
Challenges: Environmental Design for Pervasive
Computing Systems

Ravi Jain* and John Wullert II
Applied Research

Telcordia Technologies, Inc
445 South St, Morristown, NJ 07960

(973) 829-4204

wullert@research.telcordia.com

ABSTRACT
We argue that pervasive computing offers not only tremendous
opportunities and exciting research challenges but also possible
negative environmental impacts, particularly in terms of physical
waste and energy consumption. These environmental impacts
will come under increasing government and consumer scrutiny,
and like other disciplines (e.g. architecture, transportation),
pervasive computing will have to adapt accordingly. Further, we
argue that software–related issues will play an increasing role in
reducing the environmental impact of computing. We thus
propose that an important challenge for pervasive computing is to
develop research in new architectures, design methodologies,
metrics, algorithms and operating systems to minimize these
impacts. We then discuss specific research issues and questions
that arise in three phases of the device lifecycle: minimizing
resource usage for manufacture and operation, maximizing device
lifetime, and improving recyclability.

Categories and Subject Descriptors
C.2.0 [Computer-communication networks]: Network
architecture and design – wireless communication, distributed
networks. D.2.0 [Software engineering]: Design tools and
techniques.

General Terms
Design, Algorithms, Economics, Human Factors.

Keywords
Environmental impacts, pervasive computing, green computing.

1. INTRODUCTION
Computer systems have come a long way from the early single-
application mainframe behemoths used by specialists, often
scientists and engineers, in closed, protective environments.
Today, an incredible variety of computers and applications,
spanning the globe and beyond, have deep and far-reaching
impacts on all parts of society. Developments in mobile
computing and networking, leading to the idea of pervasive
computing, promise to have even greater impacts.
Pervasive (or ubiquitous) computing has been driven by
ambitious, exciting and noble goals – to make computing as
useful and unobtrusive as utilities like electricity and water; to
produce “calm” rather than distraction; and to bring the benefits
of computers to everyone by developing not only powerful, costly
machines but “tiny inexpensive ones” [Weiser93, Weiser96].
While this vision has yet to be realized, much progress has been
made, and researchers and engineers around the world are
chipping away at the obstacles.
However, little or no thought has been given to the physical final
end result of pervasive computing: devices of varying size, weight
and complexity, that are useless, obsolete, malfunctioning, or
simply broken – in other words, that are garbage. Further, these
devices, by their very design and function, are ubiquitous,
massively distributed, and embedded in numerous everyday
objects and the environment. From digital jewelry and clothing,
to networked appliances, PDAs, cell phones, sensor networks,
smart floors and cyber homes, pervasive computing offers us not
only a glittering future of convenience, comfort and connectivity,
but possibly also a legacy of deadening clutter and dangerous
trash: plastics that do not biodegrade, heavy metals that are
carcinogenic, gases from production and incineration that are
toxic, and landfills that threaten generations to come.

* Current address: R. Jain, NTT DoCoMo USA Labs, 181 Metro Drive,
San Jose, CA 95110. Phone: (408) 451-4767. Fax: (408) 573-1090.
Email: jain@docomolabs-usa.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear his notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MOBICOM’02, September 23-28, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-486-X/02/0009…$5.00.

To gauge the extent of this possibility, it is worthwhile glancing at
the physical waste produced by the current – i.e., non-pervasive –
use of computers. It has been estimated that over three-quarters
of all computers ever bought in the U.S. are stored in people’s
attics, basements, office closets and pantries [MCC96]. By the
year 2004, experts estimate there will be over 315 million
obsolete computers in the US; many destined for landfills,
incinerators or hazardous waste exports [NSC99]. Consider that
computer equipment is a complicated assembly of over a
thousand materials, of which many, such as lead, cadmium and
mercury, are known to be highly toxic. Thus the environmental

mailto:jain@docomolabs-usa.com

impacts of computers have been a subject of growing concern
over the past decade [DoE].
Already, the growth of waste electrical and electronic equipment
is about 3 times that of other municipal waste [AEA97]. The
average lifespan of a computer tower has shrunk from 4-6 years in
1997, and is estimated to fall to 2 years by 2005. Pervasive
computing will only add to this “mountain of obsolete PCs”
[Watson99], both by increasing the nature and quantity of
physical devices and the rate at which they become obsolete. Not
only computing, but also communications devices and integrated
computing and communications devices are expected to
proliferate. Analysts have estimated that 13 million Bluetooth
devices alone were shipped in 2001 and predict that by 2005 there
will be over 780 million new Bluetooth devices shipped
Generally most pervasive computing devices – although by no
means all – will have one significant environmental advantage
over traditional computers: small physical size that inherently
consumes less material. However, they have disadvantages as
well: they will be far more numerous; low cost will encourage
rapid replacement; less mature technology will become obsolete
faster; disposable versions of some devices, like disposable cell
phones [HopOn01, Telespree01], will soon emerge; and they will
tend to use batteries, which often contain environmentally
unfriendly heavy metals. In addition, their small size, weight,
embedding in other materials and overall design for ubiquity will
disperse them widely, making them more likely to be lost,
forgotten, or simply abandoned, and making proper collection,
recycling or disposal harder. Finally, pervasive computing
devices, to meet their goal, will be truly global, bringing
computer environmental impacts to regions of the world where
little or none exist at present.
So far we have focused on the physical waste aspects of pervasive
computing. Energy consumption is another significant
environmental concern. It has been estimated that computing,
telephony and networking equipment now account for a
significant fraction of the total energy consumption in the U.S.
[EStar]. While mobile devices are becoming more energy-
efficient, the overall energy consumption due to such devices
continues to increase as their total number increases rapidly, they
integrate more sophisticated and energy-consuming peripherals
(larger displays, built-in wireless interfaces, CD-R/W etc.), and
the applications and system software (and even screen savers)
become ever more complex [Paradiso00]. Once again, in the case
of pervasive computing, this environmental impact is greater than
current computing because of the use of batteries.
There are many efforts targeted at increasing the rate at which
electronic devices, including computers, are recycled, and at
making it more tenable to extract useful material from electronic
waste e.g. see [EESymp, RecycleW, MIT]. Most of these efforts
have addressed the physical aspects of electronic devices and
computers: circuit boards, batteries, displays and the like.
Missing from most of this work is any effort specifically within
the domains of computer science and engineering aimed at
minimizing the environmental impact of computers. Just as
manufacturers of household goods such as appliances and
cosmetics increasingly seek to project and differentiate
themselves as “green” (to respond to or avoid government
regulations and consumer pressure), so will computer system
manufacturers. Just as diverse disciplines such as architecture,

transportation engineering, and materials science have developed
principles and techniques for environmentally sensitive and
sustainable design, it is likely that pervasive computing will need
to follow suit. And these principles must apply to all aspects of
electronic devices, both hardware and software.

2. DESIGN IMPLICATIONS
The intent of this paper is not to present an alarmist view of
global environmental collapse due to computers, but to argue that
computers in general, and pervasive computers in particular, pose
an environmental risk that must, and can, be addressed.
As researchers we tend to focus on innovation, and in our view
there are interesting opportunities for reducing the environmental
impacts of pervasive computing by innovation. However, we
believe strongly that effective reduction of resource consumption,
reuse of resources, and recycling of materials – the
reduce/reuse/recycle mantra – needs to be an integral part of the
design process, not an afterthought. This view has been
articulated for manufactured products in general, e.g.: “Very few
objects of modern consumption were designed with recycling in
mind. If the process is truly to save money and materials,
products must be designed from the very beginning to be recycled
…” [McB98]. In fact, unlike current computing, where
environmental concerns were only raised after the proliferation of
computers, pervasive computing offers us a unique opportunity to
apply environmental consciousness while we are still at the start
of the next wave of technology proliferation. We believe it is
important to rethink pervasive computing in the sense that
minimizing total lifecycle environmental impact should become
one of the important factors in pervasive computing design.
Of course, much of pervasive computing research focuses on
design to minimize resource consumption, mainly because of
limitations of device size, weight and capabilities that make the
research interesting in the first place. However, the research is
generally driven by the goal of squeezing more functionality out
of the resources available, where the resources in turn are limited
primarily by cost, or sometimes by availability. At present, post-
manufacture environmental impacts are external to the producer,
and are not reflected in costs for electronic devices. This is true
in the US, although recently in Europe “Extended Producer
Responsibility” (EPR) policies are shifting the burden of waste
electrical and electronic equipment to the manufacturer [EC00]1.
In contrast, we argue that pervasive computing design should
explicitly consider and minimize environmental impacts as a
separate parameter from cost. In particular, the costs of
environmental impacts should be included in the design process,
and methodologies developed so that the present value of these
future costs can be compared on an apple-to-apples with other
costs. This is not as radical as it may sound; many corporations
have voluntarily embraced principles of minimizing
environmental impact.
We also argue that research should consider minimizing not only
production and operation costs but total lifecycle impacts, i.e.,
choosing techniques to reduce the costs of reuse, recycling, and

1 Nonetheless, very recently some proposed legislation has been

introduced in the U.S. Congress to address the issue of
electronic waste, and this may become one of the key incentives
for environmentally sustainable design.

disposal. This complicates the design process, but makes it more
challenging – trading off not only between functionality and
operational or production cost, but also total lifecycle impacts. At
present there are few metrics and techniques to carry out or
evaluate such designs, and developing these techniques for
pervasive computing is a challenging endeavor.
Example Scenario. To make these ideas more concrete we
sketch a scenario that is quite conservative in the sense that it is
within the realm of technical realization. Alice leases or
purchases a Rethink brand cell phone whose casing is made from
biodegradable or recycled plastic. It contains a large proportion
of recycled electronic components, and connections on its circuit
boards are made with lead-free solder. The Rethink phone comes
with a Shoe Battery installed and a spare that is rechargeable,
when Alice walks, by means of a piezo-electric charging
apparatus in her shoe. The phone is sufficiently integrated,
programmable and convenient that it eliminates several other
devices, such as a PDA, wallet, and various household remotes
(TV, VCR, stereo, fan, garage, car, etc.). The phone has a
software radio to accommodate air interface changes when Alice
travels or when new technology is developed. It also has an open,
standard API so that new applications (e.g. currency converters,
foreign language phrasebooks) can be downloaded to it on
demand, extending its function as well as life. The hardware is
designed for modularity and replacability, rather than being
integrated to minimize initial cost. Thus when Alice decides to
upgrade, the phone can be easily disassembled by the store clerk
or Alice herself, and many of the physical materials (casing,
display, keys, battery circuits, etc) are reused. The manufacturer
has an incentive to avoid needless obsolescence so as to avoid
disposal costs. Similarly, the software is in component form and
is replaced only if necessary, and with minimum delay and
inconvenience. Finally, after many years, when the product wears
out or is actually obsolete, Alice has an incentive (e.g. deposit
refund or trade-in value) to return the phone to the manufacturer
or third party for recycling.
In the rest of this paper we elaborate on the computer science and
engineering challenges presented by environmental design for
pervasive computing.

3. COMPUTER SCIENCE AND
ENGINEERING CHALLENGES
Rethinking pervasive computing to minimize environmental
impact has implications at all aspects of system design, including
computer science and software. In fact, we believe that software
will play an increasing role in the environmental impacts of
pervasive computing. One reason is that, over time, more and
more computer system functionality is being implemented in
software rather than hardware. As hardware becomes faster and
cheaper, it becomes feasible to obtain the flexibility, adaptability
and programmability offered by software while still meeting
system performance and cost constraints. For example, each new
generation of telecommunications switching system has
unbundled application logic from system software and allowed
greater programmability [Anjum01, Lazar97]. As another
example, software radios are being developed that will allow
radio channel modulation for cell phones and other wireless
communications devices to be defined in software rather than
hardware [Mitola00].

We organize our discussion of research challenges and techniques
in three categories. The first set of techniques involves using less
physical material per device in the first place. This can involve
making devices physically smaller or ensuring that they only
include the needed components. The second grouping deals with
using devices longer, for example by increasing their reliability or
ensuring their re-usability. The final group looks at creative
means of disposal, including "smart disposal" to feed information
back into the product design phase. In some cases, because data
is more easily available, we use examples from current computing
platforms like PCs to make our suggestions more concrete.

3.1 Using less
An obvious first step towards reducing environmental impact is
smarter design to use less materials or energy for the same
functionality and performance.

3.1.1 Minimizing physical materials
There are several approaches to reducing material usage when
considering collections of devices. We specifically look at
functional integration, resource sharing and modular design
Functional integration, the process of combining several functions
into a single device (e.g. a cell phone that is also a PDA, remote
control, etc.) is often pursued to increase user convenience and
reduce costs. The primary user convenience is the reduction in
number of devices that must be managed, tracked, carried, etc.
This reduction could aid in reducing the waste stream. However,
integration alone will not solve the problem of proliferation.
There is a counter trend toward specialization: small special-
purpose devices, particularly those embedded in other objects,
such as wearable devices of many types.
Another approach to reducing the overall quantity of electronics is
resource sharing. One option is to make it easier for multiple
users to share a device by supporting personalization and privacy
features that are invoked, for example, by biometric
identification. Taking this a step further, in some cases large-
scale centralized solutions are more environmentally effective
than individually owned devices. For example, the physical and
energy environmental impacts of telephone answering machines
are almost 10 times greater than those of a centralized voicemail
service [Taiariol01].
More fundamentally, computing today is viewed largely as a
private resource owned by organizations or individuals, but it is
clear that most computers are tremendously underutilized. One
possible method to reduce the total number of computers is to
allow the existing computational resources to be shared. Sharing
global computer resources in this manner is being pursued
[AndKub02], but largely to accomplish goals that would be
unaffordable or simply impossible using dedicated computers.
Early successful examples of such uses are large-scale
computations required for finding prime numbers, where 130,000
users have freely contributed computing resources [GIMPS02], or
simulations to understand protein folding behavior, where over
20,000 users have contributed [Pande02]. Generalizing these
experiments raises two fundamental and deeply challenging
problems: developing what amounts to an Internet Scale
Operating System (ISOS) to manage resource allocation, security
and coordination; and developing economic models and
mechanisms to provide incentives for private owners to lease out
their computing resources [AndKub02]. We believe these

challenges are all the more worthwhile pursuing because of the
potential large-scale environmental benefits that can accrue.
Moreover, environmental cost should be a factor in the design and
operation tradeoffs of such an ISOS; this does not seem to have
been considered. One example in [AndKub02] is to utilize the
idle resources of hundreds of computers to cheaply deliver a
streaming movie on demand to a participating user. However,
choosing which idle computers to use for this application could
involve environmental concerns in addition to cost and
performance. For example, the ISOS could preferentially activate
computers in colder geographic regions and let those in warmer
areas go into a low-power idle state, conserving energy for
heating and cooling.
The ISOS idea can also be beneficially applied to smaller-scale
situations, such as the pervasive computing environment in a
user's home, office and car. Thus rather than adding more
devices, especially for special purpose applications, it may be
possible to leverage the unused computation and communication
resources in the environment seamlessly. Designing such a
pervasive computing environment operating system presents
many of the same challenges as an ISOS, along with additional
ones of fewer resources, limited energy, restricted user interfaces,
device and communication media heterogeneity, and slow or
intermittent communication.
It is also worth considering how to reduce materials within
individual devices. In particular, it should be possible for a user
to buy a device whose modular design allows customization, so
that only the specific hardware and software required by the user
is included. Personal computers can typically be assembled in
this way, but to be cost-effective the option units are typically
large, e.g. disk drives and peripheral cards. Design and
fabrication techniques that allow customized assembly for smaller
and cheaper devices, and with smaller option units, need to be
developed. Much as compact flash storage can be added in
varying quantities to smaller devices like digital cameras, it
should be possible to add other resources as well. We will discuss
how the device can evolve as the user's requirements change in
section 3.2.

3.1.2 Minimizing energy usage
There has been a significant amount of research within the mobile
computing, networking and devices communities on reducing the
operational energy usage of pervasive computing devices.
However, almost all of the research focuses on extending the
battery life.
While this is worthwhile, a more fundamental research approach
is also desirable. We believe formal models of energy
consumption are required that explicitly consider energy instead
of (or in addition to) CPU cycles in order to motivate design of
algorithms (e.g. for data indexing or for wireless computing).
This is analogous to the formal models developed to support the
design and comparison of I/O-efficient algorithms [Shriver96].
Some work along these lines is in [Ellis01]. Formal frameworks
can provide a basis for long-term scalable improvements in
energy efficiency.
In addition, a focus on operational energy usage can be
shortsighted from an engineering point of view. Analysis shows
that a recent-model cell phone under a typical usage consumes
about 6 kJ per day from the battery. However, if the charger is

left plugged in all day (as is not uncommon) the total energy
usage is 110 kJ, an efficiency of about 5% [Nicolaescu01]. The
resulting difference in CO2 emissions in these usage scenarios is
about 5 kg per phone per day. This is an example of a situation
where, for at least one class of devices, very significant energy
and environmental savings could be achieved by better design.
Another interesting finding in the same study is that a half-duplex
multiparty call (e.g. like the Nextel Direct ConnectTM "push to
talk" feature used in dispatch applications) uses roughly half the
power of a regular voice call. We note, however, that many PCS
and cellular system designs preclude this functionality (thus in the
U.S. none of the other major nationwide carriers currently offer
it), pointing to the need for research in architectures and protocols
that can support low-power applications efficiently. Further,
standby operation for this device consumes over 60% of the total
energy. This is consistent with estimates that nearly 90% of the
energy usage in other devices such as cordless phones and
answering machines is in standby mode [EStarCordless02].
Clearly, focusing on operational energy savings of devices alone
is insufficient; recognition of architectures, design methodologies
and tools for minimizing total energy usage is required.
Finally, we briefly mention that research in alternative sources of
energy for pervasive computing is desirable so as to limit the use
of fossil fuels to charge batteries and potentially the use of
batteries themselves, particularly for embedded and wearable
devices. Further work on using renewable sources such as human
and solar energy is required (e.g. human footfalls can generate
over 50 mW [Paradiso00].)

3.2 Using it longer
People dispose of things for many reasons. One is that the item
no longer has sufficient functionality; another is that it breaks or
malfunctions; and yet another is that the device becomes
outdated, for example it does not support the latest applications.
We consider intelligent computer science and engineering
techniques to address these issues.

3.2.1 Self-destroying data
One reason for computing devices becoming outdated is that they
run out of storage space. However, in many cases, it is likely that
the storage space contains information that is of no use to either
the system or the user. Some estimates indicate that 30-60% of
disk space on a computer is wasted [Wang96, LyVar00]. For
example, out-dated user information and multiple copies of the
same information can occupy storage space needlessly. Such a
situation can be created by users (e.g., keeping multiple revisions
of a single document) or by systems (e.g., partially installed or
incompletely removed software). This data sprawl from
information unnecessarily stored far beyond its useful lifetime not
only consumes storage, but it also costs energy (for search and
management) and contributes to “virtual clutter” and usability
issues. Individuals find it easier and cheaper to expand system
resources (larger disks and faster processors) than to manually
manage even personal information such as mail and web logs.
The proliferation of multimedia content and the widespread use of
digital personal libraries (e.g. already many babies in the U.S.
start out with a web page) will make this a non-trivial issue.
We suggest that systems be designed to minimize data sprawl
through better indexing, retrieval, on-line or automatic
compression, and knowledge management techniques. For

instance, some word processors store information in mysteriously
inefficient ways and most store every document revision as a
copy instead of storing just the revisions. Few offer
comprehensive and convenient journaling features so that data
can be self-managing (e.g. the most recent revision can be located
easily) or self-destroying (e.g. after a certain specified date or
after a certain number of copies have been made.) While recent
operating systems do make recommendations about deleting files,
these capabilities need to be made far more convenient and
applicable to a user's entire (pervasive) computing environment.
Similarly, e-mail attachments are needlessly copied to multiple
mailboxes (and sometimes to multiple devices for a given
recipient) rather than being automatically stored in a logically
central location. The list of such inefficiencies can easily be
made much longer, mainly because the “storage is cheap” refrain
hides the environmental costs of obsolete or useless data.

3.2.2 Programmability and just-in-time/just-right
software upgrade
One of the primary reasons people have for buying new electronic
devices is to gain access to the latest software applications. A
clear example of this is home video game consoles, where the
latest games only work on the latest consoles. Even applications
with nominally the same functionality show an ever-increasing
demand for storage space and processing power. For example, as
shown in Table 1, over the last 7 years the storage requirements
for an office productivity software suite have increased by a
factor of over 5 and the processing requirements by a factor of 40.
Similarly, from 1994 to 1999, Linux kernel size (in uncommented
lines of code) grew as the square of the number of days since the
release of version 1.0 [GodTu01]; to about 2.5 million lines in
2001 [Wheeler01]. While some of this software sprawl not only
increases storage and energy usage but, after only a few releases,
can also make hardware obsolete. While some of this growth is
related to added functionality, the complexity of the resulting
applications results in much of this functionality going under-
used.
Mechanisms to discover system capabilities, auto-configure
systems, and allow secure, just-in-time plug-in and assembly of
required system software components (similar to what is done in
Web browsers) are required. Related to this are:

• Dynamic application usage can extend the useful life of
a device by avoiding software sprawl and allowing
convenient upgrade and application leasing. This
involves dynamic application discovery, download, and
billing, all of which has to be done with resource-
limited devices.

• Languages and APIs for programmability, modularity
and extensibility are required so that system as well as
application software can be designed for reuse,
replacement, and upgrade.

One indication that it is possible to address the storage problem is
apparent by comparing the disk requirements shown in the last
two rows of Table 1. Between 2000 and 2001, the minimum
storage requirement actually decreased slightly. This decrease is
attributed to an on-demand installation process that adds features
only as they are actually invoked by the user. A remaining
challenge is to use this approach for designing applications to
address the processing requirements.

Table 1: Application requirements example

Rel.
Date

Disk Requirements CPU
Requirements

[Rosch02]
1995 40 MB compact;

87 MB typical;
126 MB complete

16 MHz, 386DX.
Est. MIPS: 5.5

1997 73 MB compact
121 MB typical
191 MB complete

33 MHz 486.
Est. MIPS: 27

2000 252 MB minimum
527 MB recommend

75 MHz Pentium.
Est. MIPS: 126

2001 245 MB minimum

133MHz Pentium.
Est. MIPS: 219

To make this process systematic and bring it to a finer grained
level, hardware requirements should be written not only for entire
software applications, but based on particular user-level features.
Software development methodologies, and in particular
requirements engineering processes, to support this must be
developed.
Observe that this concept of on-demand feature-based software
upgrade is different from software reuse. While software reuse
generally deals with making software development more efficient
through modular source code, here we are talking about installing
and/or deploying executable code on an as-needed basis.
An additional problem with running newer software on older
hardware is that software vendors limit the range of hardware on
which they test the software. Such limitations are necessary
because software testing is a time and labor intensive process.
Design, development and testing processes that support modular
hardware, as described below, could help to address this. Test
automation, for both functional and interface testing, could enable
manufacturers to certify software operation on a wider range of
devices, effectively extending their lifetime. In addition, it is
necessary to develop automated test techniques that can verify
that the software will operate correctly when feature-level
software modules are added on-demand in response to (implicit or
explicit) user input.

3.2.3 Just-right hardware upgrades
Another strategy that could increase the average lifetime of
electronic equipment is to design the hardware and software to
support system hardware upgrades.
Example. We sketch a simplified example as follows: suppose a
PC is designed to hold multiple processors and also multiple
disks. Further, suppose the operating system can support
multiple, heterogeneous processors and can treat multiple disks as
a single logical unit. These features increase the price of the
original system by, say, 10%. Suppose a user buys this system
with a single processor with adequate memory and disk space and
decides to upgrade after 2 years. For about 25% of the cost of the
original system (using typical current PC component costs of 10%
for a new processor, 10% for a new disk drive and 5% for added

memory), the user can substantially improve the system
performance. Specifically, progress in storage and processing
technologies during the two years (i.e., Moore's law) doubles
processing power per dollar and triples storage per dollar.
Further, the user keeps the original equipment, rather than
replacing it. Thus the user has a system that has three times the
processing power and four times the disk space of the original
system. This exceeds the capabilities the user would have if he or
she bought a new, single processor/single disk system. Under this
scenario, the user might continue to use the original processor and
disk drive -- as well as supporting electronics -- for four years
instead of replacing the entire system after three years to have
similar capabilities. Software that could take advantage of
multiple processors efficiently would enable this scenario. Note
that this rough calculation example does not take into account the
environmental savings, which would become visible if disposal
costs were included in hardware prices as under EPR policies
[EC00].
Thus it should be possible to treat the hardware components as
flexible, modular elements that can be added, removed or
replaced as needed, and the system software and applications
would functionally adapt to meet the available resources. Such a
scheme would require innovative packaging to support
component removal and replacement, as well as functionally
adaptable software.
A key to this ability to upgrade hardware modularly is an
operating system that can deal conveniently with multiple
heterogeneous processors and treat multiple disks as a single
logical unit2. The extension of current, high-end, multiprocessor
software technology to mass-market systems with heterogeneous
capabilities and non-specialist users is an open issue.
While we described this design for upgrade in terms of personal
computers, it might be even more applicable to certain types of
pervasive computing systems. For example, while supporting
upgrades in embedded, tightly packaged systems such as PDAs
could dramatically alter the form factor in undesirable ways,
wearable computers, as have been described for pervasive
computing [Siegel95], can be distributed over a large area, and
could potentially include slots or sockets to enable system
upgrade.

3.2.4 Tolerating component failures
All devices will eventually malfunction. To reduce the flow of
devices into the trash, it is desirable to extend their lifetimes. One
option for doing this is to design device systems with inherent
redundancy while a second is to make devices repairable.
Fault tolerant systems, which strive to maintain computer state
across failures, and high-availability systems that strive to
minimize downtime, have generally been reserved for
sophisticated applications because they are expensive. Such
expense is not compatible with the aim of making computing
pervasive.

2 Adding disks today involves either replacing existing drives and

re-installing the operating system, or dealing with separate
logical drives that compartmentalize data, neither of which is
particularly convenient for the user.

Could redundant designs based on more relaxed requirements be
made more cheaply? High availability systems, with their
reduced requirements, are generally less expensive than fault
tolerant systems [Aartsen94]. Can further relaxation of
requirements result in inexpensive redundancy? Such relaxed
requirements could leverage the modular nature of the software,
as described in sec. 3.2.2. For example, rather than maintaining a
certain capability, the system could be designed for graceful
degradation, to tolerate the loss of individual underlying hardware
elements in a manner that reduces application capabilities in a
gradual, rather than catastrophic, fashion.
The design described in sec. 3.2.3 to support incremental
hardware upgrades could also be leveraged to make hardware
failure tolerant and repairable. In addition, much the way RAID
technology was developed to produce reliable, high-performance
storage using inexpensive disk drives [Patterson88], a distributed
approach to pervasive computing systems could be built from
inexpensive, previous-generation processors.
 While design for upgradeability requires software that can sense
system capabilities and adapt, convenient replacement of failed
parts would require software that could perform intelligent
hardware diagnostics, perform workarounds where possible (e.g.
if the system is designed in a RAID manner), and alert the user
conveniently. While some of these capabilities are present in
some expensive, high-reliability systems and networks, the
challenge is to make them available in pervasive computing.
Functionally adaptable software would be capable of adjusting the
capabilities presented to the user based on the surviving
resources. Work on self-adaptive software [Oriezy99] has been
targeted at more sophisticated applications and platforms, but may
be applicable as well. The challenge presented here is to create a
mapping between software functions and specific computing
resources and then using that mapping to adjust application
behavior to resource changes.

3.3 Smart disposal
Eventually even the most frugally used and judiciously upgraded
device must be disposed of. While recycling is preferable to
simply tossing into the trash, current recycling leaves much to be
desired.
There has been an increase in recent years in recycling PCs and
computers to extract raw materials [Matthews97, Goldberg98,
RecycleW]. Cell phone recycling has recently been instituted in
Japan [Belson, 2002] and elsewhere. Cell phones can be crushed
and useful metals extracted from them, yielding about 24
micrograms of gold per phone and substantially more of other
precious metals. However, the process is expensive, low-margin
and time consuming; in Japan, the recycling company pays about
7 cents per phone while the metals extracted are worth about 21
cents. In addition, there are concerns that the recycling process
itself may pose environmental hazards as well as risks to worker
health and safety. “Down cycling” existing cellular telephones to
extract raw materials is apparently not a very viable or
environmentally responsible practice.
In essence crushing devices into raw materials loses the vast
majority of their value. Thus smart disposal and recycling
techniques that identify and reuse of subassemblies should be
pursued. Labeling components (possibly with RF tags) to record
their identities and capabilities could possibly help this process.

Smart disposal should also attempt to close the loop of product
information: provide definitive quantitative feedback to system
designers about the actual usage and upgrade (including the
timing of use and upgrade) of software and hardware components
and features. This would allow design of better, modular, right-
sized and upgraded systems. Hardware and software techniques
to provide this information conveniently, in a scalable manner,
and while preserving privacy would need to be developed.

4. CONCLUDING REMARKS
We have argued that environmental design of pervasive
computing is an essential and inevitable challenge for the future.
While environmental impacts are typically viewed in terms of
minimizing physical material usage and waste, we argue that in
the case of pervasive computing, software will increasingly be
key to reducing hardware impacts. Doing so requires examining
our system design processes with a new metric: reducing
environmental cost. With this overarching theme, we have
surveyed a wide range of new computer science and engineering
techniques that are required, at various levels of system design,
that can help reduce material and energy usage, help reuse and
prolong the life of devices, and help smarter disposal and
recycling.
Many of these techniques, including software modularity,
Internet-scale operating systems and self-diagnosing hardware,
are being investigated in other contexts. This is advantageous in
that it provides multiple reasons both for performing the research
and for deploying the resulting technologies. Exploiting these
techniques for green pervasive computing is will be a challenge in
itself because of the power, size cost and processing constraints
imposed by pervasive computing. Further, and as importantly, we
believe that entirely new avenues of research need to be pursued,
such as developing new formal models and metrics for
environmental costs, design for renewable energy sources and
total-lifecycle energy management, as well as techniques for
smart disposal and usage or upgrade feedback into the design
process.
Developing, evaluating and refining these techniques is the heart
of the environmental design challenge for pervasive computing.

References
[Aartsen94] M. E. Aartsen, High Reliability in New York
Telephone and New England Telephone Development Projects,
Twincom Workshop in Slotje Limburg at Oosterhout, October
25,1994. http://pws.prserv.net/playspace/papers/HAVAIL.htm
[AndKub02] D. P. Anderson and J. Kubiatowicz, The worldwide
computer, Scientific American, 40-47, Mar. 2002.
[AEA97] AEA Technology, Recovery of WEEE, Economic and
Environmental Impacts, June 1997.
[Anjum01] F. Anjum, et al., CitiTime: A system for rapid creation
of portable next-generation telephony services using third-party
software components, Computer Networks, vol. 35, 579-595,
2001.
[Belson02] K. Belson, Mining cellphones, Japan finds El Dorado,
New York Times, page G1, Feb. 26, 2002 [Cahners01] Cahners In-

Stat Group, Bluetooth Overtakes 802.11x with 2001 Shipments on
Track, Report MM01-18BW, Nov. 2001. See
http://www.instat.com/abstracts/mm/2001/mm0118bw_abs.htm
[EC00] European Commission, Commission tackles growing
problem of electrical and electronic waste, DN: IP/00/602, Press
Release, June 13, 2000. See
http://europa.eu.int/rapid/start/cgi/guesten.ksh?p_action.gettxt=gt
&doc=IP/00/602|0|RAPID&lg=EN
[DoE] U.S. Dept of Energy, The Energy Star Program, See
http://www.eren.doe.gov/cities_counties/saving1.html
[EESymp] Proc. of IEEE Symp. on Electronics and the
Environment, 1994-2001.
[Ellis01] C. S. Ellis, The Milly Watt Project, 2001. See
http://www.cs.duke.edu/~carla
[Estar] U. S. Dept of Energy, Press Releases: “EPA Administrator
Looks to Telecommunications Industry for Increased Energy
Efficiency Opportunities”, 11/16/2001; “Energy Star to Launch
Label for Telephony Products at Consumer Electronics Show in
Las Vegas, January 8-11, 2002”
[EStarCordless02] U. S. Dept. of Energy, Cordless Telephones,
Answering Machines, and Combination Cordless Telephones and
Answering Machines, 2002. See:
http://yosemite1.epa.gov/estar/consumers.nsf/content/cordlesspho
nes.htm
[GIMPS02] Great Internet Mersenne Prime Search, See
http://www.mersenne.org
[GodTu01] M. Godfrey and Q. Tu, Growth, evolution, and
structural change in open source software, Proc. Intl. Workshop
on Principles of Software Eng. (IWPSE), Sept. 2001.
[Goldberg98] C. Goldberg, Where do computers go when they
die? New York Times, Mar. 12, 1998.
[HopOn01] Hop-On Communications, See http:// www.hop-
onwireless.com
[Lazar97] A. Lazar, Programming telecommunication networks,
IEEE Network, 11, 5, 8-18, 1997.
[LyVar00] P. Lyman and H. R. Varian, How much information,
2000. See: http://www.sims.berkeley.edu/research/projects/how-
much-info
[Matthews97] H. S. Matthews et al, Disposition and End-of-Life
options for personal computers, Carnegie Mellon Univ. Green
Design Initiative, Rep. 97-10, July 1997.
[McB98] W. McDonough and M. Braungart, The NEXT
Industrial Revolution, Atlantic Monthly, October 1998.
[MCC96] Electronics Industry Roadmap, Microelectronics and
Computer Technology Corporation, Austin, TX, 1996.
[MIT] MIT Green Computing: An examination of the
environmental effects of computers at MIT, See
http://ecocomputers.mit.edu
[Mitola00] J. Mitola, Software Radio Architecture: Object-
Oriented Approaches to Wireless Systems Engineering, Wiley,
Oct. 2000.
[Nicolaescu01] I. V. Nicolaescu and W. P. Hoffman, Energy
consumption and cellular telephones, Proc. IEEE Symp.
Electronics and the Environment, 2001.

http://pws.prserv.net/playspace/papers/HAVAIL.htm
http://www.instat.com/abstracts/mm/2001/mm0118bw_abs.htm
http://europa.eu.int/rapid/start/cgi/guesten.ksh?p_action.gettxt=gt&doc=IP/00/602|0|RAPID&lg=EN
http://europa.eu.int/rapid/start/cgi/guesten.ksh?p_action.gettxt=gt&doc=IP/00/602|0|RAPID&lg=EN
http://www.eren.doe.gov/cities_counties/saving1.html
http://www.cs.duke.edu/~carla
http://yosemite1.epa.gov/estar/consumers.nsf/content/cordlessphones.htm
http://yosemite1.epa.gov/estar/consumers.nsf/content/cordlessphones.htm
http://www.mersenne.org/
www.hop-onwireless.com
www.hop-onwireless.com
http://www.sims.berkeley.edu/research/projects/how-much-info
http://www.sims.berkeley.edu/research/projects/how-much-info
http://ecocomputers.mit.edu/

[NSC99] Electronic product recovery and recycling baseline
report, National Safety Council, Washington, DC, 1999.
[OReilly99] J. O'Reilly, Down but not out: Floppy disks far from
dead, Tape Disc Business, 1999.
[Oriezy99] P. Oreizy, et al., An Architecture-Based Approach to
Self-Adaptive Software, IEEE Intelligent Systems, Vol. 14, no. 3,
May/June 1999, pp. 54-62.
[Pande02] V. Pande, The folding@home project, See:
http://folding.stanford.edu
[Paradiso00] J. Paradiso, Renewable energy sources for the future
of mobile and embedded computing, MIT Media Lab, Mar. 2000.
[Patterson88] Patterson, David A., Garth Gibson and Randy Katz,
“A Case for Redundant Arrays of Inexpensive Disks (RAID),”
Proc. of the 1988 ACM SIGMOD Conf. On Management of Data,
June 1988.
[RecycleW] Recycler's World. See http://www.recycle.net
[Rosch02] W. L. Rosch, The Winn L. Rosch Hardware Bible,
2002. See http://www.hardwarebible.com/Microprocessors
[Siegel95] J. Siegel, R. E. Kraut, B. E. John, K. M. Carley, An
Empirical Study of Collaborative Wearable Computer Systems"
Conf. on Human Factors in Computing, May 7 - 11, 1995.
[Shriver96] E. Shriver and M. Nodine, An introduction to parallel
I/O models and algorithms, in R. Jain, J. Werth and J. C. Browne,

Input/Output in Parallel and Distributed Computer Systems,
Kluwer, 1996.
[Taiariol01] F. Taiariol, P. Fea, and C. Papuzza, Environmental
impact of a telecommunication service, Proc. IEEE Symp.
Electronics and the Environment, 2001.
[Telespree01] Telespree, Inc, http://www.telespree.com
[Wang96] P. Wang, “How to Save Half Your Disk Space
Automatically.” HPWorld 96,
http://erpnews.com/pubcontent/interact/jul96/07pwang/pwang.ht
ml
[Watson99] T. Watson, “USA sitting on mountain of obsolete
PCs", USA Today, June, 22, 1999.
[Weiser93] M. Weiser, Some Computer Science Problems in
Ubiquitous Computing, Communications of the ACM, July 1993.
[Wesier96] M. Weiser and J. S. Brown, The coming age of calm
technology, Xerox PARC, Oct. 1996. See
http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm
[Wheeler02] D. A. Wheeler, More than a gigabuck: Estimating
GNU/Linux's size, June 30, 2001. See:
http://www.dwheeler.com.

mailto:folding@home
http://folding.stanford.edu/
http://www.recycle.net/
http://www.hardwarebible.com/Microprocessors
http://www.telespree.com/
http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm
http://www.dwheeler.com/

	INTRODUCTION
	DESIGN IMPLICATIONS
	COMPUTER SCIENCE AND ENGINEERING CHALLENGES
	Using less
	Minimizing physical materials
	Minimizing energy usage

	Using it longer
	Self-destroying data
	Programmability and just-in-time/just-right software upgrade
	Just-right hardware upgrades
	Tolerating component failures

	Smart disposal

	CONCLUDING REMARKS

