chunk
in a movie; the minimum number of chunks; the vari-
ance of the number of chunks, and so on.

In this study, we instrumented the P2P-VoD system to
collect the chunk level health index information, to be shown
in the next section.

3.5 Measurement Methodology
We now explain how measurement data are collected in

the P2P-VoD system we studied. The general mechanism
is supported by a log server that collects various sorts of
measurement data from peers. Sometimes, the measurement
data are part of information that the tracker collects, for
example the chunk replication information. In that case,
peers would send the collected information to the tracker,
and the tracker can then aggregated the information and
pass it on to the log server.

Generally speaking, to avoid a large amount of traffic and
a large number of interruptions on the log server, peers col-
lect data and do some amount of aggregation, filtering and
pre-computation before passing them to the log server. For
example, peers do not report individual MVRs as they are
generated. Instead, a peer sends a single report to the log
server when the user generates a“STOP”event (pressing the
STOP button, changing to another movie or turning off the
client software). Furthermore, the report also includes the
user satisfaction index (in this case the fluency) computed
by the local peer. Based on these MVRs, various other user
behavior information can be deduced by post processing,
either as online or offline.

For replication health index, a peer needs to report its
chunk bitmap to the log server whenever one of the following
events occurs:

1. Some of the chunks or a whole movie is removed from
the storage due to the replication strategy.

2. The local user starts to watch a new movie, and chunks
of the new movie are added to local storage.

3. A refresh timer (pre-defined, e.g. 10 minutes) goes off.

4. MEASUREMENT RESULTS AND ANAL-
YSIS

In this section, we present the measurement and data anal-
ysis of the P2P-VoD system in PPLive. We summarize the
measurement results into five categories, namely, statistics
for the video objects, user behavior, system health index,
user satisfaction index, and server loads.

380

4.1 Statistics on video objects
We have collected the data trace on ten movies from the

P2P-VoD log server. As mentioned before, whenever a peer
selects a movie for viewing, the client software creates the
MVRs and computes the viewing satisfaction index, and
these information are sent to the log server. The collection
of MVRs of a particular movie constitutes the data trace
of that movie. All these data traces were collected from
December 23, 2007 to December 29, 3007 (about one week
worth of trace). For the ease of presentation, we select three
“typical”movies to illustrate the measurement results. Table
3 lists the overall statistics of these three typical movies.

Movie Index: Movie 1 Movie 2 Movie 3

Total Length (in sec) 5100s 2820s 6600s
No. of Chunks 121 67 151

Total No. of MVRs 56157 322311 15094
Total No. of MVRs with

Start Position = 0 35160 95005 8423
(or # of unique viewers)

Ave. # of Jump 1.6 3.4 1.8
Ave. viewing Duration

for a MVR 829.8s 147.6s 620.2s
Normalized viewing

Duration (normalized 16.3% 5.2% 9.4%
by the movie duration)

Table 3: Overall statistics of the three typical
movies.

Based on these statistics, we have the following observa-
tions:

1. Given that the size of a chunk is about 2 MBytes
(assuming the playback rate is about 380kbps), this
implies that the viewing duration of a chunk is ap-
proximately 40 seconds. Movie 2 is the smallest video
object with a viewing duration of about 45 minutes,
while Movie 3 is the longest video object with a view-
ing duration of about 110 minutes.

2. To determine the most popular movie, we count only
those MVRs whose starting position (SP) is equal to
zero (e.g., MVRs which view the movie at the begin-
ning). From the measurement, one can determine that
Movie 2 is the most popular movie with 95005 users
while Movie 3 is the least popular movie with 8423
users.

3. One interesting statistics we like to extract is the av-
erage number of jumps for a given movie. Note that a
peer generates at least one MVR (with starting posi-
tion being zero) and possibly a number of MVRs due
to viewing jumps. Therefore, the average number of
jumps for a given movie is approximately equal to the
total number of MVRs divided by the total number
of MVRs with starting position being zero. Based on
this computation, we can conclude that Movie 2 has
the highest average number of jumps (3.4) while Movie
1 has the lowest average number of jumps (1.6).

4. Each MVR indicates a viewing activity and one in-
teresting characteristics is to determine the viewing
duration per viewing activity. One can extract this
information by computing the difference between the
end time (ET) and start time (ST) of each MVR; by

averaging over all MVRs of a movie, we obtain the
average viewing duration per viewing action. Table 3
shows that Movie 1 has the largest viewing duration
(829.8s), and this is consistent since Movie 1 has the
least average number of jumps.

5. From the derived statistics mentioned above, we can
also derive the normalized viewing duration (or aver-
age viewing duration divided by the movie length) and
this is listed in the last row of Table 3, which shows
that for Movie 1, each viewing length lasts on average
16.3% of the movie duration, while for Movie 2, each
viewing length is around 5.2% of the movie duration.

4.2 Statistics on user behavior

4.2.1 Interarrival time distribution of viewers
One characteristic we are interested to study is the view-

ers’ interarrival time to a particular movie. Again, this can
be derived from the trace. Given a particular movie, one
can extract all those MVRs with a start time (ST) equal to
zero. These MVRs represent viewers who start to watch the
video object from the beginning. Given this set of MVRs,
we can sort them in an increasing order based on the start
time (ST) field. The differences of the ST fields between to
consecutive MVRs represent the interarrival times of view-
ers.

0 50 100 150 200 250

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (second)

P
ro

b
ab

ili
ty

 d
en

si
ty

 f
u

n
ct

io
n

The PDFs of the interarrival times of three movies

The average interarrival time
Movie1: 19.07s
Movie2: 7.25s
Movie3: 79.04sMovie 2

Movie 1

Movie 3

Figure 2: PDFs of the interarrival times of Movie 1,
2 and 3.

Figure 2 represents the probability density functions (PDFs)
of the interarrival time distributions of Movie 1, 2 and 3.
From the figure, we can observe that Movie 2 is the most
popular movie (also can be verified by data in Table 3) and
the average interarrival time between viewers is about 7.25s,
while the interarrival times for Movie 1 and 3 are 19.07s and
7.25s respectively.

We can easily represent the PDF of the interarrival time
by a simple mathematical model. In here, we use the fol-
lowing function to approximate the PDF:

f(t) = atb where a > 0, b < 0. (4)

For Movie 1, we have a = 0.1152, b = −0.7894 and the
root mean square error (RMSE) is 0.0032. For Movie 2, we
have a = 0.1893, b = −0.9283 and the RMSE is 0.0051. For
Movie 3, we have a = 0.0647, b = −0.7052 and the RMSE

381

is 0.0012. Figure 3 illustrates the PDF of all three movies
and the corresponding f(t).

0 50 100 150 200 250
0

0.05

0.1

The PDFs and fitting curves f(t) of the interarrival times

0 50 100 150 200 250
0

0.1

0.2

P
D

F

0 50 100 150 200 250
0

0.05

0.1

Time (second)

 a = 0.1152
 b = − 0.7894
RMSE = 0.003206

 a = 0.1893
 b = − 0.9283
RMSE = 0.005133

 a = 0.0647
 b = − 0.7052
RMSE = 0.001275

Movie 1

Fitting curve

Movie 2

Fitting curve

Movie 3

Fitting curve

Figure 3: Mathematical models for the PDF of in-
terarrival times of Movie 1, 2 and 3.

4.2.2 View duration distribution, residence distribu-
tion and start position distribution

When viewing a movie, users can jump to different posi-
tions of the movie. The knowledge of which positions users
tend to jump to is important because it can help us design
where to put the anchor points for a movie. For this pur-
pose, it also helps to know the distribution of the viewing
durations of MVRs.

Figure 4 illustrates the cumulative distribution function
(CDF) of the viewing duration of the three movies. Note
that the viewing duration is measured in terms of MVRs
collected from the log server. As discussed before, when a
user drags the track-bar to a different position of the movie
(a jump event), or when the user presses the STOP button
to stop watching the movie, or when the user changes to
another movie or programme, or when the user turns off the
software, any one of these operations will generate an MVR
and the duration of this MVR is just the difference between
the End Time (ET) and the Start Time (ST). From Figure
4, we can observe that a very high percentage of MVRs are
of short duration (e.g., less than 10 minutes). This implies
that for these three movies, the viewing stretch is of short
duration with high probability.

Given the above statistics, we want to find out whether
peers can assist each other in the movie viewing. To answer
this question, we examine the residence distribution of peers.
Residence measures how long a peer stays in a P2P-VoD
system, and it is the time interval when a user activates
the P2P-VoD client software and that the client successfully
contacts the tracker server, to the time when a user turns off
the client software. Figure 5 shows the residence distribution
of peers staying in the P2P-VoD system during the one week
measurement period. From this figure, we can observe that
there is a high fraction of peers (i.e., over 70%) which stays
in the P2P-VoD system for over 15 minutes, and these peers
provide upload services to the community.

Based on the observation on Figure 4 and Figure 5, we
can conclude that:

• Although the length of these three movies are different,

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (second)

C
D

F

The CDF of view duration distribution of MVRs

Average duration:
Movie1: 829.8s
Movie2: 147.6s
Movie3: 620.2s

Movie 2
Length: 2820s

Movie 1
Length: 5100s

Movie 3
Length: 6600s

Figure 4: The CDF of view duration distribution of
MVRs.

12/24 12/25 12/26 12/27 12/28 12/29 12/30 12/31
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Date

P
ro

b
ab

ili
ty

 d
en

si
ty

 f
u

n
ct

io
n

The residence distribution of users staying in the P2P VoD system

 > 120 min.
 60 − 120 min.
 30 − 60 min.
 15 − 30 min.
 5 − 15 min.
 0 − 5 min.

Total number of users:
12/24: 208622
12/25: 214859
12/26: 216262
12/27: 226687
12/28: 233110
12/29: 283566
12/30: 336731
12/31: 344074

Figure 5: The residence distribution of users staying
in the P2P-VoD system.

users tend to watch Movie 1 with a higher viewing
duration.

• Most of the viewing duration of the MVRs are short,
e.g., less than 10 minutes.

• There is a high percentage (e.g., over 70%) of users
who stay in the P2P-VoD system for longer than 15
minutes. This is significant because even though the
duration of an viewing action is short, but since peers
stay in the system for a long duration, they still assist
each other in viewing movie, and this translates to
good system scalability.

• From the above two points, we infer that when users
start the P2P-VoD client software, they probably first
quickly scan a few movies or programmes until they
find an interesting one and continue to watch that
movie; or just leave the system if nothing is of their
interest. This process would cause a large number of
short duration MVRs. After they find a movie that
they are interested in, they might watch it for a long
duration, and this could explain why there is a certain
fraction of users stay in the system for more than one
hour.

382

Figure 6 illustrates the CDF of the viewing position of
MVRs in these three movies. Since users who watch Movie
2 are more likely to jump to some other positions than users
who watch Movie 1 and 3, the probability that a viewing
action starts from the beginning of Movie 2 is relatively low.
Another important observation is that beside the starting
position 0, the landing points of various jump operations is
uniformly distributed. This implies that one can uniformly
space the anchor points and these measured data provide
developers a strong hint on designing the proper chunk se-
lection algorithm.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Position (permillage)

C
D

F

The CDF of Start Position of three movies

Average Start Pos.
Movie1: 131
Movie2: 277
Movie3: 197

Movie 1

Movie 3

Movie 2

Figure 6: The CDF of the viewing position of
movies.

4.2.3 Analysis of peer population watching a movie
One important data that the system needs to keep track

is the viewer population size and how it varies in time. We
carried out the measurement from 00:00, December 24, 2007
to 23:00, December 29, 2007 (total of six days). To reduce
the size of the collected data, sampling is carried out in an
hourly basis.

Figure 7 shows the total number of viewing activities (or
MVRs) at each sampling time point. While Figure 8 shows
the total number of viewing activities (or MVRs) that occurs
between two sampling points. Both of these figures provide
some indications on the size of viewing population.

It is interesting to observe from both figures that there is
a “daily periodicity” of user behavior. There are two daily
peaks, which occur at around 2:00 P.M. and 11:00 P.M. This
may imply that users tend to subscribe to the P2P-VoD ser-
vice at the end of the lunch break or late in the evening. We
also observe that the viewing population drops at around
8:00 A.M. to 9:00 A.M. This may imply that users are usu-
ally on their way to work around this time of the day.

4.3 Health index of Movies
Health index is used to reflect the effectiveness of the con-

tent replication strategy of a P2P-VoD system. In this sub-
section, we focus on the health index of the three typical
movies. Measurements were carried out in 24 hours from
00:00, January 6, 2008 to 24:00, January 6, 2008.

Figure 9 illustrates the number of peers that own the
movie. In here, owning a movie implies that the peer is still
in the P2P-VoD system, and that the peer has at least one
chunk of that movie (similar to the movie-level heath index

0 12 24 36 48 60 72 84 96 108 120 132 144
0

50

100

150

200

250

Time (Hour)

N
u

m
b

er
 o

f
u

se
rs

Number of users remaining in the P2P VoD system

Movie1
Movie2
Movie3

Figure 7: Number of viewing actions at each hourly
sampling point (six days measurement).

0 12 24 36 48 60 72 84 96 108 120 132 144
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (Hour)

N
u

m
b

er
 o

f
u

se
rs

Number of users within one hour

Movie1
Movie2
Movie3

Figure 8: Total number of viewing actions within
each sampling hour (six days measurement).

we discussed in Section 3). We can make two observations
here: (a) Movie 2 being the most popular movie, the num-
ber of users owning the movie is higher than that of movie 1
and 3. (b) The number of users owning the movie is lowest
during the time frame of 05:00 A.M. to 09:00 A.M. As we
mentioned in the previous subsection, this corresponds to
the period that the number of active peers is very low. To
provide QoS-guarantee to users, one may need to allocate
more upload capacity to the server.

The previous measure is a coarse indication of the replica-
tion health of a movie. One may choose a finer indicator to
reflect the effectiveness of the replication. In here, we define
ORi(t) to be the owning ratio of chunk i at time t, or

ORi(t) =
Number of replicas of chunk i at time t

Number of movie owners at time t
.

Again, a movie owner is a peer which possesses at least one
chunk of that movie. If ORi(t) is low, it means low avail-
ability of chunk i in the system. We average ORi(t) over a
24-hour period and Figure 10 illustrates the average owning
ratios for different chunks in a 24-hour period. From this
figure, we observe that the health index for “early” chunks
is very good. This is due to the fact that many peers may

383

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Time of a day (Hour)

N
u

m
b

er
 o

f
u

se
rs

Number of users own the movie in one day

Movie1

Movie2

Movie3

Figure 9: Number of users owning at least one chunk
of the movie at different time points

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chunk Index

R
at

io

Average ratio users own chunks within one day

Movie1 (total # of chunks: 121)

Movie2 (total # of chunks: 67)

Movie3 (total # of chunks: 151)

Figure 10: Average owning ratio for all chunks in
the three movies

browse through the beginning of a movie. The health index
of other chunks, is still acceptable since at least 30% of the
peers have those chunks.

To obtain a finer granularity of the health index, we com-
pare the number of replication of chunk i versus the total
number of demand for chunk i. The total number of demand
of chunk i in one day is derived from the user-behavior data,
MVRs, and they were collected at the same measurement
time as the health index data (from 00:00, January 6, 2008
to 24:00, January 6, 2008). Based on the starting viewing
time (ST), ending viewing time (ET) and the starting posi-
tion (SP), one can determine which chunks a peer demanded
during the viewing action. Figure 11 shows the chunk avail-
ability and chunk demand within a 24-hours measurement
period. From the figure, we can conclude that: (a) The
health index for these three movies are very good since the
number of replicated chunk is much higher than the work-
load demand. (b) The large fluctuation of the chunk avail-
ability for Movie 2 is due to the high interactivity of users.
(c) Users tend to skip the last chunk of the movie (which
corresponds to the movie epilog). To improve the quality of
viewing, one may want to provide an anchor point at that
position.

Another way to evaluate the replication health of a movie
is to determine the ratio between the number of available
(or replicated) chunks to the number of chunks demanded
as time evolves. Let ATDi(t) be the available to demand
ratio for chunk i at time t, or

ATDi(t) =
Number of replicated chunk i at t

Number of demand for chunk i at t
,

then the available to demand ratio for movie m at time t is:

ATDm(t) =

∑N
i=1 ATDi(t)

N
,

where N is the total number of chunks for movie m. Figure 12
shows the available to demand ratios, ATD1(t), ATD2(t)
and ATD3(t) in a 24-hours period. Figure 13 shows the
temporal average (means) and standard deviations on the
number of available (replicated) chunks of these three movies
in a 24-hours period.

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

10

20

30

40

50

60

70

80

90

100

Time (hour)

A
T

D
 (

t)

The availabe to demand ratio of three movies in one day

Movie1
Movie2
Movie3

Figure 12: The ratio of the number of available
chunks to the demanded chunks within one day

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

1000

2000

3000

4000

5000

6000

7000

Time (Hour)

V
al

u
e

Mean and standard deviation of chunks of three movies in one day

 Movie1
 Movie2
 Movie3

Figure 13: Temporal means and standard deviations
of the number of replicas of all chunks of these three
movies within one day

To provide good scalability and quality viewing, ATDi(t)
has to be greater than 1. From Figure 12, we observe that
ATDi(t) ≥ 3 for all time t. One can also observe from

384

1 11 21 31 41 51 61 71 81 91 101 111 121
0

5000

10000

15000

20000

25000

Chunk Index

N
u

m
b

er
 o

f
ch

u
n

ks

Demand and available chunk volume in one day − Movie 1

Available
Demand

1 7 13 19 25 31 37 43 49 55 61 66
0

10000

20000

30000

40000

50000

60000

Chunk Index

N
u

m
b

er
 o

f
ch

u
n

ks

Demand and available chunk volume in one day − Movie 2

Available
Demand

1 16 31 46 61 76 91 106 121 136 151
0

1000

2000

3000

4000

5000

6000

7000

Chunk Index

N
u

m
b

er
 o

f
ch

u
n

ks

Demand and available chunk volume in one day − Movie 3

Available
Demand

Figure 11: Comparison of number replicated chunks and chunk demand of three movies in one day

Figure 13 that these three movies have high temporal means
and low standard deviations. This indicates that the overall
replication health of these video object is very good. One
interesting observation is that we have two peaks for Movie 2
at 12:00 or 19:00. At these two peaks, the ATD2(t) and the
temporal mean of Movie 2 are very high. This is contributed
by the fact that there is a large number of arrivals at these
times (refer to Figure 9) and all these users want to watch
Movie 2.

4.4 User satisfaction index
User satisfaction index is used to measure the quality of

viewing as experienced by users. A low user satisfaction
index implies that peers are unhappy and these peers may
choose to leave the system. As a result, this will reduce
the service capacity and scalability of a P2P-VoD system.
From the view point of a streaming content provider, this is
probably one of the most important measures that he/she
needs to keep track.

To measure the user satisfaction index, we use the flu-
ency F (m, i) as defined in Equation (1). The computation
of F (m, i) was described in Section 3. Note that this com-
putation is carried out by the client software in examining
all the MVRs generated during the viewing period. There-
fore, the fluency computation is carried out in a distributed
manner. The client software reports all MVRs and the flu-
ency F (m, i) to the log server whenever a “stop-watching”
event occurs, that is, either the STOP button is pressed, or
another movie/programme is selected, or the user turns off
the P2P-VoD software.

We give a simple example in Figure 14 to illustrate the
generation of MVRs and fluency index. As shown in Figure
14, a user starts to watch the movie at time t0 and he drags
the track-bar to position i at time t1. The first MVR is
created (and stored in the peer’s local disk) at this time.
After then, the user drags the track-bar again and jumps to
the (N−1)th position of the movie and the second MVR is
created. Finally, the user presses the STOP button to stop
viewing the movie at time t3. At this point, the last MVR
is created and because it is a stop-watching event, the client
software computes the fluency index F . All three MVRs as
well as the fluency index will then be transmitted to the log
server.

To quantify the fluency index, we collected one day worth
of trace for the three movies and the measurement duration
is the same as the measurement period of the movie health
index data, that is, from 00:00, January 6, 2008 to 24:00,
January 6, 2008. To reduce the amount of data traffic, sam-
pling is carried out once every hour.

t0 t1 t2 t3 t

U1 M1 t0 t1 0
U1 M1 t1 t2 i
U1 M1 t

2
t
3

N-1

MVR1:
MVR2:
MVR3:

UID MID ST ET SP

0 1 2 3 i N-1 N
Movie Length Position

b1 d1 b21 d21 b22 d22 b3 d3

MVR1 MVR2 MVR3

fluency
index+

STOP

Figure 14: Example of generating fluency index

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

100

200

300

400

500

600

700

800

Time (Hour)

N
u

m
b

er
 o

f
fl

u
en

cy
 r

ec
o

rd
s

Number of fluency indexes reported in one day

Movie1

Movie2

Movie3

Figure 15: Number of fluency indexes reported by
users to the log server

Figure 15 shows the number of fluency records that are
reported to the log server at different times during the one
day period. The number of fluency records is a good indi-
cator of the number of viewers of that movie. We observe
that the number of viewers drops after 01:00. Then it starts
to increase after 09:00 and reaches the peak around 16:00.
The number of viewers drop afterward and again picks up
after 19:00 and reaches the second peak at time 24:00. In
summary, this figure illustrates the number of viewers in the
system at different time points.

Figure 16 illustrates the distribution of fluency index of
these three movies within a 24-hour period. First, we di-
vide the fluency interval [0, 1] into ten sub-intervals: [0, 0.1),
[0.1, 0.2), . . ., [0.9, 1.0). A fluency value greater than 0.8 is

385

[0,0.1) [0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)[0.7,0.8)[0.8,0.9) [0.9,1]
0

5

10

15

20

25

30

35

40

45

50

Fluency ∈ [0, 1]

P
er

ce
n

t
(%

)

Distribution of fluency index of three movies in one day

 Movie1
 Movie2
 Movie3

Figure 16: Distribution of fluency index of users
within a 24-hour period

considered as having a good viewing quality while a fluency
value less than 0.2 is considered as having a poor viewing
quality. One can observe that there is a high percentage
of fluency indexes whose values are greater than 0.7. How-
ever, around 20% of the fluency indexes are less than 0.2.
One explanation of this phenomenon is that there is a high
buffering time (which causes long start-up latency) for each
viewing operation. This indicates an area for improvement
in the current system.

One interesting question is how does the rate of change
of viewer’s population affects the fluency index. Figure 17
shows the change in percentage of good fluency index (i.e.,
fluency value between 0.8 and 1.0) and bad fluency index
(i.e., fluency value between 0.0 and 0.2) when the number of
viewers changes. When the rate of change of viewer’s pop-
ulation takes on a negative (positive) value, it implies that
the number of viewers is decreasing (increasing). One can
observe that when the rate of change in viewer’s population
is of negative value, there is no effect on the percentage of
good or bad fluency indexes. But when the rate of change
in viewer’s population goes from negative value to positive
value (which corresponds to a sudden increase in viewer’s
population), then the percentage of good (bad) fluency in-
dex will decrease (increase). This is contributed by the fact
that more users need to spend time to buffer the data before
viewing the video.

4.5 Server Load and NAT related statistics
Figure 18 shows the load conditions of one content pub-

lishing server within a 48-hour measurement period. The
server provides 100 movies, and it is a Dell PowerEdge 1430
server equipped with Intel DueCore 1.6GHz CPU, 4GB RAM
and a Gigabit Ethernet Card. Figure 18 shows the upload
rate, CPU utilization and memory usage in the measurement
period. As shown in Figure 18, the patterns of upload rate
and CPU usage vary with time and this pattern is similar
with the pattern of number of users as shown in Figure 7.
The server upload rate and CPU utilization are correlated
with the number of users viewing the movies. Although we
observe that there are some periods with high upload de-
mand and high CPU utilization, comparing to the results
reported in [17] (a client/server architecture), one can con-
clude that the P2P technology helps to reduce the server’s

load. The server has implemented the memory-pool tech-
nique which makes the usage of the memory more efficient
and this could be observed at the bottom sub-figure of Fig-
ure 18 that the memory usage is very stable.

12:00 18:00 24:00 6:00 12:00 18:00 24:00 6:00 12:00
0

40
80

120
160
200

M
b

p
s

Upload rate

12:00 18:00 24:00 6:00 12:00 18:00 24:00 6:00 12:00
0

20
40
60
80

100
CPU usage

P
er

ce
n

t
(%

)

12:00 18:00 24:00 6:00 12:00 18:00 24:00 6:00 12:00
30
32
34
36
38
40

Memory usage

Time (hour)

P
er

ce
n

t
(%

)

Figure 18: Server load within a 48-hour period.

Figure 19 shows the ratio of peers behind NAT boxes
and Figure 20 shows the distribution of different NAT types
within a 10-day measurement period from May 3 to May
12, 2008. From Figure 19, we observe that the ratio of peers
behind NAT boxes remains stable, around 80%. Figure 20
implies that the Full Cone NAT has the largest proportion
(47%) and the Symmetric NAT is the second (30%) and
the Port-restricted NAT is the third (23%) while there is no
Restricted Cone NAT.

Table 4 illustrates the distribution of peers’ average up-
load and download rate measured on May 12, 2008. A total
of 182544 peers are recorded. The average rate of a peer
downloading from the server is 32Kbps and 352Kbps from
the neighbor peers. On the other hand, the average upload
rate of a peer is about 368Kbps. The average server loading
during this one-day measurement period is about 8.3%.

Upload # of Peers Download # of Peers
(Kbps) (%) (Kbps) (%)
[0, 200) 65616(35.94%) [0, 360) 46504(25.47%)

[200, 360) 51040(27.96%) [360, 600) 118256(64.78%)
[360, 600) 45368(24.86%) [600, 1000) 14632(8.01%)
[600, 1000) 9392(5.14%) [1000, 2000) 3040(1.67%)

> 1000 11128(6.10%) > 2000 112(0.07%)
Total 182544 Total 182544

Table 4: Distribution of average upload and down-
load rate in one-day measurement period

5. RELATED WORK
Nowadays, P2P steaming technology attracts great re-

search interests. A number of P2P live streaming systems
are deployed with high viewing quality but low server bur-
den, including CoolStreaming [21], PPLive [2], PPStream
[6], UUSee [7], AnySee [19] and Joost [3] etc. Meanwhile, the
theoretical analysis and measurement on P2P living stream-
ing applications could help to improve the viewing quality
and make the P2P live streaming system more robust and
scalable. Hei et al. [18] have applied queueing theory and

386

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
−1

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Time (Hour)

R
at

io

Ratio of GOOD and BAD fluency vs. user increasing rate of Movie1

Ratio of fluency ∈ [0, 0.2]
Ratio of fluency ∈ [0.8, 1]
Increasing rate of users

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Time (Hour)

R
at

io

Ratio of GOOD and BAD fluency vs. user increasing rate of Movie2

Ratio of fluency ∈ [0, 0.2]
Ratio of fluency ∈ [0.8, 1]
Increasing rate of users

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
−1

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Time (Hour)

R
at

io

Ratio of GOOD and BAD fluency vs. user increasing rate of Movie3

Ratio of fluency ∈ [0, 0.2]
Ratio of fluency ∈ [0.8, 1]
Increasing rate of users

Figure 17: Comparison of the ratio of ”good”and ”bad” fluency vs. the rate of change in viewer’s population
within a 24-hour period

5/3 5/4 5/5 5/6 5/7 5/8 5/9 5/10 5/11 5/12
0

1

2

3

4

x 10
5

Date

N
u

m
b

er
 o

f
p

ee
rs

Ratio of peers behind NAT

0

0.25

0.5

0.75

1

R
atio

Ratio of nodes behind NAT
Peers with Public IP
Peers behind NAT

Figure 19: Ratio of peers behind NAT boxes within
a 10-day period

stochastic fluid process to model the P2P streaming system.
Zhou et al. [22] proposed a model to calculate the filling
probability of streaming buffers based on a sliding window
mechanism. They have used the peers’ playing back conti-
nuity and start-up latency as the performance metrics. Two
kinds of measuring methods, passive sniffing [8], and active
crawling [15] have been applied to measure the existing P2P
live streaming software from the client side. Wu et al. [20]
have reported results of a measurement from a popular P2P
live streaming system via the server side.

However, there are vital differences between live streaming
and VoD streaming. For example, users’ interactive behav-
iors like pausing and random jumping are allowed when they
are subscribe to VoD services but live streaming systems do
not provide these features. As a result, the design and de-
ployment of a real world P2P-VoD system is more difficult
than a P2P live streaming system.

In fact, on demand video streaming is not a new topic
and the research begins since early 90’s. IP multicast based
proposals like patching [12], periodic broadcasting [16] and
merging [11] faced the deployment problems of IP multi-
cast. Later on, there are a number of proposals for peer-
assisted Video-on-Demand streaming such as tree-based ap-
proach [14] and overlay tree based patching [13]. Recently
Huang et al. [17] have carried out analysis through mea-
surement and simulation on the data trace from an existing
client-server based VoD system. To the best of our knowl-

5/3 5/4 5/5 5/6 5/7 5/8 5/9 5/10 5/11 5/12
0

0.1

0.2

0.3

0.4

0.5

0.6

Date

R
at

io

NAT type distribution

 Full Cone NAT
 Symmetric NAT
 Port−restricted NAT

Figure 20: Distribution of peers with different NAT
types within a 10-day period

edge, our work is the first to conduct an in-depth study on
practical design and measurement issues deployed by a real-
world P2P-VoD system. In addition, we have measured and
collected data from this real-world P2P-VoD system with
totally 2.2 million independent users.

6. CONCLUSION AND REMARKS
P2P-VoD streaming service is an up and coming applica-

tion for the Internet. As we prepare this paper, the P2P-VoD
service in PPLive is already supporting up to over 150K si-
multaneous users, and we expect the number of users to grow
further. In this paper, we present a general architecture and
important building blocks of realizing a P2P-VoD system.
One can use this general framework and taxonomy to fur-
ther study various design choices. The building blocks we
presented include the file segmentation strategy, replication
strategy, content discovery and management, piece/chunk
selection policy, transmission strategy and authentication.
We also define various performance measures and illustrate
how to instrument the measurement so as to evaluate the
health of the systems and the user satisfaction (e.g., fluency
index). We carried out a large scale measurement analysis to
quantify the users’ behavior, the effectiveness of the replica-
tion scheduling strategies, and the level of user satisfaction.
In closing, this paper provides the general framework for fur-
ther research in P2P-VoD systems, in particular, to address
the following important issues: (1) how to design a highly

387

scalable P2P-VoD system to support millions of simultane-
ous users; (2) how to perform dynamic movie replication,
replacement, and scheduling so as reduce the workload at
the content servers; (3) how to quantify various replication
strategies so as to guarantee a high health index; (4) how
to select proper chunk and piece transmission strategies so
as to improve the viewing quality; (5) how to accurately
measure and quantify the user satisfaction level.

7. REFERENCES
[1] “Emule”, http://www.emule.com/.

[2] “PPLive”, http://www.pplive.com/.

[3] “Joost”, http://www.joost.com/.

[4] “GridCast”, http://www.gridcast.cn/.

[5] “PFSVOD”,
http://www.pplive.com/subject/20070808pfsvod/.

[6] “PPStream”, http://www.ppstream.com/.

[7] “UUSee”, http://www.uusee.com/.

[8] S. Ali, A. Mathur, and H. Zhang. Measurement of
commercial peer-to-peer live video streaming. In 1st

Workshop on Recent Advances in P2P Streaming,
August 2006.

[9] B. Cohen. Incentives build robustness in bittorrent.
http://bitconjurer.org/BitTorrent/bittorrentecon.pdf,
May 2003.

[10] P. Dhungel, X. Hei, K. W. Ross, and N. Saxena. The
pollution attack in p2p live video streaming:
measurement results and defenses. In Proceedings of
Peer-to-Peer Streaming and IP-TV workshop
(P2P-TV’07), Kyoto, Japan, August 2007.

[11] D. Eager, M. Vernon, and J. Zahorjan. Bandwidth
skimming: a technique for cost-effective
video-on-demand. In Proceedings of SPIE/ACM
Conference on Multimedia Computing and Networking
(MMCN), San Jose, CA, USA, January 2000.

[12] L. Gao, D. Towsley, and J. Kurose. Efficient schemes
for broadcasting popular videos. In Proceedings of the
8th ACM International Workshop on Network and
Operating Systems Support for Digital Audio and
Video (NOSSDAV), Cambridge, UK, July 1998.

[13] Y. Guo, K. Suh, J. Kurose, and D. Towsley. P2cast:
peer-to-peer patching scheme for vod service. In
Proceedings of the 12th ACM International World
Wide Web Conference (WWW), Budapest, Hungary,
May 2003.

[14] A. A. Hamra, E. W. Biersack, and G. Urvoy-Keller. A
pull-based approach for a vod service in p2p networks.
In IEEE HSNMC, Toulouse, France, July 2004.

[15] X. Hei, C. Liang, Y. Liu, and K. W. Ross. A
measurement study of a large-scale P2P iptv system.
IEEE Transactions on Multimedia, 9(8):1672–1687,
December 2007.

[16] A. Hu. Video-on-demand broadcasting protocols: a
comprehensive study. In Proceedings of IEEE
INFOCOM’01, Anchorage, AK, USA, April 2001.

[17] C. Huang, J. Li, and K. W. Ross. Can internet
video-on-demand be profitable? In Proceedings of
ACM SIGCOMM’07, Kyoto, Japan, August 2007.

[18] R. Kumar, Y. Liu, and K. W. Ross. Stochastic fluid
theory for p2p streaming systems. In Proceedings of
IEEE INFOCOM’07, May 2007.

[19] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng.
Anysee: Peer-to-peer live streaming. In Proceedings of
IEEE INFOCOM’06, April 2006.

[20] C. Wu, B. Li, and S. Zhao. Multi-channel live p2p
streaming: refocusing on servers. In Proceedings of
IEEE INFOCOM’08, April 2008.

[21] X. Zhang, J. Liu, B. Li, and T. S. P. Yum.
Coolstreaming/donet: A data-driven overlay network
for efficient live media streaming. In Proceedings of
IEEE INFOCOM’05, March 2005.

[22] Y. Zhou, D. M. Chiu, and J. C. S. Lui. A simple
model for analyzing p2p streaming protocols. In
Proceedings of IEEE ICNP’07, October 2007.

388

