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Gap-based silvicultural systems were developed under the assumption that richness, and diversity of tree spe-
cies and other biota positively respond to variation in size of harvest-created canopy gaps. However, varying gap
size alone often does not meet diversity objectives and broader goals to address contemporary forest condi-
tions. Recent research highlights the need to consider site factors and history, natural disturbance models,
within-gap structure and recruitment requirements in addition to light resources for desired tree diversity. This
synthesis brings together silvicultural developments and ecological literature on gap-based management, high-
lighting interactions with other factors such as microsite conditions, non-tree vegetation and more. We pose a
revised concept for managers and researchers to use in prescriptions and studies focused on integrated overs-
tory and understory manipulations that increase structural complexity within and around canopy openings.

Introduction
Managing tree diversity is both a goal of sustainable forest man-
agement and an approach to enhance ecosystem resilience and
adaptability (Millar et al., 2007; Mori et al., 2013). For some for-
ests, a method of managing tree diversity is to emulate pat-
terns of natural disturbances. The creation of openings in the
forest canopy, or gaps, has been of particular interest because
gaps in unmanaged forests known for gap-phase dynamics can
be associated with a diverse collection of regenerating tree spe-
cies (Runkle, 1982). Gap-based silvicultural systems have experi-
enced widespread application and adoption at different points
in history for various ecological and economic reasons; these
systems involve harvesting overstory trees singly or in groups for
the purpose of tree regeneration (O’Hara, 2002). Gap-based
silviculture can sustain the provisioning of desired products and
ecosystem services by maintaining a diversity of tree species
(Coates and Burton, 1997). In this regard, the incorporation of
canopy gaps within silvicultural practices may also enhance

forest resilience or adaptability to stressors, perturbations or
environmental change (Millar et al., 2007; Puettmann, 2011;
Mori et al., 2013). Gap-based systems, therefore, present an
opportunity for further development and application in forest
management of a broader range of objectives, including resili-
ence and adaptability.

Canopy gaps are caused by natural agents (i.e. insect, dis-
ease, wind, ice and fire) in all forests, but, in managed forests,
the primary agent is timber harvest, where overstory trees are
removed singly or in groups or patches (hereafter, ‘harvest
gaps’). Managers interested in regenerating a particular species
prescribe gap characteristics favouring the species’ shade toler-
ance and other regeneration requirements. For example, in
northeastern US northern hardwood forests dominated by
shade-tolerant American beech (Fagus grandifolia Ehrh.) and
sugar maple (Acer saccharum Marshall), a large gap size
(e.g. >0.3 ha patch) will favour the establishment of Populus
spp., Betula spp. and other shade-intolerant species (Leak
et al., 2014). Deliberate manipulation of harvest gap size is a
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straightforward approach for managers because it can be
efficiently incorporated into timber harvest operations. However,
regeneration outcomes from gap-based management are often
inconsistent with theoretical predictions of regeneration responses
(Raymond et al., 2006; Bolton and D’Amato, 2011; Matonis et al.,
2011; Kern et al., 2013; Forrester et al., 2014). These inconsisten-
cies could be due to other gap characteristics (e.g. gap shape,
aspect, etc.) (Prévost and Raymond, 2012) and forest conditions
(e.g. seed bed, seed source, advance regeneration, competing
vegetation and damaging agents such as herbivores) (Willis et al.,
2015) that vary with, or independently of, gap size.

Our goal is to propose a revised concept of gap-based silvi-
culture that recognizes the complexity of gap attributes and
functions. Here, we review pertinent scientific literature, sum-
marize recent findings and critique long-standing views of har-
vest gap use and application. We focus on the premise that
gap-based approaches can help meet sustainable forest man-
agement objectives, such as encouraging a diversity of canopy
tree species. Our approach is different from previous studies and
reviews (Muscolo et al., 2014; Zhu et al., 2014) because we focus
on implementation and outcomes of gap-based management.
We also focus on gap-based management in mesic forests of
northcentral and northeastern North America. In these forests,
wind is a primary disturbance agent and unmanaged forests
are characterized by uneven-aged structure and diverse mix-
tures of hardwood and conifer species (Runkle, 1982; Frelich and
Lorimer, 1991), because this approach is deemed appropriate
for these forests (Coates and Burton, 1997). Moreover, we
address factors (seed source, damaging agents, etc.) that limit
the efficacy of gap size in promoting diversity and have broad
applicability to forest management in other countries.

Background
Silvicultural systems and harvest gaps
Harvest gaps have a long history in silviculture. The integration
of harvest gaps into silvicultural systems, which include a speci-
fied method of regenerating trees after harvest, fall into two
overarching families: selection and irregular shelterwood sys-
tems (Table 1). Both seek to maintain, or restore, uneven-aged
(multi-aged) stand structures (Smith et al., 1997; O’Hara, 2014).

Selection systems are used to develop balanced, uneven-
aged stands composed of multiple cohorts or age classes of
trees, distributed across approximately equal areas of growing

space. This structure, in theory, sustains a given yield of timber
over time (Schutz, 1997; Spathelf, 1997). Single-tree selection is
commonly applied by maintaining a specific diameter distribu-
tion with a target residual density, volume and maximum diam-
eter. Gaps as wide as the crowns of dominant trees are
dispersed throughout the forest and created when these trees
are cut singly (and in tandem with tending of the below-canopy
trees) throughout a managed stand at each harvest entry.

Area-based group selection is a classic example of the inte-
gration of harvest gaps into balanced uneven-aged stand man-
agement. Size of harvest gaps are greater than mature crown
widths (∼100 to 2000m2) and close through the infilling of
regenerating saplings (Webster and Lorimer, 2005; Poznanovic
et al., 2013). Harvest gap size and density are planned over
space and time to regenerate new spatially discrete cohorts
that independently undergo stand development to maturity.
Area-based group selection is simple to use and, like single-tree
selection, creates an even flow of merchantable timber that can
be harvested sustainably at short intervals within the stand
(Leak and Gottsacker, 1985; Matthews, 1989).

In contrast, irregular uneven-aged approaches, such as those
often created through irregular shelterwood systems, are unba-
lanced among age classes in space and time when applied at
the stand level. Irregular uneven-aged stands do not contain
the age-class distribution necessary to produce a constant yield
of mature trees at short harvest intervals indefinitely (Smith
et al., 1997). Irregular approaches can be useful when balanced
approaches, such as single-tree selection, are not suitable or
where species composition is not necessarily suited to selection
systems; for instance, irregular shelterwood system is an
approach to manage forests with highly heterogeneous stock-
ing, quality and merchantability due to past, exploitive partial
cutting (Lussier and Meek, 2014).

The group selection and irregular shelterwood systems cur-
rently applied in North America (Hawley, 1921) were originally
developed in Central Europe in the eighteenth century to maintain
mixed-species stands in order to avoid timber resource shortages
and exploitation (Puettmann et al., 2009). This meant regenerat-
ing species intermediate in shade tolerance in gaps embedded
within a matrix of shade-tolerant tree species, such as European
beech (Fagus sylvatica L.) (Matthews, 1989; Brumme and Khanna,
2009; Puettmann et al., 2009). As such, a common measure for
evaluating the degree of success of these systems has been their
ability to regenerate and maintain mixed-species stands contain-
ing a range of species with varying degrees of shade tolerance in

Table 1 Classification of silvicultural systems and variants using gaps, according to the arrangement of gap makers and the target stand (Smith,
1986; Nyland, 2002; Raymond et al., 2009)

Gap makers Target stand structure

Scale Spatial arrangement Balanced uneven-aged Irregular uneven-aged

Single-tree Random, depends on the location of trees
to harvest

Single-tree selection cutting Extended irregular shelterwood (uniform)

Multiple-tree Random, depends on the location of trees
to harvest

Hybrid single and group selection cutting Continuous cover irregular shelterwood

Multiple-tree Systematic, area-based, spatially clustered
area to regenerate

Group-selection cutting Patch-selection
cutting

Expanding gap irregular shelterwood

Challenges facing gap-based silviculture and possible solutions
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the canopy layer (O’Hara et al., 2007). Successful application of
gaps to meet regeneration goals has been most common when
applied in forest conditions similar to the region from which these
systems originated (i.e. similar range of tree species shade toler-
ance and regeneration strategies; Sendak et al., 2003) or where
systems were modified to account for local ecological and site
conditions (Kelty et al., 2003). The greatest documented success in
maintaining tree diversity outside of Europe has been in the nor-
thern hardwood forests of northern New England (Leak and Filip,
1977) where large gaps or patches (>0.1 to 0.2 ha) are harvested
and cleaned of less desirable advance regeneration (Leak, 2003).
Smaller gaps have been successful in hemlock–hardwood forests
on poorer sites in the upper Great Lakes region (Webster and
Lorimer, 2005) and northern Maine, US (McClure and Lee, 1993;
Sendak et al., 2003). As a result, the hypothesis that gap-based
approaches can meet sustainable forest management objectives,
such as promoting canopy tree diversity, have persisted in man-
agement guides in eastern North America for decades (Eyre and
Zillgitt, 1953; Leak and Filip, 1977; Larouche et al., 2013).

Ecological theory and natural gaps

Ecological theories predict that canopy gaps can function to
maintain diversity. Following natural gap creation, nutrients and
moisture generally become more available and light can follow
strong gradients in the understory from closed forest canopy to
open and no forest canopy (Palik et al., 1997; Raymond et al.,
2006; Prévost and Raymond, 2012; Burton et al., 2014; Walters
et al., 2014). Species with different life history traits may special-
ize on different segments of the gap size gradient (i.e. niche par-
titioning) allowing them to coexist (Grubb, 1977). For instance,
species with small seeds, rapid height extension and low-shade
tolerance are predicted to regenerate successfully in large gaps
with high light availability, while species with large seeds, deep
root systems and high-shade tolerance are predicted to regen-
erate successfully in low light conditions of small gaps or along
the edges of larger gaps (Figure 1). This concept assumes that
additional regeneration requirements (e.g. seed supply, sub-
strate) of a regenerating species are also met.

Several studies have shown that natural tree-fall gaps play a
determining role in the regeneration of tree species in tropical
(Denslow, 1987; Uhl et al., 1988), temperate (Runkle, 1981,
1982; Kneeshaw and Prévost, 2007) and boreal ecosystems
(Greene et al., 1999; McCarthy, 2001). At the gap scale, regener-
ation studies generally show that tree seedling density and
recruitment of less shade-tolerant species all increase as gap
size increases and the effect is greater in harvest than natural
gaps (Dale et al., 1995). Thus, the notion that gap-based
approaches can meet sustainable forest management objec-
tives, such as maintaining or restoring tree diversity, appears
substantiated by empirical studies of natural tree-fall gaps.

Scrutinizing outcomes of gap-based
silviculture
Unmet regeneration goals
Despite the aforementioned successes of gap-based approaches,
empirical data supporting the role of natural gaps in maintaining

tree species diversity at the gap and stand scale is limited. In
fact, failures in the application of gap-based silvicultural systems
are evident in eastern North America (Stephens et al., 1999;
O’Hara, 2002; Schuler, 2004; Bolton and D’Amato, 2011). In
some cases, gaps were largely void of tree regeneration (Matonis
et al., 2011). In other cases, gaps were dominated by a single,
non-target species (Forrester et al., 2014); indeed, numerous
studies have documented that species composition remains
largely dominated by shade-tolerant species, even in large gaps
(Arseneault et al., 2011; Poznanovic et al., 2013; Forrester et al.,
2014). Similarly, studies explicitly examining gap partitioning
have generally shown that although tree species do sort along
gradients of light availability, the magnitude of effects are
variable and often small, because factors other than light (in
the following section) contribute to tree regeneration patterns
(Falk et al., 2010; Gasser et al., 2010; Bolton and D’Amato,
2011; Kern et al., 2013).

Regeneration factors beyond gap size

Basic regeneration requirements are often not met with harvest
gaps alone. For example, seed availability may strongly restrict
the number of species that can establish in harvest gaps
(Caspersen and Saprunoff, 2005). This limitation can arise from
a lack of proximate seed bearing trees, low fecundity, a depau-
perate seed bank or seed predation (Clark et al., 1998; Raymond
et al., 2003). Additionally, many species, especially those with

Figure 1 An illustration of the gap partitioning (Grubb, 1977) as the con-
ceptual relationship for shade tolerance strategies with plant essential
resources (y-axis) and within-gap position (x-axis). Stress and competition
constrain tolerance groups within the gap. Species with tolerant strategies
dominate in gap edge positions. Intolerant species dominate in gap posi-
tions far from gap edge. Mid-tolerant species are intermediate in distance
from edge to tolerant and intolerant species, and, as a result, composition
is differentiated by gap position. Gap size is also partitioned with intoler-
ant species unique to large gaps (white, entire response surface), mid-
tolerant species dominating in intermediate gaps (down, right hatching)
and shade-tolerant species dominating small gaps (down, left hatching).
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small seeds, can be limited by the availability of favourable sub-
strates for germination, including bare mineral soil and highly
decayed coarse woody debris (Gray and Spies, 1997; Caspersen
and Saprunoff, 2005; Marx and Walters, 2008; Weaver et al.,
2009; Willis et al., 2015). In northern hardwood forests of North
America, these substrates are less common due to a history of
management activities aimed at removing trees before they die
and/or decay and an emphasis on low impact harvest practices
that create little surface disturbance (Goodburn and Lorimer,
1998; Wolf et al., 2008; Burton et al., 2009; Olson et al., 2011).

Furthermore, advance tree regeneration (i.e. tree seedlings
and saplings that established prior to the creation of harvest
gaps) and non-tree vegetation can offset gap size effects on
seedling establishment. Advance regeneration often outcom-
petes seedlings establishing post-gap creation and can ‘capture’
gaps as a result of an initial size advantage (Webster and
Lorimer, 2005; Dietze and Clark, 2008). In some cases, species
present as advance regeneration are often the few species that
are the most shade tolerant and most tolerant of other factors
negatively impacting growth and survival (e.g. ungulate brows-
ing (Royo and Carson, 2006)). As a result, advance regeneration
may dominate canopy recruits regardless of gap size or light
availability (Madsen and Hahn, 2008; Forrester et al., 2014). In
hardwood forests, sprouts from damaged trees or stumps from
cut trees have root energy stores that allow rapid response and
canopy ascension following gap creation. Regeneration from
sprouting can comprise a large proportion of tree regeneration
(Dietze and Clark, 2008; Forrester et al., 2014). Not surprisingly,
recruitment of less-tolerant tree species following gap creation
is particularly successful in areas where existing advance regen-
eration is felled along with overstory trees (Leak, 2003) or where
low-quality sites limit the abundance of advance regeneration
(Webster and Lorimer, 2005).

Many other factors limit the response of tree regeneration to
gap size. These include, but are not limited to, root competition
with shrubs (Engelman and Nyland, 2006; Montgomery et al.,
2010), below-ground resource limitations (Walters et al., 2014)
and extreme microenvironments (Strong et al., 1997). Moreover,
variation in edaphic factors within and among harvest gaps and
across soil, and bedrock gradients can lead to variation in spe-
cies performance unrelated to the effects of gap size on light
availability (Gray and Spies, 1997; Bigelow and Canham, 2002;
Van Couwenberghe et al., 2010; Walters et al., 2014). These
complex interactions can make the regeneration of species mix-
tures including light-demanding tree species particularly difficult
to manage.

Challenges

Contemporary environmental and operational conditions are
also different from those under which silvicultural systems and
underlying ecological theory were originally developed. Over the
past century, human modifications of disturbance and trophic
regimes have contributed to changes in forest plant biodiversity
worldwide (Dale et al., 2001, Frelich, 2002; Chazdon, 2003;
Roberts, 2004). These conditions can alter, limit or even nullify
expected patterns of tree regeneration following gap creation
(Royo and Carson, 2006; Kern et al., 2012; Nuttle et al., 2013).
Resulting declines in tree species diversity may diminish the

capacity of forests ecosystems to provide the range of goods
and services people value (Chapin et al., 2000).

First, the pool of species capable of regenerating within gaps
is decreasing. Populations of specific tree species (e.g. white
pine [Pinus strobus L.], yellow birch [Betula alleghaniensis
Britton], eastern hemlock [Tsuga canadensis (L.) Carrière], red
spruce [Picea rubens Sarg.]) have been reduced as a result of
historical logging activities, including ‘high-grade’ logging, result-
ing in seed source limitations and reducing the potential for
recruitment in gaps (Keeton and Franklin, 2005; Schulte et al.,
2007; Burton et al., 2009). Moreover, Dutch elm disease
(Ophiostoma ulmi [Buisman] Nannf.), emerald ash borer (Agrilus
planipennis Fairmaire) and hemlock woolly adelgid (Adelges
tsugae [Annand]) have functionally eliminated their host
species across millions of forested hectares of North America
(Anagnostakis, 1978; Loo, 2009). These changes not only reduce
the likelihood that these species will successfully regenerate in
gaps (Papaik et al., 2005; Vose et al., 2013) but also dramatically
alter environmental conditions (Boettcher and Kalisz, 1990;
Canham et al., 1994; Burton et al., 2011). Therefore, sustaining
many of these species with reduced populations proves increas-
ingly complicated in contemporary forests.

Second, canopy gaps created via harvesting, or the sudden
widespread mortality of trees due to pests, pathogens or
drought, can also trigger the monopolization of the forest
understory by a limited number of native and exotic plant spe-
cies (Huenneke, 1983; Eschtruth et al., 2006; Gandhi and Herms,
2010). This response may occur as a result of the historical leg-
acy of exploitive harvesting. For instance, historical logging was
typically more severe than natural disturbances and may have
resulted in more homogenous distribution of a persistent soil
seed bank of Rubus species (Mladenoff, 1987; Tappeiner et al.,
1991; Hyatt and Casper, 2000). As a result, after harvest, a thick
shrub layer can develop and dampen the effect of the gap on
tree regeneration (Kern et al., 2012). The development of ‘recal-
citrant’ vegetation layers can slow, alter or even arrest tree
regeneration trajectories following harvest gap creation making
sustainable forest management challenging without the explicit
consideration and control (e.g. chemical or mechanical treat-
ments) of this vegetation (e.g. reviewed by Sullivan and Sullivan,
2003; Royo and Carson, 2006). Additionally, a major challenge
being faced by forest managers in the northeastern US is beech
sprouting, particularly on poorer sites where beech is more
abundant. Prolific sprouting is triggered physiologically as a
response to both beech bark disease (primarily Nectria coccinea
var. faginata) (Houston, 2001). Beech sprouts can form dense
understories both within closed canopy forests and in gaps, out-
competing other regeneration, including species that might be
more desirable commercially such as sugar maple and yellow
birch (Nyland et al., 2006). Increasingly beech control is viewed
as a necessary component of gap-harvesting operations where
sprouting is a problem (Bédard et al., 2014). For instance, clean-
ing at the time of harvest has been effective in diminishing
recalcitrant layers of beech and increase the abundance of
regeneration for other tree species (Leak et al., 2014).

Moreover, contemporary forests are also affected by dynamic,
intensified trophic interactions that can exert considerable control
over post-disturbance plant dynamics (Frelich et al., 2012). Forests
worldwide have experienced large increases in populations of
both native and introduced ungulates (Persson et al., 2000; Côte
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et al., 2004; Perea et al., 2014). Browsing by overabundant
ungulates, such as white-tailed deer (Odocoileus virginianus
Zimmerman), can shift species composition, reduce abundance
of browse-sensitive plant species and cause localized extirpa-
tions of browse-preferred species (McInnes et al., 1992; Russell
et al., 2001; Rooney and Waller, 2003; Côte et al., 2004; Carson
et al., 2014). Within gaps, ungulate browsing can shift competi-
tive hierarchies leading to situations where browse tolerance,
rather than shade tolerance, determines competitive success
and persistence in the community (Tripler et al., 2005; Eschtruth
and Battles, 2008; Krueger et al., 2009). For example, ungulate
browsing has been shown to severely limit tree establishment in
large gaps created by windthrow, thereby altering successional
rates and pathways (Proll et al., 2014). Indeed, recent experi-
ments have shown that ungulates can nullify the expected
increase in shade-intolerant or mid-tolerant trees species fol-
lowing gap creation (Kern et al., 2012; Nuttle et al., 2013;
Thomas-Van Gundy et al., 2014), yet indirectly increase herb-
aceous diversity through their consumption of woody shrubs
and seedlings (Royo et al., 2010). Effects of harvest gaps on
forest regeneration trajectories are often strongly linked to her-
bivory where ungulate populations exceed historical levels,
which can result in regeneration failures following canopy gap
creation (Kuijper et al., 2009; Matonis et al., 2011; Kern et al.,
2012; Forrester et al., 2014).

Finally, the invasion of European and Asian earthworms
(Lumbricus terrestris L. and Amynthas hawayanus Rosa) into pre-
viously earthworm-free soils of North America (e.g. New
England, Lake States and Canada) further disrupts soil structure,
nutrient availability and mycorrhizal associations (reviewed by
Frelich et al., 2006; Forey et al., 2011). Both soil acidity and cli-
mate affect L. terrestris invasion in North America (Moore et al.,
2013). Experimental evidence suggests A. hawayanus may be
only limited by climate, suggesting potentially more widespread
effects than L. terrestris (Moore et al., 2013). Earthworm colon-
ization has been linked to alterations in plant communities,
including declines in recruitment of mycorrhizal species (e.g.
A. saccharum; Hale et al., 2006) and a concomitant shift towards
dominance by small-seeded non-mycorrhizal species (e.g. Carex
spp. Holdsworth et al., 2007; Powers and Nagel, 2008).

Contemporary forest conditions thus pose many challenges to
silviculture, making business-as-usual models no longer reliable.
While these challenges were often unknown or non-existent
when silvicultural and ecological basics were developed, the
objectives for which forests are managed have also broadened
to include many non-commodity values. Important steps for-
ward in gap-based silviculture include adapting management
practices to account for contemporary forest conditions, a broad-
er array of ecosystem goods and services including sustainability,
and increasing resilience and adaptability in general.

Moving forward in concept
Developing silvicultural systems that enhance ecosystem resili-
ence and adaptability by maintaining or restoring tree diversity
continues to be of high relevance. In particular, tree diversity
may enhance ecosystem resilience and resistance to challenges
facing forest management, such as host-specific pests and
pathogens and extreme events induced by climate change

(Millar et al., 2007; Mori et al., 2013). Diversity of overstory trees
can stabilize the provisioning of desired ecosystem services,
including species-specific products, in the context of such
changes (Tilman and Downing, 1994) and has a cascading
effect on diversity of other biota, which, collectively, can influ-
ence the range of traits and capability of forests to respond to
stressors, perturbations or environmental change (Chapin et al.,
2000; Barbier et al., 2008). Thus, promoting tree diversity is not
only one of the many goals in sustainable forest management
in and of itself but also an approach to maintaining a broader
range of species and ecosystem functions.

Applying the ever-growing knowledge of natural disturbance
ecology to silviculture is integral to experimentation, innovation
and adaptation in sustainable forestry practices. Variation in
structural and functional conditions within stands and on the
landscape facilitates diversity and resilience. Thus, understand-
ing natural disturbances and stand dynamics is one part of a
larger conceptual approach that advances gap-based forest
management.

Comparing how current silvicultural systems do or do not
approximate natural disturbance effects provides context to
current or potential management options (Figure 2) (Seymour
et al., 2002). For example, the frequent small canopy gaps
resulting from individual-tree mortality due to a light-intensity
disturbance (e.g. natural senescence) overlap gap characteris-
tics resulting from single-tree selection (Figure 2) (Seymour
et al., 2002). Moreover, if a large gap is used in an irregular shel-
terwood harvest, it might emulate an opening size resulting
from a moderate-intensity disturbance, such as a localized
windstorm (e.g. a microburst or tornado) (Figure 2) (North and
Keeton, 2008).

Although gap-based silviculture does not emulate all aspects
of natural gaps, in general, it has been proposed as a flexible
system that can be adjusted to emulate the frequency, size and
distribution of gaps resulting from natural disturbance specific
to a forest type (Coates and Burton, 1997). The latter authors
outline a step-by-step process to do this in practice. For
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Figure 2 Conceptual framework situating silvicultural systems according
to a gradient of severity, size and frequency of disturbances at the stand
scale (adapted from Raymond et al., 2013).
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example, unmanaged mesic northern hardwood forests in the
Great Lakes region are characterized by random, single-tree
mortality that result in an average of ~10% canopy disturbance
per decade but with more intense disturbances from other fac-
tors such as storms at much longer intervals (e.g. >40% canopy
disturbance – every 500 years) (Frelich and Lorimer, 1991).
Within the constraints of economically defensible harvest prac-
tices, this disturbance regime could be approximated by pre-
scribing single-tree harvests interspersed with small group
(<500m2) harvests and patches of unharvested forest, remov-
ing 10–20 per cent of the overstory on cutting cycles ranging
from 18–25 years). Varying gap size and cutting cycle length in
addition to maintaining unharvested patches would help to
more closely mimic the random component of individual-tree
mortality than the typical dispersed single-tree selection techni-
ques, and it would allow for the provisioning of dead trees and
snags (Angers et al., 2005; Newbery et al., 2007). Superimposed
upon this management regime would be infrequent (e.g. every
200+ years) higher intensity (e.g. >500–2500m2 openings) that
would mimic elements of a moderate–severity storm in this for-
est type (Hanson and Lorimer, 2007). Although this approach is
posed to increase tree diversity, the idea has not been validated
in practice, and current information questions its potential for
increasing diversity in the face of high deer populations (Kern
et al., 2013; Walters et al., In Press).

However, natural disturbances are inherently ‘messy’. They
seldom produce the simplified environments replicated in field
experiments and targeted by traditional silvicultural systems
(Franklin et al., 2007). Rather, natural disturbances leave
behind numerous biological legacies, including live and dead
organisms and biologically derived structures and patterns
(Franklin et al., 2000). A growing body of research has high-
lighted the importance of these legacies in maintaining or
restoring structural and taxonomic diversity following both
natural and anthropogenic disturbances (McGee et al., 1999;
Mazurek and Zielinski, 2004; Hyvärinen et al., 2005; Keeton,

2006; Sullivan et al., 2008; Roth et al., 2014). For instance, a
silvicultural study in Vermont, US (Keeton, 2006) tested a var-
iety of harvest gap sizes, with structural retention in the larger
openings (0.05 ha mean). The study showed that a variety of
small gap and group selection with retention techniques can
help maintain a range of non-tree biota in managed forests
(McKenny et al., 2006; Smith et al., 2008; Dove and Keeton,
2015). Similarly, other studies examining within-gap retention
of seed trees and legacy trees have demonstrated the ability
of these systems to increase richness of tree species, while
also providing enriched structural conditions via high survival
rates of retained overstory trees within gap environments
(Poznanovic et al., 2013; D’Amato et al., 2015). Nonetheless,
trade-offs may exist regarding level of within-gap live tree
retention and the ability to recruit species of lesser shade tol-
erance (D’Amato et al., 2015).

In addition, early attempts to compare silvicultural systems
with natural disturbance have focused on the extreme disturb-
ance regimes, such as high-frequency, small-scale (gap forming)
or low-frequency, large-scale (big fires, hurricanes, etc.) with
less emphasis on moderate-intensity disturbances (Seymour
et al., 2002). Moderate-intensity disturbances, in particular, cre-
ate more spatial complexity than conveyed by the concept of
discrete canopy gaps and early ideas about gap-based manage-
ment (Nagel et al., 2006; Hanson and Lorimer, 2007). After a
moderate-intensity wind-throw event, remnant trees both living
and dead are abundant and well-distributed within these blow-
downs, both dispersed as individuals and aggregated in clumps
(Curzon and Keeton, 2010). Conversely, the amount and pattern
of intact undisturbed forest (i.e. the matrix, or ‘anti-gap’ sensu
Franklin et al., 2002), lightly disturbed portion and residual trees
within larger gaps are irregular in distribution as well. As a result,
gap fraction, canopy closure and light availability show a high
degree of spatial variation (Figure 3). Moreover, harvest scen-
arios based on moderate-intensity wind disturbance with a
range of gap sizes increased species and trait diversity of

Figure 3 Spatial variability in canopy openness 4 years after a moderate-intensity windstorm in a uneven-aged, mixedwood forest in the Adirondack
Mountains of New York, US. Canopy openness was measured with hemispheric photographs (top panel) and canopy metrics (bottom panel) follow-
ing a transect through the middle of the blowdown event. Gap fraction (primary vertical axis) represents the ratio of canopy in open sky. Direct Site
Factor (DSF, secondary vertical axis) is a measure of light availability or ratio of direct light below the canopy to direct light above (Keeton
unpublished).

Challenges facing gap-based silviculture and possible solutions

9

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/90/1/4/2605845 by guest on 27 January 2021



ground-layer vegetation from uncut forest conditions (Kern
et al., 2014).

The resulting regeneration patterns after multiple partial
mortality disturbance events are far more complex than a sim-
ple gap model (Figure 1) would assume as well. In comparison
with a model in which regeneration occurs only in gaps, regen-
eration can respond to spatially offset light, such as transient
sunflecks originating from a break in the canopy that is not dir-
ectly overhead (Figure 3) (Canham et al., 1990; Van Pelt and
Franklin, 2000). This spatial dynamic also creates a diversity of
tree ages and sizes both within and among patches. The out-
come is quite different from the conception of an uneven-aged
forest as simply the aggregate of multiple even-aged patches
(Goff and West, 1975).

Lastly, regeneration delays may be viewed as failures or
opportunities if trade-offs with wood productivity are acceptable.
Fully stocked, dense tree regeneration in all gaps within a short
time period following gap creation is desired in commodity-
driven forestry but is inconsistent in unmanaged forests. Lags in
regeneration following gap creation can, in some contexts, pro-
vide opportunities to achieve management goals other than tree
regeneration. For example, regeneration lags may be important
for maintaining a broad range of early successional specialists
and associated wildlife species (Swanson et al., 2010). Early suc-
cessional specialists in gaps may include non-tree vegetation
such as shrubs (e.g. Rubus sp.) and non-vascular plants such as
bryophytes that play important roles in nutrient cycling
(Bormann and Likens, 1979; Turetsky, 2003), forage and mast
production (Stransky and Roese, 1984) and provisioning of habi-
tat (Smith et al., 2001). Variability in stocking of regeneration in
gaps develops spatial and temporal complexity within a mana-
ged stand and likely contributes more broadly to ecosystem
resilience (Churchill et al., 2013).

Moving forward in practice
Gap-based silvicultural systems present a range of challenges
and opportunities for forest managers (York et al., 2004;
Arseneault et al., 2011; Bolton and D’Amato, 2011). They can
regulate production and extraction of goods and service and,
more generally, enhance forest heterogeneity and biodiversity.
However, given contemporary forest conditions, these benefits
may not be realized. Although there is a lack of sufficient empir-
ical research and practical experience in many forest types and
regions, there are a number of beneficial ways in which gap-
partitioning theory and attributes of natural disturbances can
be used to help adapt current silvicultural systems to current
forest conditions. Consequently, we propose the following princi-
ples where operability and economics allow.

Target gap placement

Canopy gaps should be located where their likelihood of success-
fully promoting desired future conditions is greatest. This may
include locating gaps to release patches of desirable advance
regeneration (a practice long-advised yet little applied in trad-
itional regeneration systems (Weigel and Parker, 1997)), on
aspects conducive to establishment and growth of featured spe-
cies (Dodson et al., 2014), on landforms particularly susceptible

to gap formation (Almquist et al., 2002), in areas of undesirable
growing stock or areas of mature or overmature timber
(Nyland, 2002), or where seed trees of featured species can be
retained within or adjacent to openings (Raymond et al., 2006;
Shields et al., 2007; Poznanovic et al., 2013). The landscape
context of the opening and its proximity to habitat features is
also important to consider, especially if seasonal movements
or aggregation of ungulates pose a risk to regeneration
(Millington et al., 2010; Witt and Webster, 2010). In addition,
planning tools, like ecological classification systems (Kotar
et al., 2002; Zenner et al., 2010), which incorporate variation in
soil, hydrology and bedrock effects on species performance,
could inform gap placement for improved prediction of regen-
eration outcomes.

Do more than cut trees

Gap-based systems have largely focused on a truncated view of
the impacts of canopy disturbance, by primarily emphasizing
the levels of canopy mortality in a given harvest or disturbance
events. This ignores many of the other associated microsite and
structural conditions created by canopy disturbance events that
have historically allowed for the maintenance of a diversity of
tree species in gap environments. These include exposing bare
mineral soil by scarification in wind-disturbed systems to
increase seedling densities of light-seeded species within har-
vest gaps (Raymond et al., 2003; Lorenzetti et al., 2008; Prévost
et al., 2010; Willis et al., 2015) where seed trees are present or
where direct seeding is considered. In addition, if a recalcitrant
non-tree layer of vegetation develops, herbicides (Fournier et al.,
2007; Povak et al., 2008; Man et al., 2009; Nelson and Wagner,
2011; Olson et al., 2011), retention of logging debris and trees
(Harrington et al., 2013; Dodson et al., 2014) or release cutting
(e.g. with brushsaws) may be useful for removing over-
represented or undesirable advance regeneration and vegeta-
tion. However, choice of competition control may affect diversity
of ground-layer plant communities and wildlife habitat in some
cases (Swanson et al., 2010; Betts et al., 2013) or insignificantly
affect others (Ristau et al., 2011; Stoleson et al., 2011; Trager
et al., 2013). Lastly, manipulating woody debris (e.g. leaving
logs) and microtopography (e.g creating tip-up mounds) may
provide additional heterogeneity similar to natural disturbance
effects and may enhance opportunities for diverse regeneration
over time and space (Beatty and Stone, 1986; Carlton and
Bazzaz, 1998; Keeton, 2006; Smith et al., 2008).

Consider artificial regeneration

In many forests managed using uneven-aged systems (Table 1),
natural regeneration has been the default method of regener-
ation. When and where feasible, artificial regeneration from
appropriate seed sources may be a necessary investment for
species with establishment limitations (e.g. seed, substrate,
etc.). Gap-planted trees, however, can be strongly limited by the
same factors impacting natural regeneration (i.e. above- and
below-ground competition and deer herbivory) (Kern et al.,
2012; Peck et al., 2012; Hebert et al., 2013; Montgomery et al.,
2013; Walters et al., 2014), limiting their use for overcoming
seed limitation in some areas. In some cases, investing in
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repellent or fencing temporarily may be worthwhile to protect
at least a few tree species of concern during the period when
they are within the reach of browsers.

Understand the local landscape context for browsers

Obtain estimates of local ungulate densities and their herbivory
effects, and then plan silvicultural systems accordingly to
account for browsing. Management decisions may increase or
decrease ungulate carrying capacity and, in turn, change the
impact that browsers have on the landscape (Rooney et al.,
2015). Analysing landscape context for wildlife patterns can
steer forest management toward areas with greater possibilities
of success. For example, targeting managed stands farther from
winter yarding areas (Millington et al., 2010). Additionally, man-
agers may target particular tree regeneration compositions that
offer resistance/resilience to browsers although it may be a
compromise to promoting tree species diversity. Unfortunately,
decreasing ungulate densities via management is rarely socially
tenable, and exclosures or repellent to protect regenerating
trees are rarely economically feasible for all but the most valu-
able tree species. A possible alternative is manipulating logging
slash and downed crowns to create temporary physical barriers
to browsers and provide opportunities for saplings to outgrow
the reach of browsers (van Ginkel et al., 2013).

Allow for variability in gap size and shape

Uneven-aged management when applied as single-tree selection
tends to result in a high abundance of small gaps relative to the
gap size distributions that result from natural disturbances
(Lertzman, 1992; Dahir and Lorimer, 1996). Large canopy gaps,
while comparatively a rare feature of natural disturbance
regimes, may have a disproportionate impact on species diversity
and structural heterogeneity (Woods, 2004; Hanson and Lorimer,
2007; Webster and Jensen, 2007). Consequently, consideration
should be given to the range and distribution of gap sizes that
might be expected under natural disturbance rather than simply
the mean or median gap size (Kneeshaw and Prévost, 2007),
such that the range of understory conditions facilitates the
regeneration of a diversity of tree species (Raymond et al., 2003).
Similarly, gap shape tends to become increasingly irregular with
increasing opening size (Lertzman and Krebs, 1991). Irregular-
shaped openings may enhance resource heterogeneity and
soften the visual appearance of larger openings. Thus, moving
away from circular and smooth-edged openings will be a step
toward promoting variability.

Retain biological legacies

Over the last two decades, the retention of biological legacies
has become a key element of ecological forestry, forming the
basis, for instance, of the ‘variable retention harvesting system’

(Franklin et al., 1997). However, legacy or structural retention
has largely been viewed within the context of even-aged regen-
eration systems, such as clearcutting. Retention of wind-firm
species within openings can produce desirable microsite condi-
tions, ameliorate aesthetic and ecological impacts and provide
a proximate seed source (Shields et al., 2007). Additionally,

these trees provide an opportunity to provision for future estab-
lishment sites and inputs of coarse woody debris, including
standing snags and down dead wood (Fraver et al., 2002).
Lastly, depending on the level of retention and its location
within the gap, opening size should be adjusted or enhanced
during subsequent harvest to facilitate canopy recruitment of
target species (Klingsporn et al., 2012; Poznanovic et al., 2014).
For example, retained within-gap legacies can dampen sapling
height development such that gap closure is more likely by edge
trees than by the sapling layer necessitating gap expansion to
maintain height growth (D’Amato et al., 2015).

Promote heterogeneity in the non-gap matrix

In unmanaged forests, the ‘non-gap’ matrix is not uniform. For
instance, moderate-intensity natural disturbances, such as
windstorms, produce highly heterogeneous residual stand con-
ditions (Woods, 2004; Hanson and Lorimer, 2007). Thus, man-
agement activities between gaps can promote similar
heterogeneity. Treatments can vary within the stand between
doing nothing, marking only access trails, thinning even-aged
patches and variable density thinning. Variable density thinning
between gaps may be used to enhance heterogeneity (Franklin
et al., 2007; Dodson et al., 2012). Irregular shelterwood
approaches may also provide a unique opportunity to promote
heterogeneity at the stand scale (Raymond et al., 2009).

Experiment and revisit old and untested ideas

Forest ecosystems and operational conditions change over time.
Consequently, forest management may best be viewed as an
open-ended experiment. As such, consistent terminology, docu-
mentation and monitoring of outcomes are needed to advance
our understanding of contemporary system dynamics and
adapt and codify new techniques. Furthermore, given the rapid
pace of change, adaptive management approaches that inte-
grate research and monitoring are needed to respond in real
time to changes on the ground.

A recent example of experimenting and revisiting old and
untested ideas is the ‘expanding gap’ or Acadian Femelschlag
approach tested in Maine, US (Seymour, 2005), which includes a
hybrid of irregular shelterwood harvesting and group selection,
retaining legacy trees permanently within group openings that
are expanded at each harvest entry. This emulates both gap
expansion processes and the biological legacies seen in wind-
disturbed forests. Practiced as an area-based prescription on a
100-year rotation, it is only through permanent retention within
expanding gaps that trees >100 years of age are maintained
within the stand as a whole (Seymour, 2005; North and Keeton,
2008). Continued monitoring will develop and adapt the system
with changing forest conditions.

Conclusion
The objective of a harvest gap has been, for decades, to yield for-
est products while creating the environmental conditions neces-
sary to establish a new cohort of desired tree species or to
release an existing cohort. As such, gap-based management
appears feasible to enhance ecosystem resilience and adaptation
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by promotion of tree diversity. Managers are adept at prescribing
harvest gap size, shape and density to regulate regenerating tree
composition, diversity and area. However, manipulating natural
processes with timber harvests often is not simple. Outcomes of
harvest gaps may be difficult to predict, particularly in light of
contemporary forest conditions.

Adapting silvicultural systems that use harvest gaps and create
moderate-intensity disturbances, such as irregular shelterwood,
regular shelterwood, group selection or hybrid single-tree and
group selection, is a potential first step to develop complexity into
managed forests (Table 1; Raymond et al., 2009; Burrascano et al.,
2013; Bédard et al., 2014). Applying new ideas such as this may
be most appropriate in mature stands reaching the understory
reinitiation and old-growth stages (Oliver and Larson, 1996) and in
ecosystems driven by light-to-moderate disturbances regimes.

As gap-based approaches continue to develop, emerging
technologies will help develop the integration of such ideas into
practice. For instance, both remotely sensed and ground-based
LIDAR can be used to quantify spatial complexity in canopy
structure beyond the more simplistic classifications of gap ver-
sus non-gap applied in the past. Approaches like this are being
actively tested (Vepakomma et al., 2008; St-Onge et al., 2014;
Seidel et al., 2015).

Lastly, and importantly, moving towards a view of spatial
and temporal structure in temperate forests as a continuum of
possibilities rather than rigid templates or formulas will free sil-
viculturists to experiment with a wider array of practices and
outcomes acceptable for diversity goals. However, managing
variability in canopy structure, light environments, habitat condi-
tions and scales will be a formidable challenge and trade-off to
expectations of commodity-driven forestry. Yet, staying true to
the origins of silvicultural approaches in terms of maintaining a
diverse mix of tree species will increase the potential for long-
term ecosystem resilience and economic sustainability.
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