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Abstract: Ab initio kinetic studies are important to understand and design novel chemical reactions.
While the Artificial Force Induced Reaction (AFIR) method provides a convenient and efficient frame-
work for kinetic studies, accurate explorations of reaction path networks incur high computational
costs. In this article, we are investigating the applicability of Neural Network Potentials (NNP) to
accelerate such studies. For this purpose, we are reporting a novel theoretical study of ethylene
hydrogenation with a transition metal complex inspired by Wilkinson’s catalyst, using the AFIR
method. The resulting reaction path network was analyzed by the Generative Topographic Mapping
method. The network’s geometries were then used to train a state-of-the-art NNP model, to replace
expensive ab initio calculations with fast NNP predictions during the search. This procedure was
applied to run the first NNP-powered reaction path network exploration using the AFIR method.
We discovered that such explorations are particularly challenging for general purpose NNP models,
and we identified the underlying limitations. In addition, we are proposing to overcome these
challenges by complementing NNP models with fast semiempirical predictions. The proposed solu-
tion offers a generally applicable framework, laying the foundations to further accelerate ab initio
kinetic studies with Machine Learning Force Fields, and ultimately explore larger systems that are
currently inaccessible.

Keywords: Neural Network Potential (NNP); Artificial Force Induced Reaction (AFIR); Generative
Topographic Mapping (GTM); Wilkinson’s catalyst

1. Introduction

Ab initio kinetic studies offer valuable insights into reaction mechanisms [1] through
reaction path calculations for elementary steps, providing molecular geometry changes and
reaction barrier heights along the reaction path. Reaction paths are defined as the lowest
energy path between local minima on the Potential Energy Surface (PES). A convenient and
well-established way to search for a path connecting two local minima is the Artificial Force
Induced Reaction (AFIR) method [2] (see Figure 1), where an external force is applied to
overcome the targeted barrier, producing an approximate reaction path that is then refined.
Recently, the development of a systematic reaction path search procedure, based on the
AFIR method, has made it possible to systematically search the whole PES for both the
minimum energy structures and the reaction paths connecting them [3]. Such a reaction
path search produces a complex graph, called a reaction path network, in which the nodes
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correspond to the stable molecular geometries—equilibrium states (EQs)—and the edges
correspond to reaction paths (see Figure 2).
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Figure 1. Description of the AFIR method. An artificial force is applied to easily cross reaction 
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Figure 2. Construction of the reaction path network from the potential energy surface (PES). 

Despite the availability of various algorithms, the visualization of big networks tends 
to become problematic, due to the large amount of data to represent [4]. Instead of classi-
cally representing the reaction network [5], the PES could be visualized on 2-dimensional 
maps, resulting from encoding molecular structures by a vector, followed by the applica-
tion of dimension reduction techniques, such as principal component analysis (PCA) [6,7], 
locally linear embedding [8], multidimensional scaling [9–11], and isometric feature map-
ping [8,9]. In this paper, we propose to use, for the first time, the Generative Topographic 
Mapping (GTM) [12] approach to represent reaction path networks. 

Once the reaction path network is constructed, the species concentration at a given 
temperature and reaction time could be estimated by solving the system of linear differ-
ential equations for reaction rates of elementary reaction steps. The soft clustering method, 
called Rate Constant Matrix Contraction (RCMC) [13], is used to solve the kinetic simula-
tion, because the numerical integration of sequential differential equations quickly be-
comes unstable [14]. Combining the RCMC and AFIR methods enables on-the-fly kinetic 
simulation [15] during the reaction path search, which is used in the kinetic-based navi-
gation method for efficient reaction path exploration of the chemically accessible region. 

The main bottleneck of a typical reaction path search comes from the high computa-
tional costs of PES assessments using Density Functional Theory (DFT). Even with the 
kinetic-based method, more than 95% of a search cost arises from gradient calculations. 
For this reason, a DFT-based search considering all degrees of freedom is usually limited 
to about 30 atoms. To overcome this limitation, it is possible to use a faster semiempirical 
potential [16,17], such as xTB [18], for gradient calculations. However, such a semiempir-
ical method is prone to low energy accuracy, especially for transition metal complexes 
[19]. Yet, inaccurate energy barriers can cause poor reproduction of the reaction kinetics, 
which often leads to poor kinetic navigation and negatively affects the search efficiency. 

Figure 1. Description of the AFIR method. An artificial force is applied to easily cross reaction barriers.
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Despite the availability of various algorithms, the visualization of big networks tends
to become problematic, due to the large amount of data to represent [4]. Instead of classically
representing the reaction network [5], the PES could be visualized on 2-dimensional maps,
resulting from encoding molecular structures by a vector, followed by the application of
dimension reduction techniques, such as principal component analysis (PCA) [6,7], locally
linear embedding [8], multidimensional scaling [9–11], and isometric feature mapping [8,9].
In this paper, we propose to use, for the first time, the Generative Topographic Mapping
(GTM) [12] approach to represent reaction path networks.

Once the reaction path network is constructed, the species concentration at a given tem-
perature and reaction time could be estimated by solving the system of linear differential
equations for reaction rates of elementary reaction steps. The soft clustering method, called
Rate Constant Matrix Contraction (RCMC) [13], is used to solve the kinetic simulation,
because the numerical integration of sequential differential equations quickly becomes
unstable [14]. Combining the RCMC and AFIR methods enables on-the-fly kinetic simu-
lation [15] during the reaction path search, which is used in the kinetic-based navigation
method for efficient reaction path exploration of the chemically accessible region.

The main bottleneck of a typical reaction path search comes from the high compu-
tational costs of PES assessments using Density Functional Theory (DFT). Even with the
kinetic-based method, more than 95% of a search cost arises from gradient calculations.
For this reason, a DFT-based search considering all degrees of freedom is usually limited
to about 30 atoms. To overcome this limitation, it is possible to use a faster semiempirical
potential [16,17], such as xTB [18], for gradient calculations. However, such a semiempirical
method is prone to low energy accuracy, especially for transition metal complexes [19]. Yet,
inaccurate energy barriers can cause poor reproduction of the reaction kinetics, which often
leads to poor kinetic navigation and negatively affects the search efficiency.
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In parallel, recent advances in Neural Network Potentials (NNPs) [20,21] offer many
examples [22–29] of highly accurate predictions at a significantly lower cost than their
corresponding ab initio calculations, provided sufficient training data is available [30,31].

Therefore, in this article, we investigate the applicability of NNPs to reaction path
search with the kinetic-based navigation method. For this application, we propose to
replace expensive ab initio calculations with NNP-based predictions during the search
(see Figure 3). This solution combines the search efficiency of the kinetic-based naviga-
tion method and the computational efficiency of machine learning-based predictions, but
requires an adequately trained NNP model.
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presence of strong external forces, we focus on designing robust NNP-based models that 
are capable of generalization across the reaction path network. 

We finally investigate the ability of such models to support an NNP-powered search 
capable of reproducing DFT-based chemical reaction yields, despite being trained on a 
fraction of the DFT-based reaction path network. 

Figure 3. Overview of the novel approach described in this article: using NNP-based models trained
on prior ab initio data to support AFIR-based reaction path searches.

It should be noted that, in addition to specialized Neural Network-based models di-
rectly predicting reaction kinetics [32,33], NNPs have been used in numerous kinetic studies
for fitting the PES [34,35] and accelerating molecular simulations. In such studies, NNPs are
typically powering Molecular Dynamics (MD) simulations [36], Well-Tempered [37] meta-
dynamics [38,39], or Nudged Elastic Band-based refinement of reaction path guesses [40],
where only small-to-moderate artificial forces are applied. In one recent study, potentially
strong artificial forces were applied for the training set construction, but the NNP-powered
reaction path search itself was done by typical MD simulations [41]. In contrast, we focus
here on the challenges for designing NNP-based models to support AFIR-based reaction
path searches, where strong exploration forces are involved.

For this study, we consider the hydrogenation of ethylene catalyzed by a transition
metal complex, inspired by Wilkinson’s catalyst (see Figure 4) [42], because of the authors’
familiarity with this system. First, a preliminary reaction path search is performed at the
DFT level, using the kinetic navigation method. The resulting reaction path network is
then analyzed with GTM, allowing to describe the different reaction steps and visualize the
exploration of the PES during the reaction path search.
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catalyst (i.e., RhCl(PPh3)3).

We then focus on an NNP-powered reaction path search with the AFIR method and
kinetic-based navigation.

After identifying the fundamental robustness issue of general-purpose NNPs in the
presence of strong external forces, we focus on designing robust NNP-based models that
are capable of generalization across the reaction path network.

We finally investigate the ability of such models to support an NNP-powered search
capable of reproducing DFT-based chemical reaction yields, despite being trained on a
fraction of the DFT-based reaction path network.
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2. Materials and Methods
2.1. Reaction Path Search Using the AFIR Method

In this study, the single component (SC)-Artificial Force Induced Reaction (AFIR)
method [3] is used to search for reaction pathways. AFIR defines two or more groups of
atoms, called fragments, in an equilibrium state (EQ), and tracks reaction pathways between
different EQs by applying external forces. In the SC algorithm, two atoms are chosen, and
the fragments are defined around these atoms; in the SC-AFIR method, transitions between
EQs are caused by applying a force that pushes or pulls the two defined fragments around
the two atoms. In many reaction systems, this method has so far proven to be a useful tool
for searches [43,44]. In complement to the current study, Neural Network approaches were
recently proposed [45] to optimize the order in which the forces are applied in SC-AFIR
(i.e., the order in which the atomic pairs and the direction of the forces are chosen and
calculated), which is a very important factor determining the efficiency of the search.

A kinetic simulation on the constructed reaction path network requires the rate con-
stants of each elementary process. In the present study, the rate constants are defined
based on the ∆∆G along the approximate reaction path, relaxed by the locally updated
planes (LUP) method [46] (denoted by LUP path). A previous study suggested that the
reaction path network of LUP paths (LUP-path network) reproduces adequately the kinetics
obtained using the actual transition states [47]. Once all the rate constants correspond-
ing to all edges of the reaction path network are computed, the first-order simultaneous
differential equations governing the kinetics can be solved numerically to provide the
reaction yields under user-defined conditions. In practice, this kinetic simulation involves
stiff equations, with a mixture of very fast and very slow processes, which are difficult to
solve efficiently by numerical integration. In contrast, the rate constant matrix contraction
(RCMC) method [13] proposed by Sumiya and Maeda is effective, because it allows fast
kinetic simulations to be performed by a clustering operation called contraction.

2.2. Dataset Description

In this study, instead of the classical Wilkinson’s catalyst RhCl(PPh3)3, the simplified
catalyst RhCl(PH3)3 has been considered.

The present kinetic study by AFIR search has been performed at the RωB97X-D/Def2-
SVP level of theory [48,49]. The details of the reaction path search are written in the
supporting information (see Supplementary Materials Section S1). This search produced
a reaction path network where each edge is representing a single elementary process
explored with the AFIR method. For each elementary process explored, the corresponding
LUP path obtained is represented by a set of geometries along the path. For each of these
geometries, the potential energy, gradients, and electric dipole moments were computed
at the RωB97X-D/Def2-SVP level of theory in this context (see Supplementary Materials
Section S1). The results obtained have been compiled into a database, WilkinsonAFIRdb,
using the ASE database framework [50].

Alternatively to the present DFT-based AFIR search, one should note that a database of
AFIR-generated reaction path networks was recently constructed using quantum chemistry-
aided retrosynthetic analysis (QCaRA) [51], which traces back the reaction paths from the
target product to various reactant candidates and their theoretical yields [52]. Such a
database should also be appropriate to train NNP-based models made to support AFIR-
based reaction path searches.

2.3. GTM Visualization

Generative Topographic Mapping (GTM) is a dimension reduction method, which
allows the visualization of a data distribution on a 2-dimensional map. A more detailed
description of GTM underlying algorithms can be found in a previous paper [12]. The
main idea of GTM consists in inserting a flexible hypersurface, called manifold, into the
high-dimensional descriptor space, with a subsequent projection of these data points into a
2D latent space grid. A data property can be added as a 3rd axis of the 2D map, forming
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a so-called property landscape [53]. Each landscape position is colored according to the
property value; this value is the average property of the data subset projected to that
position on the landscape. Here, two types of landscapes are considered: (i) the class
landscape, which assigns a color scale to the map depending on the population of one class
of compounds compared to that of another class; (ii) the energy landscape, which colors
the maps according to potential energy values computed with DFT.

Here, GTM was trained on 10,000 3D geometries randomly selected from the Wilkin-
sonAFIRdb dataset and encoded by 3D pairwise-sorted distance-based descriptors (see
Section 2.4). GTM parameters were optimized using the Genetic Algorithm [54]. A manifold
was trained by minimizing a cost function, which combined an error of energy prediction
and the inverse informational entropy.

2.4. 3D Pairwise-Sorted Distance-Based Descriptors

The 3D structures were encoded by descriptors derived from interatomic distances,
to avoid the need for alignment [10,30]. These distances were then grouped according to
their corresponding atom types and sorted within each group, leading to 3D pairwise-
sorted distance-based descriptors. Those descriptors are also invariant by atomic permuta-
tions [30]. Such descriptors, or their inverse, were already applied to: identify peptides’
aggregation pathways [55]; analyze proton transfer reactions mechanisms [56]; and predict
atomic, potential, and interaction energies [57–60].

In our implementation, all interatomic distances were first computed for each unique
structure and labeled by the atomic numbers of the constituting atoms. The same-labeled
distances were then gathered and sorted in ascending order. Finally, those sorted distances
were concatenated and formed the descriptor vector for each 3D structure.

The 3D structures corresponding to the same 2D structure were grouped into subsets.
Descriptors values characterizing each subset were computed as the Boltzmann-weighted
sum of descriptors of related 3D structures, according to Equations (1) and (2):

Xp = ∑ wiXip (1)

wi = e(Ei/(kBT))/
(
∑ e(Ei/(kBT)), (2)

where Xp and Xip are the p-th term of the descriptor characterizing, respectively, the
entire subset and the i-th structure, i iterates over 3D structures belonging to the same 2D
structure, wi is the weight associated to the structure i, Ei is the relative potential energy
of i compared to the lowest energy observed within the reaction path network, kB is the
Boltzmann constant, and T = 300 K is the considered temperature.

2.5. Neural Network Potential Architecture

For this study, we are considering a Neural Network Potential, as recommended for
efficiently handling large amounts of training data [61,62]. We have chosen the publicly
available SpookyNet [22] architecture for its enhanced description of non-local effects via a
dedicated attention network [63], and its inclusion of physics-inspired additional terms.
SpookyNet is a general-purpose NNP based on graph convolutional networks, where
the predictions are composed of an attention-based non-local part, and a local part based
on atomic descriptions, which are iteratively refined via interaction modules acting as
convolutional filters with neighboring atomic environments.

2.6. NNP(+xTB) Models

In addition to a Graph Convolutional Neural Network architecture, SpookyNet models
also include additional terms by default. So, the predicted energy is composed of 4 terms
(gradients and Hessian predictions are analytically derived from the energy):

ESpookyNet = ENN + EZBL + ED4 + Eelec, (3)
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where ENN is the Neural Network based atomic energy predictions, EZBL is a repulsion
energy term from a Ziegler-Biersack-Littmark (ZBL) potential [64] with learnable parameters,
ED4 is the D4 dispersion correction [65], and Eelec is an electrostatic term using partial charges
predicted along with the atomic energies. Note that all terms have learnable parameters.

Such an approach can be seen as an instance of ∆-learning [66], where model predic-
tions are complemented by an external potential, so that the model can focus on learning
only the difference (hence the ∆-learning name) between the target property and the
external potential, see Figure 5.
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For NNP(+xTB) models, we replaced the default additional terms with predictions
from the GFN2-xTB [67] semiempirical potential (simply referred to as xTB):

ENNP(+xTB) = ENN + ExTB, (4)

The additional terms of SpookyNet (i.e., EZBL, ED4 and Eelec) were not kept for
NNP(+xTB) models, because the GFN2-xTB potential already includes a repulsion en-
ergy term and a dispersion energy term, based on the D4 dispersion model.

3. Results
3.1. Reaction Path Network for Hydrogenation Using a Simplified Wilkinson’s Catalyst

Figure 6 shows the kinetically important 2D structures of the reaction path network
obtained in this study at the DFT level. In this figure, only the lowest reaction barriers
between groups are shown, assuming that the reaction barriers within groups are suffi-
ciently low. In this reaction, the leftmost group represents the reactants. The group with the
highest yield, at 300 K, represented in the bottom right-hand corner, is the one containing
ethane. The WilkinsonAFIRdb database contains the electronic energy, gradients, and
electric dipole moments for 118,240 geometries, including 6298 approximate transition
states (TS) and 2049 equilibrium states (EQ). These geometries correspond to the reaction
paths for the 6298 elementary processes explored with the AFIR method.

The traditional hydrogenation of alkenes by H2, catalyzed by the Wilkinson’s catalyst
(i.e., RhCl(PPh3)3), involves the following steps after the PPh3 dissociation: oxidative
addition of H2 to the metal complex; alkene coordination; alkene insertion; and reductive
elimination of alkane [68].

Koga et al. [69] computationally studied the hydrogenation of ethylene with a sim-
plified catalyst RhCl(PH3)2, and reported that the oxidative addition of H2 occurs before
the ethylene coordination. In the present study, we have considered the non-dissociated
simplified catalyst RhCl(PH3)3 by explicitly modeling all three PH3 ligands. For this system,
we found that the ethylene coordination is the first step of the hydrogenation, producing
RhCl(PH3)3(C2H4); followed by the dissociation of a PH3 ligand; then, the oxidative addi-
tion of H2, ethylene insertion, and reductive elimination of ethane proceed with two PH3
ligands. Finally, the initial RhCl(PH3)3 catalyst is restored, completing the catalytic cycle.
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Figure 6. Reaction path network obtained with the AFIR method and kinetic-based navigation,
computed at the DFT level. Boxes represent equilibrium structures; edges represent reaction paths.
The main reaction steps (depicted in dark grey) correspond to intermediate structures #1–6.

Experimentally, ethylene is a well-known poison of Wilkinson’s catalyst, leading
to the formation of RhCl(PPh3)2(C2H4), which is not active enough to react with H2 at
1 atmosphere, likely due to the large π-acidity of the ethylene ligand [42]. This observation
seems consistent with the preferential initial coordination of ethylene in the present study,
even though further research is required to understand if the mismatch on the number
of coordinated phosphines (2 × PPh3 vs. 3 × PH3) is solely due to steric effects. Unlike
Wilkinson’s catalyst, we found that the hydrogenation of ethylene can proceed with the
simplified catalyst. This outcome could be partially due to a lower (compared to the
original PPh3) simulated π-acidity of the PH3 ligands [70], especially since this property was
found to be particularly sensitive to the accuracy of the P 3d orbitals description [71] (see
Supplementary Materials Section S8 for an in-depth analysis). However, such analysis is
out of the scope of the present study. In general, for practical machine learning applications,
the quality of the dataset is essential. To this end, it is desirable to find the most adapted
level of theory by performing comparison against higher precision calculations, such as
CCSD(T)-F12 [72,73]. One should note that our method is a priori, compatible with any
level of theory.

3.2. Data Visualization with GTM

The DFT data were visualized on the GTM energy and class landscapes (Figures 7 and 8).
On the energy landscape (Figure 7), black dots characterize different 3D EQs groups
associated with their related 2D structures (see Section 2.4). The main reaction path
1–6 structures are situated in the low or medium energies areas.

Class landscape (Figure 8) displays the distribution of 58 EQs, forming the reactant
group, populating 5 areas of the map. In structures situated in low and middle-energy areas
a–c with, respectively, 6 and 26 structures, the rhodium atom coordinates all 3 phosphorus
atoms of PH3 groups; whereas, in high-energy areas d and e, one of the PH3 groups is
oriented toward the rhodium by its hydrogen atoms. The latter areas correspond to some
sort of dead-end of the reaction network. Class landscapes demonstrating distribution
of 3D structures of the product and those formed in main reaction steps 1–6 are given in
Supplementary Materials Figure S11. Notice that, thanks to the Boltzmann-like weighting
of descriptors, the representative projection of each group is always located near its lowest-
energy cluster.
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Figure 8. GTM class landscape showing distribution of 3D structures corresponding to reactants.
5 different clusters (labelled with letters) can be identified and correspond to distinct conformations.

In order to analyze the reaction network expansion, we have compared GTMs with
projected first 20%, 50%, 80%, and 100% structures discovered in the DFT-powered search
(Figure 9). One can see that the first 50% of the network already covers the apparent
chemical space of the entire network. Indeed, the map accommodating 80% of data does
not contain purely brown zones; the new (compared to map of 50%) structures populate
mostly the products zone.
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Figure 9. GTM landscapes describing first 20%, 50%, 80%, and 100% of the network exploration
discovered in the DFT-based search. Each next map visualizes a class landscape, where the brown
color corresponds to the zones populated exclusively by “new” (with respect to the previous map)
structures, and the blue color—to the zones populated by “old” structures. Notice that the map
accommodating the first 20% contains only “new” structures.

3.3. Applicability of Neural Network Potentials to AFIR-Based Reaction Path Search

In this study, we make use of the data generated at the DFT level during the AFIR-
based reaction path search, to study the applicability of NNP-based models to replace DFT
predictions during an AFIR-based reaction path search (i.e., supporting an NNP-powered
AFIR-based reaction path search).

3.3.1. NNP Performance on Pre-Obtained Geometries

We have trained SpookyNet models on the geometries along the IRC paths of the
reaction path network explored during the DFT-based reaction path search, described in
Section 3.1. For this study, we have designed a future-oriented testing, by training the
model on the earlier paths explored during the DFT-based search and evaluating the model
predictions on the remaining paths (see Figure 10 and Supplementary Materials Section S4
for more details on the train/validation/test splitting).
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Figure 10. Dataset splitting scheme into training set, validation set, and test set. First, a search-related
timestamp is chosen (e.g., when 50% of the network’s paths has been explored by the search, which is
equivalent to: when the search is half-completed). The geometries corresponding to paths already
explored before this timestamp are grouped into the train/validation set, and the test set is composed
of all geometries corresponding to paths that were not yet discovered at this time of the search. The
train/validation set is then split into a training set and a validation set randomly, while ensuring that
all geometries corresponding to a single path are either within the training set or the validation set
(i.e., validation geometries correspond to paths which are not covered in the training set, except for
the EQs shared with training paths).

We have considered different training sizes (using only the first 20%/50%/80% of the
paths explored during the search), as well as multiple training techniques (ensemble [74],
dropouts [75], ∆-learning [66], . . . ) as described in Supplementary Materials Sections S3 and S5.
All the resulting models consistently showed predictive capabilities to accurately repro-
duce energies on the later parts of the DFT-based search, despite being trained only on the
earliest paths discovered, see Figure 11. Thus, a SpookyNet model, trained only on the
first 20% of paths explored, achieved a Mean Absolute Error (MAE) of <8 kJ/mol on the
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energy predictions for the remaining geometries. Using the first 50% or more of paths for
training led to models achieving chemical accuracy (MAE < 3 kJ/mol on the geometries of
the remaining paths).
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powered AFIR-based reaction path search. The energy predictions and energy references (i.e., DFT en-
ergies) are displayed for the remaining geometries, with transparency for better readability. (a) Model
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trained on the first 50% of paths explored, the remaining 50% are represented, R2 = 0.995; (c) Model
trained on the first 80% of paths explored, the remaining 20% are represented, R2 = 0.998.

3.3.2. Reaction Path Search Using the NNP Model

In light of these promising preliminary results, we have developed an efficient interface
between the GRRM program and an NNP-based model, which enables NNP-powered AFIR-
based reaction path searches, where all energies and gradients evaluations are performed
with the trained NNP.

For the first NNP-powered AFIR-based search, we have considered a local exploration
around the most stable conformer of the reactants. This area is expected to have been
particularly well-explored during the DFT-based search. Therefore, one could expect that
the resulting training data is well-adapted to this local search (even when using only the
first 20% of paths explored during the DFT-based search, since the starting point of the
DFT-based search is located in this region).

Despite these considerations, all trained SpookyNet models performed surprisingly
badly, regardless of the training set size, see Figure 12. Such a poor performance (contrasting
with the performance of these same models on pre-obtained geometries) indicates a strong
discrepancy between the geometries generated by the DFT-based search and those from
the NNP-based local searches.

In particular, we observed a serious energy underestimation of broken geometries (dis-
sociated structures, steric clashes, broken valences, . . . ). These results illustrate a dramatic
lack of robustness of the trained models for supporting AFIR-based explorations. Indeed,
by incorrectly evaluating broken geometries as stable, the fitted potentials contribute to
drag the AFIR-based search toward unphysical pathways.

We attribute this failure to the combination of three distinct factors:

• Lack of physics: While general-purpose NNPs, such as SpookyNet, do respect funda-
mental symmetries (translation, rotation, . . . ), their functional forms (i.e., the mathe-
matical models) are not physics-based. In particular, their asymptotic behavior is not
governed by physical principles. Although SpookyNet models already include addi-
tional trainable terms that are physics-inspired (EZBL, ED4 and Eelec), these terms do not
seem sufficient to ensure physical asymptotic behavior outside the training domain.

• Training bias: Due to the aforementioned lack of physics, the NNP considerably relies
on the training data, yet the dataset does not contain strongly broken geometries.
Indeed, such geometries are not encountered during the DFT-based search, because
all paths leading to them would be rightfully assessed as too high in energy for the
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exploration to continue. Therefore, the trained NNPs cannot properly handle these
extreme geometries, leading them to be poorly described.

• Strong exploration forces: Even if sufficient training data is available in the accessible
valleys of a potential energy surface (i.e., chemically reasonable geometries), we believe
that applying a strong external force can drive a properly described system outside
the locally well-defined valleys of the fitted potential.
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Figure 12. Performance of SpookyNet when powering a local AFIR-based exploration around the
most stable reactants conformer. Each point represents a PES stationary point geometry (i.e., an
approximate TS or EQ) obtained during the search. The energy predictions are generated during the
search, and the energy references (i.e., DFT energies) are computed a posteriori. Here, the largest
errors were found on structures with no apparent steric clashes, but with dissociated structures and/or
isolated atoms. The model was trained on the first 80% of paths explored during the preliminary
DFT-powered search, R2 = −76.

3.3.3. ∆-Learning Solution for Robust NNP-Based Models

Let us quickly examine what can, or cannot, be done about the three factors aforemen-
tioned:

• Strong exploration forces are a powerful tool to efficiently sample rare events [76], so
we believe that one should focus on designing models that can support them, instead
of removing them.

• SpookyNet models need to be trained on broken geometries to properly describe
them. We argue that complementing the training dataset a priori with broken ge-
ometries is not reasonable, because one cannot easily predict in advance the pitfalls
of a fitted potential, and one cannot reasonably include all possible broken geome-
tries in the training set. A simple argument to convince the reader is to consider
N atoms randomly distributed in a box: the probability that the resulting geome-
try is chemically reasonable is close to zero, therefore illustrating the inconceivably
large ratio of broken geometries over reasonable geometries. We further argue that
such training bias toward reasonable geometries in available datasets is actually de-
sirable, because we believe it is unreasonable to waste computational resources on
unreasonable geometries.

This leaves only the lack of physics to consider, which we are proposing to tackle
via ∆-learning. ∆-learning is a well-known technique to improve the accuracy of a
model [77–79]. Uncommonly, we are here considering this technique to enhance the
robustness of our model.

In the context of this article, we are formulating two main hypotheses concerning the
inclusion of physics-based principles via ∆-learning:
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Hypothesis 1 (H1). Sufficiently robust models can be achieved by complementing SpookyNet-based
NNPs with physics-based additional terms.

Hypothesis 2 (H2). In that regard, a robust standalone external model is better than the default
trainable additional terms (EZBL, ED4 and Eelec).

The fundamental benefit of the proposed ∆-learning solution is to be virtually applica-
ble to any general-purpose NNP architecture. Therefore, we avoid the inconvenience of
designing a novel NNP architecture just for AFIR-based search applications. Instead, we
propose a general model-agnostic future-proof solution which should, hopefully, also be
applicable to the alternatives and successors of SpookyNet.

Actually, SpookyNet models are already infused with the concept of ∆-learning, via
the introduction of trainable additional terms. In accordance with Hypothesis 2, we propose
to replace these additional terms with predictions from an external semiempirical model.
We found that the GFN2-xTB potential represents an acceptable compromise between
robustness and speed, via its ability to recognize broken geometries while requiring a
fraction of the cost of a typical DFT calculation [67]. For the resulting NNP(+xTB) models,
the energy prediction follows Equation (4). The idea behind the proposed NNP(+xTB)
model is to use a semiempirical method as a continuously derivable safeguard, allowing
not only to improve accuracy, but also robustness, in accordance with Hypothesis 1. Indeed,
we rely on the xTB part being able to identify broken geometries, even if those geometries
are not included in the training set, therefore restraining the AFIR-based search to non-
broken geometries (which should be covered by the training set, if the latter was sampled
adequately). See Figure 13 for an illustration of this idea.
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AFIR force.

We trained NNP(+xTB) models as previously, and we performed a similar local AFIR-
based exploration as before, but powered it by an NNP(+xTB) model instead of a pure
NNP (i.e., SpookyNet) model. The new results are presented in Figure 14.

First of all, we observe that the added xTB term behaves, indeed, as a safeguard,
locally preventing the exploration of strongly broken geometries (i.e., very high DFT
energy), as illustrated by the difference in the range of the recomputed DFT energies
between Figures 12 and 14. In terms of accuracy, we observe that the NNP corrections to
the xTB predictions are almost always beneficial, even for most outliers, where the trend
is still correct, leading to an MAE around 10 kJ/mol on the predicted energies, despite
using the smallest training set size (compared to an MAE > 30 kJ/mol for the uncorrected
xTB predictions). Interestingly, a local AFIR-based search powered by xTB only (i.e., no
NNP correction) performed significantly worse (see Figure 15), indicating a strong synergy
between the two components of the NNP(+xTB) model.
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Figure 14. Performance of NNP(+xTB) models when powering a local AFIR-based exploration
around the most stable reactants conformer. Each point represents a PES stationary point geometry
(i.e., an approximate TS or EQ) obtained during the search. The energy predictions are generated
during the search, and the energy references (i.e., DFT energies) are computed a posteriori. xTB and
NNP(+xTB) predictions for the same geometry are connected by a line: a red line, if xTB only is closer
to DFT, and a green line, if the NNP contribution is beneficial. The energies potentials are shifted to
match each other on the WilkinsonAFIRdb dataset. (a) Model was trained on the first 20% of paths
explored during the preliminary DFT-powered search, R2 = 0.74; (b) Model trained on the first 50%
of paths explored, R2 = 0.79; (c) Model trained on the first 80% of paths explored, R2 = 0.93.
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Figure 15. Performance of GFN2-xTB when powering a local AFIR-based exploration around the
most stable reactants conformer. Each point represents a PES stationary point geometry (i.e., an
approximate TS or EQ) obtained during the search. The xTB energies are generated during the search,
and the energy references (i.e., DFT energies) are computed a posteriori. As always, xTB energies
are shifted by the exact same amount that was used to minimize the Mean Square Error on the
WilkinsonAFIRdb dataset, R2 = −6.

3.3.4. Kinetic Study from Reaction Path Search Using NNP(+xTB)

Strongly shown from these promising local results, we performed a (global) NNP(+xTB)-
powered AFIR-based reaction path search (similar to the preliminary DFT-based search),
using the same trained NNP(+xTB) models. From these explorations, the resulting reaction
yields predicted, and the main products predicted, are reported in Table 1.
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Table 1. Predicted yields at different temperatures, from AFIR-based reaction path search using
different potentials.

Predicted
Yield GFN2-xTB

NNP(+xTB)
20%

Training

NNP(+xTB)
50%

Training

NNP(+xTB)
80%

Training
DFT

250 K 0.50% 0.00% 2.09% 31.42% 98.47%
300 K 1.42% 0.00% 96.47% 100% 100%
350 K 2.79% 0.00% 99.95% 99.98% 100%

We observe a large sensibility of the global yield on the amount of training data
used: when using the smallest training set (only the first 20% of paths explored during
the DFT-based search), the predicted reaction yields are 0% at all temperatures. This er-
roneous prediction indicates that severe energy barrier errors were encountered during
the NNP(+xTB)-powered AFIR search. In addition, we identified a “leaky holes” behav-
ior [80,81] (i.e., unphysical localized collapses of the potential energy surface) affecting very
high-energy pathways, where broken geometries are incorrectly evaluated as very stable
(see Figure S7), resulting in the AFIR-based search being dragged toward these unphysical
“holes” (due to the optimization nature of the AFIR method). See Supplementary Materials
Section S7 for additional details.

In contrast, using NNP(+xTB) models trained on more data, we managed to recover
the DFT-based yields at T ≥ 300 K, indicating that neither “leaky holes” capturing the
global yields nor severely erroneous energy barriers were found during the search. This
result suggests that the discovered reaction path network is well-sampled by the first ≥50%
of paths explored during the DFT-based search.

Incidentally, this analysis is in accordance with the GTM observation that the first
50% of the DFT-obtained paths are covering the whole DFT-based reaction path network
explored (see Section 3.2). Indeed, if we assume that the final NNP(+xTB)-based network is
similar to the converged DFT-based network, then the first 50% of the DFT-obtained paths
are also covering the final NNP(+xTB)-based network.

The incomplete reproduction of the yields at 250 K suggests accuracy issues that can
be resolved with more training data, as illustrated by the better yields obtained using the
largest training set. In any case, the performance of properly trained NNP(+xTB) models
was found to be far superior to xTB, only for supporting AFIR-based reaction searches.

4. Conclusions

Ab initio kinetic studies typically incur large computational costs, and we found
that cheaper semiempirical methods, such as GFN2-xTB, are sometimes not accurate
enough to reproduce the reaction kinetics, therefore misleading kinetic-based heuristics.
We have proposed to replace expensive ab initio calculations with fast Neural Network
Potential predictions during the search. In a case study of hydrogenation of ethylene,
catalyzed by a transition metal complex inspired by Wilkinson’s catalyst, we discovered
that typical general-purpose NNP models were not robust enough to support an AFIR-
based reaction path search, where strong exploration forces were involved. For this reason,
NNP predictions were complemented with xTB calculations via ∆-learning. The resulting
NNP(+xTB) models could reproduce reaction yields when powering an AFIR-based search,
as long as sufficient training was achieved. The Generative Topographic Mapping technique
was found to be particularly useful to follow the exploration of the chemical space during
the search and identify the zones corresponding to the different steps of the reaction.

We believe that kinetic studies can benefit much from the recent developments in
the NNP field. In that regard, the promising performance of our NNP(+xTB) solution is
highlighting the importance of robustness for designing adapted potentials.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28114477/s1, Figure S1: Example of GFN2-xTB calculation
failure; Figure S2: Dataset training scheme; Figure S3: Influence of cold restarts; Figure S4: Influence
of dropout rate; Figure S5: Influence of ensemble learning; Figure S6: Influence of additional terms;
Figure S7: Performance of NNP(+xTB) model (20% training) on global AFIR-based search;
Figure S8: Example of unphysical geometry generated; Figure S9: Graphical discussion; Figure S10: GTM
visualization of early AFIR exploration; Figure S11: GTM class landscapes; Table S1: Relation-
ship between ensemble disagreement and prediction error; Table S2: Main products predicted.
Refs [13,22,50,69,71,75,82–85] are cited in Supplementary Materials.
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