Challenges for Addressing Quality Factors in Model Transformation

Eugene Syriani

Jeff Gray

Department of Computer Science
University of Alabama
Tuscaloosa AL, U.S.A.

{esyriani,gray}@cs.ua.edu

Abstract—Designing a high quality model transformation is
critical, because it is the pivotal mechanism in many mission
applications for evolving the intellectual design described by
models. This paper proposes solution ideas to assist modelers
in developing high quality transformation models. We propose
to initiate a design pattern movement in the context of
model transformation. The resulting catalog of patterns shall
satisfy quality attributes identified beforehand. Verification and
validation of these patterns allow us to assess whether the
cataloged design patterns are sound and complete with respect
to the quality criteria. This will lead to techniques and tools
that can detect bad designs and propose alternatives based
on well-thought design patterns during the development or
maintenance of model transformation.

Keywords-model transformation; design patterns; software
quality; validation and verification.

I. INTRODUCTION

In today’s practices, model transformations are deployed
as software artifacts in a wide range of application contexts,
ranging from prototypes in rapid development processes
to large-scale industrial applications. Thus, critical require-
ments for model transformation are to (1) provide a sound,
optimal and efficient solution to the problem to be solved,
(2) demonstrate a high quality in their design and integration
with other systems and technologies, and (3) hence system-
atically maintain the developed transformations.

The growing interest in model transformation has led to a
plethora of model transformation languages expressed in dif-
ferent paradigms, supported by various implementations [1].
They each provide tremendous value for developers and
most of them are involved in the development of large indus-
trial applications [2]. However, despite a robust theoretical
foundation based on the theory of graph transformation, this
diversity lacks cohesive support for model transformation, as
witnessed in [3]. Moreover, good practices in the design of
transformations as well as the assessment of high quality
transformations, are still missing and hinder the design
of large-scale transformations. We believe that, as simi-
larly established in the object-oriented paradigm (GoF [4]),
standardizing and codifying good practices in the form of
design patterns of model transformation can solve these
issues. We propose to solve these issues by (1) establishing
quality criteria based on existing model transformations,

(2) identify and classify well-founded model transformation
design patterns with proven quality, and (3) support model
transformation engineers with integrating these patterns in
their design in an automated manner.

In this paper we describe the three primary research chal-
lenges to address quality factors for model transformation.
Figure 1 illustrates the overall approach.

Section II proposes to first investigate and discover the
commonalities across model transformation designs and
partition the domain of transformations based on the results
of this discovery. From these inferred commonalities, a set
of well-defined representations of these components will be
specified in terms of patterns. The identified patterns will
be defined in an appropriate formalism to facilitate their
verification and validation (V&V), as well as to support their
classification.

Because our goal is to enhance the quality of transforma-
tion models, the quality criteria must be specified. Section III
proposes to conduct a thorough analysis of existing model
transformation languages and approaches to identify which
criteria are met and which are not. This provides the initial
requirements for the pattern catalog. Each pattern will then
be verified against one or more of these requirements using
V&V techniques applied to model transformation.

Section IV focuses on how to reduce the negative impact
that model transformation development may have in com-
plex projects. It will contribute toward a semi-automated
development approach to model transformation by detecting
design patterns from the catalog during the development of
transformations.

II. MODEL TRANSFORMATION DESIGN PATTERN
CATALOGING

The goal of this challenge is to build a repository of design
patterns for model transformation development. To develop
this catalog, there are two tasks that need to be achieved:
identify recurrent patterns that appear when developing
model transformations and define a formalism to consistently
describe such patterns.

A. Pattern Identification

The task of identifying and discovering recurrent patterns
in model transformation must be performed very meticu-

e

Discovery of

/: MTLs i | new patterns \

..............

1Quality criteriai Design of a
1 identification

__,: Verification & Validation ;

| / pattern formalism
\ Investigation of

recurring patterns

‘ Classification
/ of patterns \

| Pattern ! T"Usability assessment |
| detection | 1

of patterns |

of patterns

! Resolution of !
lill-formed design
L - — — — — 4

Pattern Cataloging

Figure 1.

lously in order to cover most possible scenarios. We are
aware that, just as in GoF, the collection of identified design
patterns will not be complete due to the informal process
of mining from existing examples as well as the relatively
young field of MDE. To be as complete as possible, we
propose two approaches to identify the patterns.

On the first hand, we examine a variety of existing trans-
formations developed in industrial and academic contexts.
For that, one can explore several sources such as model
transformation repositories (ATL Transformation Zoo [5],
ReMoDD [6]) as well as transformations developed in pub-
lished case studies and examples appearing in journal and
conference proceedings on modeling and model transforma-
tion (such as SoSym, MoDELS, ICMT, and ECMFA). For
instance, we identify from [7] that computing the transitive
closure of a hierarchical model is a recurrent task in model
transformation. On the second hand, we attempt to map the
well-known GoF patterns, which are defined at the code
level, onto the model transformation paradigm. For example,
Agrawal et al. [8] propose a visitor pattern for composite
models. We do not expect to be able to map all 23 patterns,
but examining them from a mindset geared towards their
application in model transformation tasks may enlighten
discoveries of new development patterns.

One shall distinguish between general-purpose and
domain-specific (or problem-specific) model transformation
patterns. The former would typically apply to general-
purpose transformation languages (such as QVT [9]). Pat-
terns, such as copying elements from source model to target
model [10], can be applied to any model transformation in
general. Domain-specific transformation languages restrict
the transformation engineer to focus entirely on designing
transformation models without added complexity that is
irrelevant for the purpose of the transformation. Also, the
transformation language has no more expressiveness than
is needed as this may allow for better analysis of the
transformation models. Some patterns only make sense in
particular application domains and would typically apply to
domain-specific transformation languages (such as transfor-

'Quality Assessment and Validation;

Overview of the proposed approach.

mations built in the T-Core framework [11]), for example
the animation of a state-transition modeling language.

One of the main criteria of a design pattern catalog is to
be language independent [12]. Hence the investigation task
should covers transformations from some of the most widely
used tools using different rule-based transformation tech-
niques: declarative transformations (such as QVT-Relation
and Triple Graph Grammars) and operational transforma-
tions (such as QVT-Operational Mappings, ATL and graph-
based transformations). This set of tools covers the following
characteristics [1], [13]: unidirectional and bidirectional,
in-place and out-place, endogenous and exogenous, im-
plicit and explicit rule scheduling, and incremental. The
investigation will breadth its search in different application
scenarios of model transformations: code generation from
a model, synthesis and reverse engineering between models
at different levels of abstraction, simulation of models by
specifying the operational semantics of their language, meta-
model instance generation, query and simple updates of
models, model migration to adapt to evolved meta-models,
model composition and synchronization.

Finally, another concern to consider when developing this
catalog is to determine the granularity at which the design
patterns shall be defined. For this project, we consider a
transformation rule as the base level. Design patterns of
individual rules of a transformation are specific to sim-
ple manipulations of model elements, e.g., clone a model
element. However, it is very often the case that multiple
rules are needed to perform a single task. Design patterns
of groups of rules then define common re-usable libraries
of transformation snippets. One may also consider defining
good design practices when chaining or composing multiple
transformations for larger applications [14]. The latter may
be automated through higher-order transformation [15].

B. Pattern Formalism

Once model transformation design patterns have been
identified, it is crucial to define a formalism in which they
will be defined. The benefits of having such a formalism are
to facilitate understanding, documenting, communicating,

and reasoning about the patterns in a standard way. For
example, GoF design patterns are described in UML class
diagram. UML is independent from the object-oriented pro-
gramming language used for the implementation of software.
Similarly, the pattern formalism should be independent from
the model transformation language in which patterns are
realized. Possible candidates can be inspired from MOF-
like languages (e.g., Ecore) or a generic meta-model for
model transformation described in UML. The advantage of
the latter is that we use a domain-specific language for
describing model transformations, only using the concepts
related to a transformation. Ultimately, it should support
higher-order transformation specification and therefore be
a precisely modeled language such as in [16].

The pattern language must have a well-defined formal
semantics in order to facilitate analysis (termination, con-
fluence, property preservation). From a syntax point of
view, the pattern formalism must allow model transformation
patterns to be specified concisely in a canonical form.

C. Pattern Classification

The goal of the catalog is to guide model transformation
designers with good practices. It is therefore important to
clearly specify the context in which each pattern can be
applied. For example, the Gang of Four classify object-
oriented design patterns primarily according to their purpose
(i.e., creational, structural, and behavioral) and their scope
(i.e., class or object). Further, although patterns are inde-
pendent from one another, they can be used in combination
within a single transformation model. Thus, another way
to classify patterns is via their relationships to each other.
One shall investigate how to classify the design patterns
according to, for example, the context, the quality attributes
they are aimed to ensure, or the taxonomy category in which
they fall [13].

D. Related Work

Design patterns have revolutionized the state of software
practice. The most notable impact was in the object-oriented
paradigm [4]. The activity of cataloging patterns has been
performed for decades in many sub-fields of computer sci-
ence, however very little work has been done on defining a
pattern catalog in MDE and in particular in the area of model
transformation (e.g., [17] propose patterns for describing
domain-specific languages).

Agrawal et al. [8] have proposed three transformation
design patterns: a visitor for composite models, the compu-
tation the transitive closure in a hierarchy, and the creation
of a proxy object. The former two are very relevant for
the purpose of the project and will be considered in the
cataloging phase. The latter has been defined in the context
of a modeling a distributed system: this is an example of
a domain-specific transformation pattern. However, the au-

thors describe these patterns in terms of their tool (GReAT)
and do not attempt it to abstract the tool specificity.

Tacob et al. [10] have proposed five transformation design
patterns: a one-to-one mapping from the elements of the
source model to elements of the target model, copying
elements from source model to target model, the flattening
of composite structures, the mapping of an element to two
elements and a relation between them, and its inverse. The
former three are very relevant for the purpose of the project
and will be considered in the cataloging phase. The idea
in the latter two can be used to produce a pattern for
defining one-to-many mappings and many-to-one mappings.
The authors describe their patterns in terms of QVT-Relation
and do not attempt it to abstract the tool specificity.

III. QUALITY ASSESSMENT AND VALIDATION OF
MODEL TRANSFORMATION DESIGN

The second objective of this project is to define quality
attributes for model transformation and propose a framework
where transformation models are guaranteed to satisfy these
criteria.

A. Quality Criteria Identification

Several catalogs of quality attributes in software engineer-
ing exist today [18]. The ISO 9126 enumerates the following
quality characteristics for software: functionality, reliabil-
ity, usability, maintainability, efficiency, and portability. We
distinguish the following categories with respect to model
transformation. Each category must be divided in specific
quantifiable attributes and provide means to measure them
in a reproducible way.

Correctness: the set of attributes that bear on the exis-
tence of a set of requirements and to which degree the trans-
formation adheres to it. Correctness can be evaluated with
validation and verification techniques (see Section III-B).
Often, the transformation tool automatically generates traces
linking the input model with the output model [19], [9]. This
can then be traced transitively up to the requirements, given
that they are appropriately modeled.

Re-usability: the set of attributes that bear on the ease
to re-use transformation components. Re-usability can be
achieved through modular composition of transformation
units, rules, or complete transformations. In some ap-
proaches (e.g., MoTif [20]), modularity is inherent in the
transformation language itself where a transformation model
consists of connecting independent building blocks. VI-
ATRA [21] offers generic rules with parametrized types.
Higher-order transformation can be used to copy parts or
the whole transformation model [22].

Efficiency: the set of attributes that bear on the rela-
tionship between the performance of the execution of a
transformation and the amount of resources used under
stated conditions. Most model transformation tools, in partic-
ular those implementing the graph transformation paradigm,

suffer from the NP-Complete problem of pattern matching.
Most efficient implementations rely on heuristics based on
the input model. Caution should be taken into consideration
the memory management with respect to traces and large
models (consisting of over a million elements). Existing
benchmarks [23], [24] may be used to measure the effi-
ciency.

Reliability: the set of attributes that bear on the frequency
and criticality of a transformation to behave in an unaccept-
able manner under permissible operating conditions. There
are two types of reliability issues in model transformation.
The pragmatic issues typically consist of error handling and
security issues. Fault-tolerance techniques such as exception
handling [25] address these issues. The usability issues con-
sist of ensuring invariant properties on the transformations.
For example, in a water tank simulation system, we require
that the temperature of the water in a specific water tank
be always between 45°C and 90°C. Therefore, each of the
transformation rules must make sure that the temperature
ranges of the water are not violated.

Maintainability: the set of attributes that bear on the
effort needed to modify the transformation to satisfy new
requirements or correct deficiencies. In other words, it
measures the flexibility and ability to accommodate changes
in a deployed transformation. One main advantage of the
model-driven engineering philosophy is that models are
self-documenting. Thus domain-specific transformations are
readable directly by domain experts. Model and transforma-
tion evolution techniques may then be applied [26].

Interoperability: the set of attributes that bear on the
cooperation between a given model transformation and other
systems, such as transformation models, other software pro-
grams or technologies. Interoperability is realized through
model composition. A simple solution is to conform to a
standard import/export format for models, such as XMI or
GXL [27]. In [28] transformations are treated as black-boxes
complying to a specific interface. In [29], the composition
is performed at the rule level, resulting in a new model
transformation computed by transitivity.

The research challenge is to define a suite of quantitative
metrics to measure these properties. A starting point can be
those used in [30] and in [31].

B. Verification and Validation of Patterns

This activity verifies that the design patterns resulting
from the first challenge (Section II) satisfy the set of quality
criteria identified from the efforts described in Section III-A.
V&V of a model transformation is the process of checking
that the transformation definition meets specifications and
that it fulfills its intended purpose. In this work, we primarily
consider static V&V techniques: only the transformation
model and the in/output meta-models are taken into account.
In contrast, a dynamic approach is specific to the involved
models manipulated by the transformation at run-time. The

Model Domain
transformation meta-model

Quality Formal Model
criteria # properties checker |:,|> Result
Figure 2. Verification of model transformation patterns against quality

attributes.

static technique is more general and poses complex chal-
lenges we plan to address as illustrated in Figure 2 and
described below.

We propose to use model checking techniques to verify
properties on transformation design patterns rather than
on complete transformation models. This requires to first
express each quality requirement in terms of properties
formally defined (e.g., OCL, first-order logic). The properties
must be understandable by the model checker which may
require an additional transformation step. Then, the model
transformation—or a part of it involving the design pattern
to verify—and the involved meta-models are input to a
model checker. The latter analyses them with respect to a
specific property and outputs the result. The result may be
a Boolean value, an instance model, or a path in the state
space explored.

The choice of the language defining these properties
highly depends on the model checker used. Since we are
interested in analyzing transformation patterns and not a
whole transformation model, the choice of the formalism
used to define those patterns is also influenced by the
model checking approach used. Several alternatives are to
be considered. GROOVE [32] and CheckVML [33] exploit
model checking analysis to prove the reachability properties
on a set of rules modeled in the respective tool. In that case,
graph models are interpreted as states and rule applications
as transitions. For model checkers such as SPIN [34], the
requirement property must be expressed in linear temporal
logic (LTL). In AIPiNA [35], the properties are defined in
a proprietary language that is equivalent to first-order logic
with deadlock detection. he transformation model is mapped
onto an algebraic Petri nets model whose behavior is repre-
sented as Kripke structures. However, AIPiNA’s state space
encoding does not support temporal logics as it does not
encode transitions. Alloy [36] can be used to find instances
and counter examples for whether a property is satisfied or
not; however it relies on dynamic verification, requiring an
instance model be present. Other dynamic techniques may
be considered such as critical-pair analysis [37] or those
based on design space exploration such as in [38].

The model checking approach does not need to be re-
stricted to only one of the solutions enumerated. In fact,
by mapping each requirement to a platform-independent
language allows us to automatically generate the formal

models specific to each tool. We are aware that this may
be quite complex in practice and are investigating in ways
of addressing this issue.

C. Related Work

Several works have focused on defining quality attributes
to models [39]. Cetinkaya et al. [40] have proposed a set
of evaluation criteria for model transformation, but the enu-
meration is informal and does not suggest how to evaluate
these criteria. Nevertheless these criteria are relevant and
must be considered in the identification phase. Lately quality
assurance of model transformation has gained interest, but
is still in preliminary stage [30], [31].

The verification and validation of model transformation
has become one of the main challenges in the last years. The
authors in [41] propose to use SPIN in order to guarantee
properties on the output model of a transformation. Several
techniques map model transformations to Petri nets in order
to verify model transformation [42]. The theory of Petri
nets provides useful techniques to analyze transformations
(e.g., reachability, model-checking, boundedness and invari-
ants) and to determine their confluence and termination
given a starting model. However, these are only generic
properties that are independent from the meta-models in-
volved in the transformation. The authors in [43] suggest a
manual method to analyze model transformation based on
the algebraic theory of graph transformation.

IV. ASSISTED DESIGN OF MODEL TRANSFORMATION

The development of complex model transformations often
requires deep knowledge about the semantics of the trans-
formation language used with respect to rule scheduling,
attribute specification, and control logic. This may hinder
domain experts as they are developing the transformation,
which may induce project delivery delays, overspent budgets
and reductions in the quality of the resulting software. The
third goal of this project is to reduce the negative impact
that model transformation development has in complex
projects. We propose an automated development approach
to model transformation by detecting design patterns based
on the aforementioned catalog during the development of
transformations. Also, given a model transformation design,
we develop a tool to detect a non-exact match of a cataloged
design pattern and propose a resolution to make it compati-
ble with the catalog. To evaluate the impact on development
productivity using this tool, we propose to conduct several
controlled experiments.

A. Pattern Detection

As software products, model transformations evolve fre-
quently. Such evolutions originate from changes in the
involved meta-models or in the transformation model it-
self [44]. Because of their declarative expression, the evo-
Iution of a model transformation impacts its components

Mpp ---->MT2
: IS

-
-
-

Y. o
MM - - - = M4 2NV,

MM;- - - - >MTg——MM,
A

i

M1 e Ty —— M,

> generates ----=isinputto — outputs > conforms to

Figure 3. Transformation models generating model transformation.

(i.e., rules, meta-model elements), its control logic (implicit
and explicit rule scheduling), and its interaction with models
(query, action, attribute specification). These hamper main-
tenance tasks on model transformations. Design patterns
impose a structure in the transformation model due to the
abstractions being used. Therefore, to better comprehend a
transformation model, it would be useful to identify design
patterns in the transformation directly. In this activity, we
investigate techniques to automate the detection of design
patterns in an existing transformation from the catalog.

Several stochastic solutions exist to this problem in
the object-oriented domain [45]. We will investigate how
these techniques can be applied in the domain of model
transformation, based on design space exploration. Similar
techniques as those implemented from the verification task
(Section III-B) can be used to statically analyze the trans-
formation and derive a structural and behavioral correspon-
dence with a pattern from the catalog.

Another perspective is to use higher-order transformation
techniques to detect the design patterns, as illustrated in
Figure 3. In this scenario, the model transformation under
consideration M T depends on an input a meta-model M M,
and an output a meta-model M M. The actual transforma-
tion Ty is generated automatically from MTj to operate
on models M; as input and M5 as output, conforming
to their meta-models M M; and M M, respectively. This
technique requires that each design pattern M pp be modeled
in the appropriate formalism with a meta-model M M pp (cf.
Section II-B). The transformation under development M T}
must conform to an explicit meta-model M My, as well. A
first-order model transformation MT; can then be defined
from the pattern formalism M Mpp to the transformation
meta-model M M. Each rule of this transformation is read-
only, consisting of a pre-condition pattern that corresponds
to an individual pattern. In other words, MT; (the design
pattern detector) finds possible occurrences of a design
pattern model Mp p in the given transformation model MTj.
MT, can then be partially generated from MT;. MT)
can also be generated automatically , leading to a second-
order transformation MT5. In this case, MT5» takes as input
both a design pattern model Mpp and the design pattern

formalism M Mpp and outputs the transformation model
MT. In other words, M T, automatically generates model
transformations that detect design patterns, but tailored to a
specific design pattern.

The practical outcome of this task is an enhanced IDE for
model transformation that assists in detecting the use of de-
sign patterns in a transformation model under development
(typically for maintenance). On the one hand, we prototype
the stochastic solution in the Eclipse Modeling Framework
(EMF) by developing an Eclipse plug-in to be used when
developing a transformation in EMF. Both the detection
of existing patterns and the suggestion of design pattern
templates will be implemented in EMF. On the other hand,
we prototype the higher-order transformation solution in the
multi-paradigm modeling tool AToM? [46]. Since the IDE
of AToM? itself is entirely modeled and transformations are
also explicitly modeled with a distinct meta-model and a pre-
cise semantics, higher-order transformation can be achieved
easily as in [16]. We also investigate how the second-order
transformation can be implemented in ATL [19] which is
integrated in EMF.

B. Resolution of Ill-Formed Design

Refactoring [47] is an important task when it comes
to the maintenance of software artifacts such as model
transformations. Refactoring alters the internal structure
(i.e., rule, scheduling, navigation, and control logic) of a
model transformation without changing the domain and the
purpose for which it is defined. The goal is to improve
the non-functional properties of the transformation that are
developed from Section III-A. This is achieved by detecting
design patterns in a transformation that are almost similar
to one from the catalog.

While the previous activity dealt with the automatic
detection of design patterns, this activity addresses non-
exact matches of designs used in a transformation under
development. We focus on stochastic techniques for de-
tecting similarities between fragments of a transformation
model and a set of design patterns, for example search-
based techniques [48]. This will be integrated in the EMF
plug-in described above to enhance the IDE by augmenting
the transformation model with state-of-the-art patterns at
development-time. Once a fragment is identified, a set of
matching design patterns will be proposed. Design patterns
highly depend on the context in which they are used. We
foresee that the patterns in the catalog we build should not
be rigid, but allow for variations geared by the domain in
which the transformation is applied.

C. Usability Assessment

Thus far, most empirical studies in MDE have looked
at the development process, in general, compared to other
development processes [2]. However, none have focused
directly on the usability of model transformation and its

impact on productivity. Although the verification and valida-
tion activity from Section III-B provides a formal theoretical
assessment, we shall evaluate the usability of the design
patterns in practice by conducting human-subject empirical
studies.

In this activity, we are interested in validating the usability
of the design pattern catalog. One effective way for gathering
this type of information is through an observational study.
In this kind of study, an experimental subject performs
some task while an observer collects data about how the
task is performed. Observational techniques can be used to
obtain fine-grained understanding of how a new technique or
tool is used. Compared to retrospective techniques such as
interviews or questionnaires, collecting data by observation
can be more time-consuming for the experimenter and less
relaxed for the subject. However, an observational approach
delivers more accurate qualitative results than retrospective
methods [49]. When retrospective methods are used, sub-
jects may find it difficult to reconstruct their own thought
processes, or may (intentionally or accidentally) present their
thought processes in a more structured or coherent way than
actually occurred.

D. Related Work

The automatic detection of design patterns in object-
oriented programming has been investigated considerably
over the past decade [50], [51]. Previous approaches were
focused on automatic application of design patterns through
meta-programming [52] and even through model transforma-
tion [53]. However, these approaches often faced challenges
related to the accuracy of the matching process. Tsantalis et
al. [54] described an algorithm for similarity scoring be-
tween graph vertices that represent the patterns and devel-
oped system. A potential adaptation to their approach for the
context of domain specific modeling languages and model
transformation may be a potential area of investigation.

Some works have been done to realize automatic model
completion features to create and modify the existing model
elements automatically from an incomplete state to a com-
plete state. Sen et al. [55] proposed to transform the
meta-model and associated instance models to an Alloy
specification, including static semantics. Then, the partial
model can be completed automatically by applying a SAT
solver. This approach provides guidance to end-users in the
model editors, but the limitation is that the inferred complete
models are mainly based on the input constraints, rather than
end-user customizations.

Mazanek et al. [56] implemented an auto-completion
feature for diagram editors based on graph grammars. Given
an incomplete graph (model) in the editor, all possible graphs
that can be generated using the grammar production rules
will be suggested to users. Although this is a runtime and
live suggestion feature, the suggestions are totally dependent
on the grammar, which requires users to specify a number

to restrict the times of production and avoid infinite loops.
Also, the graph grammar may not be fully compatible
to process domain-specific modeling languages, and this
approach cannot express user-customized editing activities
(e.g., the WCET must be greater than 300).

The concept of Model-Transformation by Demonstration
allows end-users to demonstrate a model transformation
within the modeling environment that is recorded and in-
ferred for future use [57]. In this context, previously inferred
model transformations are placed in a repository. From this
repository, pattern matches are performed on the repository
with a specific model that the user may be creating a new.
This previous effort differs from the proposed work in that
the prior effort was focused purely on transformation reuse
of exact patterns, but the proposed work is concerned with
improving the design of a model transformation by matching
possible design patterns.

V. CONCLUSION

This paper addresses challenges of the very important
problem of quality in model transformation. It proposes
three main solutions: (1) the discovery and elaboration of
a framework for good practices in model transformation
development, (2) the formal analysis of this framework, and
(3) its application in industrial settings.

The work proposed here is still in its preliminary stage.
The next step is to work on the realization of each of these
challenges in order to detect poor designs in models of
complex systems that span a broad collection of domains.
These objectives will be realized to apply well-thought
patterns to frequently occurring modeling contexts, with
the assistance of tools that provide feedback to a model
engineer regarding the quality of the design represented in
their models.

REFERENCES

[1] K. Czarnecki and S. Helsen, “Feature-Based Survey of Model
Transformation Approaches,” IBM Systems Journal, vol. 45,
no. 3, pp. 621-645, July 2006.

[2] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristof-
fersen, “Empirical assessment of MDE in industry,” in /CSE.
Waikiki HI: ACM, May 2011, pp. 471-480.

[3] E. Guerra, J. de Lara, D. Kolovos, R. Paige, and O. dos
Santos, “Engineering model transformations with transML,”
Software and Systems Modeling, vol. in press, pp. 1-23, 2011.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley Professional, November 1994.

[5] “ATL Transformation Zoo,” http://www.eclipse.org/m2m/atl/
atlTransformations/, 2012.

(6]

(7]

(8]

(9]

[10]

[L11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

R. France, J. Bieman, and B. H. Cheng, “Repository
for Model-Driven Development (ReMoDD),” in Models in
Software Engineering, ser. LNCS, vol. 4364. Springer, 2007,
pp- 311-317. [Online]. Available: \url{ www.cs.colostate.edu/
remodd/}

J. Bézivin, B. Rumpe, and L. Tratt, “Model Transformation
in Practice Workshop Announcement,” 2005.

A. Agrawal, “Reusable Idioms and Patterns in Graph Trans-
formation Languages,” in Workshop on Graph-Based Tools,
ser. ENTCS, vol. 127. Elsevier, 2005, pp. 181-192.

Object Management Group, Meta Object Facility 2.0
Query/View/Transformation Specification, April 2008.

M.-E. Tacob, M. W. A. Steen, and L. Heerink, “Reusable
Model Transformation Patterns,” in EDOC Workshops. Mu-
nich: IEEE Computer Society, Setpember 2008, pp. 1-10.

E. Syriani and H. Vangheluwe, “De-/Re-constructing Model
Transformation Languages,” ECEASST, vol. 29, March 2010.

E. Agerbo and A. Cornils, “How to preserve the benefits of
Design Patterns,” in OOPSLA, ser. ACM SIGPLAN Notices.
Vancouver: ACM, October 1998, pp. 134-143.

T. Mens and P. Van Gorp, “A Taxonomy of Model Trans-
formation,” in International Workshop on Graph and Model
Transformation, ser. ENTCS, vol. 152, 2006, pp. 125-142.

J. von Pilgrim, B. Vanhooff, I. Schulz Gerlach, and
Y. Berbers, “Constructing and Visualizing Transformation
Chains,” in ECMDA-FA, ser. LNCS. Springer, 2008, vol.
5095, pp. 17-32.

M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin,
“On the Use of Higher-Order Model Transformations,” in
ECMDA-FA, ser. LNCS, vol. 5562. Enschede: Springer-
Verlag, June 2009, pp. 18-33.

T. Kiihne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wim-
mer, “Explicit Transformation Modeling,” in MODELS Work-
shops, ser. LNCS, vol. 6002. Springer, 2010, pp. 240-255.

Tihamer Levendovszky and Gabor Karsai, “An Active Pattern
Infrastructure for Domain-Specific Languages,” ECEASST,
vol. 25, 2010.

Firebrand Architect, “Quality Attribute Scenar-
ios Catalog,” http://www.firebrandarchitect.com/
quality-attribute-scenarios.html.

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A
model transformation tool,” Science of Computer Program-
ming, vol. 72, no. 1-2, pp. 31-39, June 2008.

E. Syriani and H. Vangheluwe, “A Modular Timed Model
Transformation Language,” Journal on Software and Systems
Modeling, vol. 11, pp. 1-28, June 2011.

D. Varré and A. Balogh, “The model transformation language
of the VIATRA?2 framework,” Science of Computer Program-
ming, vol. 68, no. 3, pp. 214-234, 2007.

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

P. Van Gorp, H. Schippers, and D. Janssens, “Copying Sub-
graphs Within Model Repositories,” in GT-VMT, ser. ENTCS,
vol. 211, 2008, pp. 133-145.

G. Varr6, A. Schiirr, and D. Varré, “Benchmarking for Graph
Transformation,” in IEEE Symposium on VLHCC. Dallas:
IEEE Press, September 2005, pp. 79-88.

A. Ziindorf, “The AntWorld Simulation Tool Case,” www.
se.eecs.uni-kassel.de/~fujabawiki/index.php/AntWorld, May
2008.

E. Syriani, J. Kienzle, and H. Vangheluwe, “Exceptional
Transformations,” in /CMT, ser. LNCS, vol. 6142. Springer,
July 2010, pp. 199-214.

A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio,
“Automating co-evolution in model-driven engineering,” in
EDOC. IEEE Computer Society, 2008, pp. 222-231.

M. S. Sarkar, D. Blostein, and J. R. Cordy, “GXL - A
Graph Transformation Language with Scoping and Graph
Parameters,” in Workshop on Theory and Application of
Graph Transformations. Springer, 1998.

F. Heidenreich, J. Kopcsek, and U. Assmann, “Safe Compo-
sition of Transformation,” in ICMT, ser. LNCS, vol. 6142.
Springer, July 2010, pp. 108-122.

M. Asztalos, E. Syriani, M. Wimmer, and M. Kessentini,
“Towards Rule Composition,” ECEASST, vol. 42, October
2010.

P. Mohagheghi and V. Dehlen, “Developing a Quality Frame-
work for Model-Driven Engineering,” in MoDELS Work-
shops, ser. LNCS, vol. 5002. Springer, 2008, pp. 275-286.

M. van Amstel, C. Lange, and M. van den Brand, “Metrics
for Analyzing the Quality of Model Transformations,” in
Workshop on Quantitative Approaches on Object Oriented
Software Engineering, Paphos, July 2008.

A. Rensink, “The GROOVE Simulator: A Tool for State
Space Generation,” in AGTIVE, ser. LNCS, vol. 3062.
Springer, 2004, pp. 479-485.

A. Schmidt and D. Varré, “CheckVML: A Tool for Model
Checking Visual Modeling Languages,” in UML Conference
series, ser. LNCS, vol. 2863. Springer, 2003, pp. 92-95.

G. J. Holzmann, “The model checker SPIN,” IEEE Transac-
tions on Software Engineering, vol. 23, no. 5, pp. 279-295,
May 1997.

S. P. Hostettler, A. A. Marechal Marin, A. Linard, M. Risoldi,
and D. Buchs, “High-Level Petri Net Model Checking with
AIPiNA,” Fundamenta Informaticae, vol. 113, no. 3-4, pp.
229-264, February 2011.

D. Jackson, Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2006.

T. Mens, G. Taentzer, and O. Runge, “Detecting Struc-
tural Refactoring Conflicts Using Critical Pair Analysis,” in
Software Evolution through Transformations: Model-based
vs. Implementation-level Solutions, ser. ENTCS, vol. 127.
Elsevier, 2005, pp. 113-128.

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

A. Hegediis, A. Horvith, 1. Rith, and D. Varr6, “A Model-
driven Framework for Guided Design Space Exploration,” in
Automated Software Engineering. 1EEE Computer, 2011.

J. Rech and C. Bunse, Eds., Model-Driven Software Develop-
ment: Integrating Quality Assurance. 1GI Global, December
2009.

D. Cetinkaya and A. Verbraeck, “Metamodeling and Model
Transformations in Modeling and Simulation,” in Winter
Simulation Conference, Phoenix AZ, December 2011.

A. Narayanan and G. Karsai, “Towards Verifying Model
Transformations,” Electronic Notes in Theoretical Computuer
Science, vol. 211, pp. 191-200, April 2008.

D. Varr6, S. Varré Gyapay, H. Ehrig, U. Prange, and
G. Taentzer, “Termination Analysis of Model Transforma-
tions by Petri Nets,” in Graph Transformations, ser. LNCS,
vol. 4178. Springer, 2006, pp. 260-274.

M. Asztalos, 1. Madari, and L. Lengyel, “Towards Formal
Analysis of Multi-paradigm Model Transformations,” SIMU-
LATION, vol. 86, no. 7, pp. 429-452, July 2010.

B. Meyers and H. Vangheluwe, “A Framework for Evolution
of Modelling Languages,” Science of Computer Program-
ming, vol. 76, no. 12, pp. 1223-1246, 2011.

G. Antoniol, R. Fiutem, and L. Cristoforetti, “Design Pattern
Recovery in Object-Oriented Software,” in Proc. of the Int’l
Wksp. on Program Comprehension, 1998.

J. de Lara and H. Vangheluwe, “AToM>: A Tool for Multi-
formalism and Meta-Modelling,” in Fundamental Approaches
to Software Engineering, ser. LNCS, vol. 2306. Springer,
2002, pp. 174-188.

M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

M. Kessentini, H. Sahraoui, M. Boukadoum, and M. Wim-
mer, “Search-Based Design Defects Detection by Example,”
in Fundamental Approaches to Software Engineering, ser.
LNCS, vol. 6603. Springer, 2011, pp. 401-415.

F. Shull, J. C. Carver, and G. Travassos, “An Empirical
Methodology for Introducing Software Processes,” in Sym-
posium on the Foundations of Software Engineering, 2001,
pp- 288-296.

1. Philippow, D. Streitferdt, M. Riebisch, and S. Naumann,
“An approach for reverse engineeering of design patterns,”
Software and Systems Modeling, vol. 4, no. 1, pp. 55-70,
2005.

Y. Gueheneuc, J. Guyomarc’h, and H. Sahraoui, “Improv-
ing design pattern identification: a new approach and an
exploratory study,” Software Quality Journal, vol. 18, no. 1,
pp. 145-174, 2010.

A. H. Eden, A. Yehudai, and J. Gil, “Precise specification
and automatic application of design patterns,” in Automated
Software Engineering. Lake Tahoe: IEEE Computer Society,
November 1997, pp. 143-152.

(53]

[54]

[55]

[56]

(571

J. Dong, Y. Zhao, and Y. Sun, “Design Pattern Evolutions In
QVT,” Software Quality Journal, vol. 18, no. 2, pp. 269-297,
June 2010.

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T.
Halkidis, “Design Pattern Detection Using Similarity Scor-
ing,” IEEE Transactions on Software Engineering, vol. 32,
no. 11, pp. 869-909, November 2006.

S. Sen, B. Baudry, and H. Vandheluwe, “Towards Domain-
specific Model Editors with Automatic Model Completion,”
SIMULATION, vol. 86, no. 2, pp. 109-126, 2010.

S. Mazanek and M. Minas, “Business Process Models as a
Showcase for Syntax-Based Assistance in Diagram Editors,”
in MODELS, ser. LNCS, vol. 5795. Springer, 2009, pp.
322-336.

Y. Sun, J. White, and J. Gray, “Model Transformation by
Demonstration,” in Model Driven Engineering Languages and
Systems, ser. LNCS, A. Schiirr and B. Selic, Eds., vol. 5795.
Denver: Springer, October 2009, pp. 712-726.

