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ABSTRACT 
We argue that pervasive computing offers not only tremendous 
opportunities and exciting research challenges but also possible 
negative environmental impacts, particularly in terms of physical 
waste and energy consumption.  These environmental impacts 
will come under increasing government and consumer scrutiny, 
and like other disciplines (e.g. architecture, transportation), 
pervasive computing will have to adapt accordingly.  Further, we 
argue that software–related issues will play an increasing role in 
reducing the environmental impact of computing.  We thus 
propose that an important challenge for pervasive computing is to 
develop research in new architectures, design methodologies, 
metrics, algorithms and operating systems to minimize these 
impacts.  We then discuss specific research issues and questions 
that arise in three phases of the device lifecycle: minimizing 
resource usage for manufacture and operation, maximizing device 
lifetime, and improving recyclability.   

Categories and Subject Descriptors 
C.2.0 [Computer-communication networks]: Network 
architecture and design – wireless communication, distributed 
networks.  D.2.0 [Software engineering]: Design tools and 
techniques. 

General Terms 
Design, Algorithms, Economics, Human Factors. 

Keywords 
Environmental impacts, pervasive computing, green computing. 

1. INTRODUCTION 
Computer systems have come a long way from the early single-
application mainframe behemoths used by specialists, often 
scientists and engineers, in closed, protective environments.  
Today, an incredible variety of computers and applications, 
spanning the globe and beyond, have deep and far-reaching 
impacts on all parts of society.  Developments in mobile 
computing and networking, leading to the idea of pervasive 
computing, promise to have even greater impacts.   
Pervasive (or ubiquitous) computing has been driven by 
ambitious, exciting and noble goals –  to make computing as 
useful and unobtrusive as utilities like electricity and water; to 
produce “calm” rather than distraction; and to bring the benefits 
of computers to everyone by developing not only powerful, costly 
machines but “tiny inexpensive ones” [Weiser93, Weiser96].  
While this vision has yet to be realized, much progress has been 
made, and researchers and engineers around the world are 
chipping away at the obstacles. 
However, little or no thought has been given to the physical final 
end result of pervasive computing: devices of varying size, weight 
and complexity, that are useless, obsolete, malfunctioning, or 
simply broken – in other words, that are garbage.  Further, these 
devices, by their very design and function, are ubiquitous, 
massively distributed, and embedded in numerous everyday 
objects and the environment.  From digital jewelry and clothing, 
to networked appliances, PDAs, cell phones, sensor networks, 
smart floors and cyber homes, pervasive computing offers us not 
only a glittering future of convenience, comfort and connectivity, 
but possibly also a legacy of deadening clutter and dangerous 
trash: plastics that do not biodegrade, heavy metals that are 
carcinogenic, gases from production and incineration that are 
toxic, and landfills that threaten generations to come. 
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To gauge the extent of this possibility, it is worthwhile glancing at 
the physical waste produced by the current – i.e., non-pervasive – 
use of computers.  It has been estimated that over three-quarters 
of all computers ever bought in the U.S. are stored in people’s 
attics, basements, office closets and pantries [MCC96].  By the 
year 2004, experts estimate there will be over 315 million 
obsolete computers in the US; many destined for landfills, 
incinerators or hazardous waste exports [NSC99].  Consider that 
computer equipment is a complicated assembly of over a 
thousand materials, of which many, such as lead, cadmium and 
mercury, are known to be highly toxic.  Thus the environmental 

mailto:jain@docomolabs-usa.com


impacts of computers have been a subject of growing concern 
over the past decade [DoE]. 
Already, the growth of waste electrical and electronic equipment 
is about 3 times that of other municipal waste [AEA97].  The 
average lifespan of a computer tower has shrunk from 4-6 years in 
1997, and is estimated to fall to 2 years by 2005.  Pervasive 
computing will only add to this “mountain of obsolete PCs” 
[Watson99], both by increasing the nature and quantity of 
physical devices and the rate at which they become obsolete.  Not 
only computing, but also communications devices and integrated 
computing and communications devices are expected to 
proliferate.  Analysts have estimated that 13 million Bluetooth 
devices alone were shipped in 2001 and predict that by 2005 there 
will be over 780 million new Bluetooth devices shipped  
Generally most pervasive computing devices – although by no 
means all – will have one significant environmental advantage 
over traditional computers: small physical size that inherently 
consumes less material.  However, they have disadvantages as 
well: they will be far more numerous; low cost will encourage 
rapid replacement; less mature technology will become obsolete 
faster; disposable versions of some devices, like disposable cell 
phones [HopOn01, Telespree01], will soon emerge; and they will 
tend to use batteries, which often contain environmentally 
unfriendly heavy metals.  In addition, their small size, weight, 
embedding in other materials and overall design for ubiquity will 
disperse them widely, making them more likely to be lost, 
forgotten, or simply abandoned, and making proper collection, 
recycling or disposal harder.  Finally, pervasive computing 
devices, to meet their goal, will be truly global, bringing 
computer environmental impacts to regions of the world where 
little or none exist at present. 
So far we have focused on the physical waste aspects of pervasive 
computing.  Energy consumption is another significant 
environmental concern.  It has been estimated that computing, 
telephony and networking equipment now account for a 
significant fraction of the total energy consumption in the U.S.  
[EStar].  While mobile devices are becoming more energy-
efficient, the overall energy consumption due to such devices 
continues to increase as their total number increases rapidly, they 
integrate more sophisticated and energy-consuming peripherals 
(larger displays, built-in wireless interfaces, CD-R/W etc.), and 
the applications and system software (and even screen savers) 
become ever more complex [Paradiso00].  Once again, in the case 
of pervasive computing, this environmental impact is greater than 
current computing because of the use of batteries. 
There are many efforts targeted at increasing the rate at which 
electronic devices, including computers, are recycled, and at 
making it more tenable to extract useful material from electronic 
waste e.g. see [EESymp, RecycleW, MIT].  Most of these efforts 
have addressed the physical aspects of electronic devices and 
computers: circuit boards, batteries, displays and the like.   
Missing from most of this work is any effort specifically within 
the domains of computer science and engineering aimed at 
minimizing the environmental impact of computers.  Just as 
manufacturers of household goods such as appliances and 
cosmetics increasingly seek to project and differentiate 
themselves as “green” (to respond to or avoid government 
regulations and consumer pressure), so will computer system 
manufacturers.  Just as diverse disciplines such as architecture, 

transportation engineering, and materials science have developed 
principles and techniques for environmentally sensitive and 
sustainable design, it is likely that pervasive computing will need 
to follow suit.  And these principles must apply to all aspects of 
electronic devices, both hardware and software. 

2. DESIGN IMPLICATIONS 
The intent of this paper is not to present an alarmist view of 
global environmental collapse due to computers, but to argue that 
computers in general, and pervasive computers in particular, pose 
an environmental risk that must, and can, be addressed.   
As researchers we tend to focus on innovation, and in our view 
there are interesting opportunities for reducing the environmental 
impacts of pervasive computing by innovation.  However, we 
believe strongly that effective reduction of resource consumption, 
reuse of resources, and recycling of materials – the 
reduce/reuse/recycle mantra – needs to be an integral part of the 
design process, not an afterthought.  This view has been 
articulated for manufactured products in general, e.g.: “Very few 
objects of modern consumption were designed with recycling in 
mind.  If the process is truly to save money and materials, 
products must be designed from the very beginning to be recycled 
…” [McB98].  In fact, unlike current computing, where 
environmental concerns were only raised after the proliferation of 
computers, pervasive computing offers us a unique opportunity to 
apply environmental consciousness while we are still at the start 
of the next wave of technology proliferation.  We believe it is 
important to rethink pervasive computing in the sense that 
minimizing total lifecycle environmental impact should become 
one of the important factors in pervasive computing design. 
Of course, much of pervasive computing research focuses on 
design to minimize resource consumption, mainly because of 
limitations of device size, weight and capabilities that make the 
research interesting in the first place.  However, the research is 
generally driven by the goal of squeezing more functionality out 
of the resources available, where the resources in turn are limited 
primarily by cost, or sometimes by availability.  At present, post-
manufacture environmental impacts are external to the producer, 
and are not reflected in costs for electronic devices.  This is true 
in the US, although recently in Europe “Extended Producer 
Responsibility” (EPR) policies are shifting the burden of waste 
electrical and electronic equipment to the manufacturer [EC00]1.  
In contrast, we argue that pervasive computing design should 
explicitly consider and minimize environmental impacts as a 
separate parameter from cost.  In particular, the costs of 
environmental impacts should be included in the design process, 
and methodologies developed so that the present value of these 
future costs can be compared on an apple-to-apples with other 
costs.  This is not as radical as it may sound; many corporations 
have voluntarily embraced principles of minimizing 
environmental impact. 
We also argue that research should consider minimizing not only 
production and operation costs but total lifecycle impacts, i.e., 
choosing techniques to reduce the costs of reuse, recycling, and 
                                                                 
1 Nonetheless, very recently some proposed legislation has been 

introduced in the U.S. Congress to address the issue of 
electronic waste, and this may become one of the key incentives 
for environmentally sustainable design. 



disposal.  This complicates the design process, but makes it more 
challenging – trading off not only between functionality and 
operational or production cost, but also total lifecycle impacts.  At 
present there are few metrics and techniques to carry out or 
evaluate such designs, and developing these techniques for 
pervasive computing is a challenging endeavor. 
Example Scenario.  To make these ideas more concrete we 
sketch a scenario that is quite conservative in the sense that it is 
within the realm of technical realization.  Alice leases or 
purchases a Rethink brand cell phone whose casing is made from 
biodegradable or recycled plastic.  It contains a large proportion 
of recycled electronic components, and connections on its circuit 
boards are made with lead-free solder.  The Rethink phone comes 
with a Shoe Battery installed and a spare that is rechargeable, 
when Alice walks, by means of a piezo-electric charging 
apparatus in her shoe.  The phone is sufficiently integrated, 
programmable and convenient that it eliminates several other 
devices, such as a PDA, wallet, and various household remotes 
(TV, VCR, stereo, fan, garage, car, etc.).  The phone has a 
software radio to accommodate air interface changes when Alice 
travels or when new technology is developed.  It also has an open, 
standard API so that new applications (e.g. currency converters, 
foreign language phrasebooks) can be downloaded to it on 
demand, extending its function as well as life.  The hardware is 
designed for modularity and replacability, rather than being 
integrated to minimize initial cost.  Thus when Alice decides to 
upgrade, the phone can be easily disassembled by the store clerk 
or Alice herself, and many of the physical materials (casing, 
display, keys, battery circuits, etc) are reused.  The manufacturer 
has an incentive to avoid needless obsolescence so as to avoid 
disposal costs.  Similarly, the software is in component form and 
is replaced only if necessary, and with minimum delay and 
inconvenience.  Finally, after many years, when the product wears 
out or is actually obsolete, Alice has an incentive (e.g. deposit 
refund or trade-in value) to return the phone to the manufacturer 
or third party for recycling. 
In the rest of this paper we elaborate on the computer science and 
engineering challenges presented by environmental design for 
pervasive computing. 

3. COMPUTER SCIENCE AND 
ENGINEERING CHALLENGES 
Rethinking pervasive computing to minimize environmental 
impact has implications at all aspects of system design, including 
computer science and software.  In fact, we believe that software 
will play an increasing role in the environmental impacts of 
pervasive computing.  One reason is that, over time, more and 
more computer system functionality is being implemented in 
software rather than hardware.  As hardware becomes faster and 
cheaper, it becomes feasible to obtain the flexibility, adaptability 
and programmability offered by software while still meeting 
system performance and cost constraints.  For example, each new 
generation of telecommunications switching system has 
unbundled application logic from system software and allowed 
greater programmability [Anjum01, Lazar97].  As another 
example, software radios are being developed that will allow 
radio channel modulation for cell phones and other wireless 
communications devices to be defined in software rather than 
hardware [Mitola00].  

We organize our discussion of research challenges and techniques 
in three categories.  The first set of techniques involves using less 
physical material per device in the first place.  This can involve 
making devices physically smaller or ensuring that they only 
include the needed components.  The second grouping deals with 
using devices longer, for example by increasing their reliability or 
ensuring their re-usability.  The final group looks at creative 
means of disposal, including "smart disposal" to feed information 
back into the product design phase.  In some cases, because data 
is more easily available, we use examples from current computing 
platforms like PCs to make our suggestions more concrete. 

3.1 Using less 
An obvious first step towards reducing environmental impact is 
smarter design to use less materials or energy for the same 
functionality and performance.   

3.1.1 Minimizing physical materials 
There are several approaches to reducing material usage when 
considering collections of devices.  We specifically look at 
functional integration, resource sharing and modular design 
Functional integration, the process of combining several functions 
into a single device (e.g. a cell phone that is also a PDA, remote 
control, etc.) is often pursued to increase user convenience and 
reduce costs.  The primary user convenience is the reduction in 
number of devices that must be managed, tracked, carried, etc.  
This reduction could aid in reducing the waste stream.  However, 
integration alone will not solve the problem of proliferation.  
There is a counter trend toward specialization: small special-
purpose devices, particularly those embedded in other objects, 
such as wearable devices of many types.   
Another approach to reducing the overall quantity of electronics is 
resource sharing.  One option is to make it easier for multiple 
users to share a device by supporting personalization and privacy 
features that are invoked, for example, by biometric 
identification.   Taking this a step further, in some cases large-
scale centralized solutions are more environmentally effective 
than individually owned devices.  For example, the physical and 
energy environmental impacts of telephone answering machines 
are almost 10 times greater than those of a centralized voicemail 
service [Taiariol01].   
More fundamentally, computing today is viewed largely as a 
private resource owned by organizations or individuals, but it is 
clear that most computers are tremendously underutilized.  One 
possible method to reduce the total number of computers is to 
allow the existing computational resources to be shared.  Sharing 
global computer resources in this manner is being pursued 
[AndKub02], but largely to accomplish goals that would be 
unaffordable or simply impossible using dedicated computers.  
Early successful examples of such uses are large-scale 
computations required for finding prime numbers, where 130,000 
users have freely contributed computing resources [GIMPS02], or 
simulations to understand protein folding behavior, where over 
20,000 users have contributed [Pande02].  Generalizing these 
experiments raises two fundamental and deeply challenging 
problems: developing what amounts to an Internet Scale 
Operating System (ISOS) to manage resource allocation, security 
and coordination; and developing economic models and 
mechanisms to provide incentives for private owners to lease out 
their computing resources [AndKub02].  We believe these 



challenges are all the more worthwhile pursuing because of the 
potential large-scale environmental benefits that can accrue.  
Moreover, environmental cost should be a factor in the design and 
operation tradeoffs of such an ISOS; this does not seem to have 
been considered.  One example in [AndKub02] is to utilize the 
idle resources of hundreds of computers to cheaply deliver a 
streaming movie on demand to a participating user.  However, 
choosing which idle computers to use for this application could 
involve environmental concerns in addition to cost and 
performance.  For example, the ISOS could preferentially activate 
computers in colder geographic regions and let those in warmer 
areas go into a low-power idle state, conserving energy for 
heating and cooling. 
The ISOS idea can also be beneficially applied to smaller-scale 
situations, such as the pervasive computing environment in a 
user's home, office and car.  Thus rather than adding more 
devices, especially for special purpose applications, it may be 
possible to leverage the unused computation and communication 
resources in the environment seamlessly.  Designing such a 
pervasive computing environment operating system presents 
many of the same challenges as an ISOS, along with additional 
ones of fewer resources, limited energy, restricted user interfaces, 
device and communication media heterogeneity, and slow or 
intermittent communication. 
It is also worth considering how to reduce materials within 
individual devices.  In particular, it should be possible for a user 
to buy a device whose modular design allows customization, so 
that only the specific hardware and software required by the user 
is included.  Personal computers can typically be assembled in 
this way, but to be cost-effective the option units are typically 
large, e.g. disk drives and peripheral cards.  Design and 
fabrication techniques that allow customized assembly for smaller 
and cheaper devices, and with smaller option units, need to be 
developed.  Much as compact flash storage can be added in 
varying quantities to smaller devices like digital cameras, it 
should be possible to add other resources as well. We will discuss 
how the device can evolve as the user's requirements change in 
section 3.2. 

3.1.2 Minimizing energy usage 
There has been a significant amount of research within the mobile 
computing, networking and devices communities on reducing the 
operational energy usage of pervasive computing devices.  
However, almost all of the research focuses on extending the 
battery life.   
While this is worthwhile, a more fundamental research approach 
is also desirable.  We believe formal models of energy 
consumption are required that explicitly consider energy instead 
of (or in addition to) CPU cycles in order to motivate design of 
algorithms (e.g. for data indexing or for wireless computing).  
This is analogous to the formal models developed to support the 
design and comparison of I/O-efficient algorithms [Shriver96].  
Some work along these lines is in [Ellis01].  Formal frameworks 
can provide a basis for long-term scalable improvements in 
energy efficiency. 
In addition, a focus on operational energy usage can be 
shortsighted from an engineering point of view.  Analysis shows 
that a recent-model cell phone under a typical usage consumes 
about 6 kJ per day from the battery.  However, if the charger is 

left plugged in all day (as is not uncommon) the total energy 
usage is 110 kJ, an efficiency of about 5% [Nicolaescu01].  The 
resulting difference in CO2 emissions in these usage scenarios is 
about 5 kg per phone per day.  This is an example of a situation 
where, for at least one class of devices, very significant energy 
and environmental savings could be achieved by better design.   
Another interesting finding in the same study is that a half-duplex 
multiparty call (e.g. like the Nextel Direct ConnectTM "push to 
talk" feature used in dispatch applications) uses roughly half the 
power of a regular voice call.  We note, however, that many PCS 
and cellular system designs preclude this functionality (thus in the 
U.S. none of the other major nationwide carriers currently offer 
it), pointing to the need for research in architectures and protocols 
that can support low-power applications efficiently.  Further, 
standby operation for this device consumes over 60% of the total 
energy.  This is consistent with estimates that nearly 90% of the 
energy usage in other devices such as cordless phones and 
answering machines is in standby mode [EStarCordless02].    
Clearly, focusing on operational energy savings of devices alone 
is insufficient; recognition of architectures, design methodologies 
and tools for minimizing total energy usage is required. 
Finally, we briefly mention that research in alternative sources of 
energy for pervasive computing is desirable so as to limit the use 
of fossil fuels to charge batteries and potentially the use of 
batteries themselves, particularly for embedded and wearable 
devices.  Further work on using renewable sources such as human 
and solar energy is required (e.g. human footfalls can generate 
over 50 mW [Paradiso00].) 

3.2 Using it longer 
People dispose of things for many reasons.  One is that the item 
no longer has sufficient functionality; another is that it breaks or 
malfunctions; and yet another is that the device becomes 
outdated, for example it does not support the latest applications.  
We consider intelligent computer science and engineering 
techniques to address these issues. 

3.2.1 Self-destroying data 
One reason for computing devices becoming outdated is that they 
run out of storage space.  However, in many cases, it is likely that 
the storage space contains information that is of no use to either 
the system or the user.  Some estimates indicate that 30-60% of 
disk space on a computer is wasted [Wang96, LyVar00].  For 
example, out-dated user information and multiple copies of the 
same information can occupy storage space needlessly.  Such a 
situation can be created by users (e.g., keeping multiple revisions 
of a single document) or by systems (e.g., partially installed or 
incompletely removed software).  This data sprawl from 
information unnecessarily stored far beyond its useful lifetime not 
only consumes storage, but it also costs energy (for search and 
management) and contributes to “virtual clutter” and usability 
issues.  Individuals find it easier and cheaper to expand system 
resources (larger disks and faster processors) than to manually 
manage even personal information such as mail and web logs.  
The proliferation of multimedia content and the widespread use of 
digital personal libraries (e.g. already many babies in the U.S. 
start out with a web page) will make this a non-trivial issue.   
We suggest that systems be designed to minimize data sprawl 
through better indexing, retrieval, on-line or automatic 
compression, and knowledge management techniques.  For 



instance, some word processors store information in mysteriously 
inefficient ways and most store every document revision as a 
copy instead of storing just the revisions.  Few offer 
comprehensive and convenient journaling features so that data 
can be self-managing (e.g. the most recent revision can be located 
easily) or self-destroying (e.g. after a certain specified date or 
after a certain number of copies have been made.)  While recent 
operating systems do make recommendations about deleting files, 
these capabilities need to be made far more convenient and 
applicable to a user's entire (pervasive) computing environment.  
Similarly, e-mail attachments are needlessly copied to multiple 
mailboxes (and sometimes to multiple devices for a given 
recipient) rather than being automatically stored in a logically 
central location.  The list of such inefficiencies can easily be 
made much longer, mainly because the “storage is cheap” refrain 
hides the environmental costs of obsolete or useless data. 

3.2.2 Programmability and just-in-time/just-right 
software upgrade 
One of the primary reasons people have for buying new electronic 
devices is to gain access to the latest software applications.  A 
clear example of this is home video game consoles, where the 
latest games only work on the latest consoles.  Even applications 
with nominally the same functionality show an ever-increasing 
demand for storage space and processing power.  For example, as 
shown in Table 1, over the last 7 years the storage requirements 
for an office productivity software suite have increased by a 
factor of over 5 and the processing requirements by a factor of 40.  
Similarly, from 1994 to 1999, Linux kernel size (in uncommented 
lines of code) grew as the square of the number of days since the 
release of version 1.0 [GodTu01]; to about 2.5 million lines in 
2001 [Wheeler01].  While some of this software sprawl not only 
increases storage and energy usage but, after only a few releases, 
can also make hardware obsolete.  While some of this growth is 
related to added functionality, the complexity of the resulting 
applications results in much of this functionality going under-
used.   
Mechanisms to discover system capabilities, auto-configure 
systems, and allow secure, just-in-time plug-in and assembly of 
required system software components (similar to what is done in 
Web browsers) are required.  Related to this are: 

• Dynamic application usage can extend the useful life of 
a device by avoiding software sprawl and allowing 
convenient upgrade and application leasing.  This 
involves dynamic application discovery, download, and 
billing, all of which has to be done with resource-
limited devices.   

• Languages and APIs for programmability, modularity 
and extensibility are required so that system as well as 
application software can be designed for reuse, 
replacement, and upgrade. 

One indication that it is possible to address the storage problem is 
apparent by comparing the disk requirements shown in the last 
two rows of Table 1.  Between 2000 and 2001, the minimum 
storage requirement actually decreased slightly.  This decrease is 
attributed to an on-demand installation process that adds features 
only as they are actually invoked by the user.  A remaining 
challenge is to use this approach for designing applications to 
address the processing requirements. 

 
 

Table 1: Application requirements example 

Rel. 
Date 

Disk Requirements CPU 
Requirements 

[Rosch02] 
1995  40 MB compact;  

87 MB typical;  
126 MB complete 

16 MHz, 386DX. 
Est. MIPS: 5.5  

1997  73 MB compact 
121 MB typical 
191 MB complete 

33 MHz 486. 
Est. MIPS: 27 

2000  252 MB minimum 
527 MB recommend 

75 MHz Pentium. 
Est. MIPS: 126 

2001  245 MB minimum 
 

133MHz Pentium. 
Est. MIPS: 219 

 
 
To make this process systematic and bring it to a finer grained 
level, hardware requirements should be written not only for entire 
software applications, but based on particular user-level features.  
Software development methodologies, and in particular 
requirements engineering processes, to support this must be 
developed. 
Observe that this concept of on-demand feature-based software 
upgrade is different from software reuse.  While software reuse 
generally deals with making software development more efficient 
through modular source code, here we are talking about installing 
and/or deploying executable code on an as-needed basis.     
An additional problem with running newer software on older 
hardware is that software vendors limit the range of hardware on 
which they test the software.  Such limitations are necessary 
because software testing is a time and labor intensive process.  
Design, development and testing processes that support modular 
hardware, as described below, could help to address this.  Test 
automation, for both functional and interface testing, could enable 
manufacturers to certify software operation on a wider range of 
devices, effectively extending their lifetime.  In addition, it is 
necessary to develop automated test techniques that can verify 
that the software will operate correctly when feature-level 
software modules are added on-demand in response to (implicit or 
explicit) user input.  

3.2.3 Just-right hardware upgrades 
Another strategy that could increase the average lifetime of 
electronic equipment is to design the hardware and software to 
support system hardware upgrades.   
Example.  We sketch a simplified example as follows: suppose a 
PC is designed to hold multiple processors and also multiple 
disks.  Further, suppose the operating system can support 
multiple, heterogeneous processors and can treat multiple disks as 
a single logical unit.  These features increase the price of the 
original system by, say, 10%.  Suppose a user buys this system 
with a single processor with adequate memory and disk space and 
decides to upgrade after 2 years.  For about 25% of the cost of the 
original system (using typical current PC component costs of 10% 
for a new processor, 10% for a new disk drive and 5% for added 



memory), the user can substantially improve the system 
performance.  Specifically, progress in storage and processing 
technologies during the two years (i.e., Moore's law) doubles 
processing power per dollar and triples storage per dollar.  
Further, the user keeps the original equipment, rather than 
replacing it.  Thus the user has a system that has three times the 
processing power and four times the disk space of the original 
system.  This exceeds the capabilities the user would have if he or 
she bought a new, single processor/single disk system.  Under this 
scenario, the user might continue to use the original processor and 
disk drive -- as well as supporting electronics -- for four years 
instead of replacing the entire system after three years to have 
similar capabilities.  Software that could take advantage of 
multiple processors efficiently would enable this scenario.  Note 
that this rough calculation example does not take into account the 
environmental savings, which would become visible if disposal 
costs were included in hardware prices as under EPR policies 
[EC00]. 
Thus it should be possible to treat the hardware components as 
flexible, modular elements that can be added, removed or 
replaced as needed, and the system software and applications 
would functionally adapt to meet the available resources.  Such a 
scheme would require innovative packaging to support 
component removal and replacement, as well as functionally 
adaptable software.   
A key to this ability to upgrade hardware modularly is an 
operating system that can deal conveniently with multiple 
heterogeneous processors and treat multiple disks as a single 
logical unit2.  The extension of current, high-end, multiprocessor 
software technology to mass-market systems with heterogeneous 
capabilities and non-specialist users is an open issue. 
While we described this design for upgrade in terms of personal 
computers, it might be even more applicable to certain types of 
pervasive computing systems.  For example, while supporting 
upgrades in embedded, tightly packaged systems such as PDAs 
could dramatically alter the form factor in undesirable ways, 
wearable computers, as have been described for pervasive 
computing [Siegel95], can be distributed over a large area, and 
could potentially include slots or sockets to enable system 
upgrade. 

3.2.4 Tolerating component failures  
All devices will eventually malfunction.  To reduce the flow of 
devices into the trash, it is desirable to extend their lifetimes.  One 
option for doing this is to design device systems with inherent 
redundancy while a second is to make devices repairable.   
Fault tolerant systems, which strive to maintain computer state 
across failures, and high-availability systems that strive to 
minimize downtime, have generally been reserved for 
sophisticated applications because they are expensive.  Such 
expense is not compatible with the aim of making computing 
pervasive.   

                                                                 
2 Adding disks today involves either replacing existing drives and 

re-installing the operating system, or dealing with separate 
logical drives that compartmentalize data, neither of which is 
particularly convenient for the user. 

Could redundant designs based on more relaxed requirements be 
made more cheaply?  High availability systems, with their 
reduced requirements, are generally less expensive than fault 
tolerant systems [Aartsen94].  Can further relaxation of 
requirements result in inexpensive redundancy?  Such relaxed 
requirements could leverage the modular nature of the software, 
as described in sec. 3.2.2.  For example, rather than maintaining a 
certain capability, the system could be designed for graceful 
degradation, to tolerate the loss of individual underlying hardware 
elements in a manner that reduces application capabilities in a 
gradual, rather than catastrophic, fashion.   
The design described in sec. 3.2.3 to support incremental 
hardware upgrades could also be leveraged to make hardware 
failure tolerant and repairable.  In addition, much the way RAID 
technology was developed to produce reliable, high-performance 
storage using inexpensive disk drives [Patterson88], a distributed 
approach to pervasive computing systems could be built from 
inexpensive, previous-generation processors.   
 While design for upgradeability requires software that can sense 
system capabilities and adapt, convenient replacement of failed 
parts would require software that could perform intelligent 
hardware diagnostics, perform workarounds where possible (e.g. 
if the system is designed in a RAID manner), and alert the user 
conveniently.  While some of these capabilities are present in 
some expensive, high-reliability systems and networks, the 
challenge is to make them available in pervasive computing.   
Functionally adaptable software would be capable of adjusting the 
capabilities presented to the user based on the surviving 
resources. Work on self-adaptive software [Oriezy99] has been 
targeted at more sophisticated applications and platforms, but may 
be applicable as well.  The challenge presented here is to create a 
mapping between software functions and specific computing 
resources and then using that mapping to adjust application 
behavior to resource changes. 

3.3 Smart disposal 
Eventually even the most frugally used and judiciously upgraded 
device must be disposed of.  While recycling is preferable to 
simply tossing into the trash, current recycling leaves much to be 
desired. 
There has been an increase in recent years in recycling PCs and 
computers to extract raw materials [Matthews97, Goldberg98, 
RecycleW].  Cell phone recycling has recently been instituted in 
Japan [Belson, 2002] and elsewhere.  Cell phones can be crushed 
and useful metals extracted from them, yielding about 24 
micrograms of gold per phone and substantially more of other 
precious metals.  However, the process is expensive, low-margin 
and time consuming; in Japan, the recycling company pays about 
7 cents per phone while the metals extracted are worth about 21 
cents.  In addition, there are concerns that the recycling process 
itself may pose environmental hazards as well as risks to worker 
health and safety.  “Down cycling” existing cellular telephones to 
extract raw materials is apparently not a very viable or 
environmentally responsible practice.   
In essence crushing devices into raw materials loses the vast 
majority of their value.  Thus smart disposal and recycling 
techniques that identify and reuse of subassemblies should be 
pursued.  Labeling components (possibly with RF tags) to record 
their identities and capabilities could possibly help this process.  



Smart disposal should also attempt to close the loop of product 
information: provide definitive quantitative feedback to system 
designers about the actual usage and upgrade (including the 
timing of use and upgrade) of software and hardware components 
and features.  This would allow design of better, modular, right-
sized and upgraded systems.  Hardware and software techniques 
to provide this information conveniently, in a scalable manner, 
and while preserving privacy would need to be developed. 

4. CONCLUDING REMARKS 
We have argued that environmental design of pervasive 
computing is an essential and inevitable challenge for the future.  
While environmental impacts are typically viewed in terms of 
minimizing physical material usage and waste, we argue that in 
the case of pervasive computing, software will increasingly be 
key to reducing hardware impacts.  Doing so requires examining 
our system design processes with a new metric: reducing 
environmental cost.  With this overarching theme, we have 
surveyed a wide range of new computer science and engineering 
techniques that are required, at various levels of system design, 
that can help reduce material and energy usage, help reuse and 
prolong the life of devices, and help smarter disposal and 
recycling.   
Many of these techniques, including software modularity, 
Internet-scale operating systems and self-diagnosing hardware, 
are being investigated in other contexts.  This is advantageous in 
that it provides multiple reasons both for performing the research 
and for deploying the resulting technologies.  Exploiting these 
techniques for green pervasive computing is will be a challenge in 
itself because of the power, size cost and processing constraints 
imposed by pervasive computing.  Further, and as importantly, we 
believe that entirely new avenues of research need to be pursued, 
such as developing new formal models and metrics for 
environmental costs, design for renewable energy sources and 
total-lifecycle energy management, as well as techniques for 
smart disposal and usage or upgrade feedback into the design 
process.  
Developing, evaluating and refining these techniques is the heart 
of the environmental design challenge for pervasive computing. 
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