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W
ithin factories around the world, robots perform heroic feats of manipulation

on a daily basis. They lift massive objects, move with blurring speed, and

repeat complex performances with unerring precision. Yet outside of care-

fully controlled settings, even the most sophisticated robot would be unable

to get you a glass of water. The everyday manipulation tasks we take for

granted would stump the greatest robot bodies and brains in existence today.

Why are robots so glorious in the factory, but so incompetent in the home? At the Robotics

Science and Systems Workshop: Manipulation for Human Environments [1], we met with researchers

from around the world to discuss the state of the art and look toward the future. Within this

article, we present our perspective on this exciting area of robotics, as informed by the work-

shop and our own research.

To What End?
Commercially available robotic toys and vacuum cleaners inhabit our living spaces, and robotic

vehicles have raced across the desert. These successes appear to foreshadow an explosion of

robotic applications in our daily lives, but without advances in robot manipulation, many

promising robotic applications will not be possible. Whether in a domestic setting or the work-

place, we would like robots to physically alter the world through contact.

Robots have long been imagined as mechanical workers, helping us in our daily life.

Research on manipulation in human environments may someday lead to robots that work

alongside us, extending the time an elderly person can live at home, providing physical assis-

tance to a worker on an assembly line, or helping with household chores.

Today’s Robots
To date, robots have been very successful at manipulation in simulation and controlled environ-

ments such as a factory. Outside of controlled environments, robots have only performed

sophisticated manipulation tasks when operated by a human.
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Simulation
Within simulation, robots have performed sophisticated

manipulation tasks such as grasping convoluted objects, tying

knots, and carrying objects around complex obstacles. The

control algorithms for these demonstrations often employ

search algorithms to find satisfactory solutions, such as a path

to a goal state, or a set of contact points that maximize a

measure of grasp quality. For example, many virtual robots

use algorithms for motion planning that rapidly search for

paths through a state space that models the kinematics and

dynamics of the world [2]. Most of these simulations ignore

the robot’s sensory systems and assume that the state of the

world is known with certainty. For example, they often

assume that the robot knows the three-dimensional (3-D)

structure of the objects it is manipulating.

Controlled Environments
Within controlled environments, the world can be adapted to

match the capabilities of the robot. For example, within a

traditional factory setting engineers can ensure that a robot

knows the relevant state of the world with near certainty. The

robot typically needs to perform a few tasks using a few

known objects, and people are usually banned from the area

while the robot is in motion. Mechanical feeders can enforce

constraints on the pose of the objects to be manipulated. In

the event that a robot needs to sense the world, engineers can

make the environment favorable to sensing by controlling

factors such as the lighting and the placement of objects rela-

tive to a sensor. Moreover, since the objects and tasks are

known in advance, perception can be specialized and 

model-based.

Factories are not the only controlled environments in

which robots perform impressive feats of manipulation.

Researchers often simplify the environments in which they

test their robots in order to focus on problems of interest. So

far, successful demonstrations of research robots autonomously

performing complicated manipulation tasks have relied on

some combination of known objects, simplified objects,

uncluttered environments, fiducial markers, or narrowly

defined, task-specific controllers.

Operated by a Human
Outside of controlled settings, robots have only performed

sophisticated manipulation tasks when operated by a human.

Through teleoperation, even highly complex humanoid

robots have performed a variety of challenging everyday

manipulation tasks, such as grasping everyday objects, using a

power drill, throwing away trash, and retrieving a drink from

a refrigerator (Figure 1). Similarly, disabled people have used

wheelchair mounted robot arms, such as the commercially

available Manus ARM (Figure 2), to perform everyday tasks

that would otherwise be beyond their abilities. Attendees of

the workshop were in agreement that today’s robots can suc-

cessfully perform sophisticated manipulation tasks in human

environments when under human control, albeit slowly and

with significant effort on the part of the human operator.

Human Environments
Human environments have a number of challenging charac-

teristics that will usually be beyond the control of the robot’s

creator. The following list briefly describes some of these

characteristics.

◆ People are present

Users who are not roboticists may be in the same environment

and possibly close to the robot.

◆ Built-for-human environments

Environments and objects will usually be well-matched to

human bodies and capabilities.

◆ Other autonomous actors are present

For example, pets and other robots may be nearby.

◆ Dynamic variation

The world can change without the robot taking action.

◆ Real-time constraints

In order to interact with people and match the dynamics of the

world, the robot must meet real-time constraints.
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Figure 1. Work at AIST with the HRP-2 humanoid has 
combined high-level teleoperation with autonomous 
perception and control. This work has enabled a user to 
reliably control a complex humanoid robot to perform 
sophisticated manipulation tasks, such as retrieving a drink
from a refrigerator [3].

Figure 2. (a) The Manus ARM is designed to be attached to a
wheelchair and controlled by the wheelchair’s occupant
using (b) interfaces. Researchers at UMass Lowell are working
to add sensing and semi-autonomous behaviors to this sys-
tem in order to make it easier to use [4].

(a) (b)



◆ Variation in object placement and pose

For example, an object may be placed in a cabinet, on a table,

in a sink, in another room, or upside down.

◆ Long distances between relevant locations

Tasks will often require a mobile manipulator, such as when

moving objects from one room to another.

◆ Need for specialized tools

Many tasks, such as cooking, assembly, and opening locks,

require tools.

◆ Variation in object type and appearance

For example, there can be one-of-a-kind objects and objects

that have changed due to wear and tear.

◆ Nonrigid objects and substances

For example, deformable objects, cables, liquids, cloth, paper,

and air flow may need to be manipulated.

◆ Variation in the structure of the environment

For example, architecture, furniture, and building materials

vary from place to place.

◆ Architectural obstacles

For example, robots can encounter cabinet doors, drawers, doors,

and stairs.

◆ Sensory variation, noise and clutter

For example, lighting variation, occluding objects, background

sounds, and unclean surfaces are not uncommon.

People handle these issues daily. If you were at a friend’s

house for the first time and you were told to get a drink out

of the refrigerator, you would most likely have no difficulty

performing the task even though at some level everything

would be different from your previous experiences. In fact,

most cooks could walk into a well-stocked kitchen that

they’ve never seen before and cook a meal without assistance.

Although robots should not need to have this level of capa-

bility to be useful, a human’s great facility with such dramatic

variation has a very real impact on the types of environments

people inhabit. Even especially well-organized people live

within highly variable environments, and engineers will rarely

have the opportunity to tightly control these environments for

the benefit of the robot.

How can roboticists develop robots that robustly perform

useful tasks given these issues?

Approaches
Researchers are pursuing a variety of approaches to overcome

the current limitations of autonomous robot manipulation in

human environments. In this section, we divide these approach-

es into five categories (perception, learning, working with peo-

ple, platform design, and control), which we discuss using

examples drawn from the research presented at the workshop.

Perception

Robot manipulation in simulation and in controlled environ-

ments indicates that robots can perform well if they know the

state of the world with near certainty. Although robots in

human environments will almost always be working with

uncertainty due to their limited view of a changing world,

perceptual systems have the potential to reduce this uncer-

tainty and enable robust autonomous operation. As such, per-

ception is one of the most important challenges facing the

field. Within this section, we discuss distinctive aspects of

robot perception for manipulation with an emphasis on visual

and tactile sensing.

Active Perception and Task Relevant Features

Through action, robots can simplify perception. For example,

a robot can select postures in order to more easily view visual

features that are relevant to the current task. Similarly, a robot

can reach out into the world to physically sense its surround-

ings (see Figure 3).

In our work at the Massachusetts Institute of Technology

(MIT), our robots often induce visual motion to better per-

ceive the world. For instance, by rotating a rigidly grasped

tool, such as a screwdriver or pen, the robot Domo can use

monocular vision to look for fast moving convex regions in

order to robustly detect the tip of a tool and control it (see

Figure 4) [5]. This method performs well in the presence of

cluttered backgrounds and unrelated motion. For a wide vari-

ety of human tools, control of the tool’s tip is sufficient for its
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Figure 4. Using visual motion and shape cues, the robot
Domo can detect the tip of a tool-like object it is rigidly 
grasping. The white cross shows the kinematic prediction for
the tool tip, and the white circle shows the mean pixel error of
the prediction relative to hand-labeled tips (black cross). [5].

Figure 3. (a) MIT robots Obrero and (b) Domo use compliance
and force control to safely reach out into the world. Obrero
reaches in the general direction of an object and then finds
and grasps it haptically [8]. Domo initially reaches out toward a
shelf in order to confirm its location and find a posture for
placing objects. Once Domo has an object in hand, it reaches
for the shelf with this posture and uses force control and com-
pliance to let the object settle into place. [5].

(a) (b)



use. For example, the use of a screwdriver requires precise

control of the tool blade relative to a screw head, but depends

little on the details of the tool handle and shaft.

Encoding tasks in terms of task relevant features, such as

the tip of a tool or the contact surface of a hand, offers several

advantages. Tasks can be more easily generalized, since only

the task relevant features need to be mapped from one object

to another object, and irrelevant features can be ignored. Sim-

ilarly, behaviors can be designed to enhance the detection of

these features through postures or active perception. For our

research, we have encoded tasks such as pouring, insertion,

and brushing in terms of task relevant features that Domo

detects and then visually servos with respect to one another

(see Figure 5). Further research will be required to determine

how well these methods extend to other tasks and objects.

Vision

Vision is probably the most studied modality for machine per-

ception. Much of the research presented at the workshop

involved some form of machine vision. For example, research

from NASA/JSC with Robonaut (see Figure 6) and research

from AIST with HRP-2 (see Figure 7) use model-based

approaches to visual perception. Each robot has a small num-

ber of 3-D models for known objects that can be matched

and registered to objects viewed by the robot’s stereo camera

in order to enable the robots to perform tasks such as opening

a refrigerator or picking up a geological sample box with two

hands [3], [6]. So far, the ability of these vision systems to reli-

ably scale to large numbers of everyday manipulable objects

has not been demonstrated.

A. Saxena from Stanford presented very promising work on

visually detecting locations at which to grasp everyday objects

using a single monocular camera [7]. The researchers trained

the detector in simulation using rendered 3-D models of five

object types (book, cup, pencil, block and cocktail glass) on

which the researchers had marked locations called grasp points.

Using the resulting grasp point detector, a robot arm was able

to grasp and lift a variety of everyday objects outside of the

training set (see Figure 8). The algorithm was tested on scenes

that were fairly uncluttered and usually involved high-contrast

objects placed against a low contrast, white background. It is

unclear if this method will scale to large numbers of objects in

diverse, realistically cluttered scenes, but the results generated

significant interest among the workshop attendees.

This approach demonstrates the powerful potential for

learning task relevant features that map to actions, instead of

attempting to reconstruct a detailed model of the world with

which to plan actions. In particular, it shows that at least some

forms of grasping may be defined with respect to localized

features such as grasp points instead of complicated configura-

tions of 3-D contact points. This work also indicates that

learning that has taken place in simulation can sometimes be

transferred to robots operating in the real-world. If this holds

true for other domains, it could dramatically simplify the

development of autonomous manipulation capabilities for

robots in human environments.
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Figure 5. MIT CSAIL robot Domo works with a human to
place objects on a shelf [5].

Figure 6. Researchers from Brown and Vanderbilt have been
developing methods that enable Robonaut to learn to behave
autonomously from teleoperated examples. At the workshop,
they presented a method that discovers instances of success
and failure from teleoperated examples of Robonaut using a
power drill [11].

Figure 7. Work at AIST with the HRP-2 humanoid robot uses
3D models of objects (overlayed on these images) to perceive
the world. In the left image, the robot finds the refrigerator so
that it can open it to retrieve the can. In the right image, the
robot finds the can sitting inside the refrigerator [3].

(a) (b)



Tactile Sensing

Since robot manipulation fundamentally relies on contact

between the robot and the world, tactile sensing is an espe-

cially appropriate modality that has too often been neglected

in favor of vision based approaches. As blind people convinc-

ingly demonstrate, tactile sensing alone can support extremely

sophisticated manipulation. 

Unfortunately, many traditional tactile sensing technolo-

gies, such as force sensing resistors (FSRs), do not fit the

requirements of robot manipulation in human environments

due to a lack of sensitivity and dynamic range. Researchers are

seeking to develop new tactile sensors that take advantage of

advances in materials, microelectromechanical systems

(MEMS), and semiconductor technology [9]. Current sensors

rarely provide directional information and tend to perform

poorly when the incident angle of contact deviates significant-

ly from the direction that is normal to the sensing surface.

These are serious issues in human environments, since a robot

must use low force interactions to manually explore its sur-

roundings without unduly altering the state of the world or

causing damage, and since the robot will rarely be able to con-

trol the exact angle at which its tactile sensors make contact

with the world.

Researchers are addressing these challenges through novel

sensor designs. Recent work at MIT by E. Torres-Jara has

developed sensors with a protruding shape that allows them

to easily make contact with the world from many directions

in a similar way to the ridges of a human fingerprint or the

hairs on human skin (see Figure 9). By measuring the defor-

mation of the compliant dome, the sensors can estimate the

magnitude and the direction of applied forces with great

sensitivity. Conformation of the rubbery domes also distrib-

utes the force applied to the surface of an object, which

reduces the stress. Using these sensors and a behavior-based

algorithm, the humanoid robot Obrero has been able to tac-

tilely position its hand around low mass objects and then

grasp, lift and place them in different locations without using

an explicit object model [8].

Learning
Today’s top performing computer vision algorithms for

object detection and recognition rely on machine learning,

so it seems almost inevitable that learning will play an

important role in robot manipulation. Explicit model-

based control is still the dominant approach to manipula-

tion, and when the world’s state is known and consists of

rigid body motion, it’s hard to imagine something better.

Yet robots cannot expect to estimate the state of human

environments in such certain terms, and even motion plan-

ners need to have goal states and measures of success,

which could potentially be learned.

Even with dramatic advances in sensing technologies,

some relevant properties of the world are likely to remain

hidden, such as occluded surfaces or the distribution of

mass within an object. By learning from the natural statis-

tics of human environments, robots may be able to infer

unobservable properties of the world or select appropriate

actions that implicitly rely on these unobserved proper-

ties. For example, if a robot were asked to fetch a drink

for someone, it should be able to know that a drink is

more likely to be located in the kitchen than on the floor

of the bedroom.

Learning can also help address problems of knowledge

acquisition. Directly programming robots by writing code can

be tedious, error prone, and inaccessible to non-experts.

Through learning, robots may be able to reduce this burden

and continue to adapt once they’ve left the factory.
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Figure 8. Work presented by A. Saxena from Stanford uses
supervised learning to train a system that visually detects grasp
points on objects. (a)–(c) Resulting detections as red points.
(d)–(f) These grasp points enabled a robot arm to grasp many
everyday objects, including objects outside of the training set [7].

(a) (b) (c)

(d) (e) (f)

Figure 9. A compliant hand and tactile sensor used on the
Obrero platform at MIT. The tactile sensor is highly sensitive to
normal and shear forces, providing rich sensory feedback as
the robot grasps unmodelled objects [8].

Whether in a domestic setting or

the workplace, we would like

robots to physically alter the

world through contact.



Opportunities for Learning

At the workshop, researchers presented robots that learned

about grasping objects from autonomous exploration of the

world, from teleoperation, and from simulation. If robots

could learn to manipulate by autonomously exploring the

world, they could potentially be easier to use and more adapt-

able to new circumstances. S. Hart from University of Massa-

chusetts, Amherst, presented work on a developmental

method that enables a humanoid robot to autonomously learn

to reach for an object and grasp it [10]. Although the deep

level of autonomy that developmental systems seek to achieve

would be highly desirable, these types of learning systems are

still in their infancy. Learning from teleoperation is advanta-

geous since all of the relevant sensory input to the person, and

output from the person, can be captured. O. Jenkins from

Brown presented manifold learning methods for the

autonomous discovery of task success and failure from unla-

beled examples. This work used data captured while Robo-

naut was teleoperated to grasp a tool or use a drill (see Figure

6) [11]. K. Hsiao from MIT showed a method by which a

simulated humanoid robot could learn whole-body grasps

from examples that had been generated by the teleoperation of

a simulated robot (see Figure 10) [12]. As previously discussed,

research from Stanford showed that a real robot could learn to

grasp objects from simulated data [7].

Common Sense for Manipulation

To what extent can the problems of manipulation in human

environments be solved through knowledge? Large databases

containing examples of objects, material properties, tasks, and

other relevant information may allow much of the human world

to be known to robots in a straightforward way. This type of

approach could be a direct extension of research in which a

robot manipulates a few objects for which it has 3-D models and

associated task knowledge, or it could be coupled with offline

machine learning methods that have been trained on the data-

base. If robots could reliably work with some parts of the world

and avoid the parts of the world unknown to them, they might

be able to perform useful tasks for us. Given the standardization

that has occurred through mass production and the advent of

radio frequency identification (RFID) tags, this approach seems

plausible for some limited tasks. If robots could easily be given

additional knowledge and share it over the web, even uncom-

mon parts of the world might become accessible to them.

Working with People
By treating tasks that involve manipulation as a cooperative

process, people and robots can perform tasks that neither one

could perform independently. For at least the near term,

robots in human environments will be dependent on people.

As long as a robot’s usefulness outweighs the efforts required

to help it, full robot autonomy is unnecessary.

Semi-Autonomous Teleoperation

From results in teleoperation, we can infer that computers

with human-level intelligence could perform many useful

and impressive tasks with today’s robots. Unfortunately,

computers are unlikely to have this level of ability any time

soon, and even under human control most robots move

slowly, lack dependability in everyday scenarios, and require

great effort by the operator. By gradually incorporating

autonomy into teleoperated robots, researchers can increase

their usability and expand the areas to which they can be

applied. One can even imagine scenarios in which the brains

for semi-autonomous robots could be outsourced to people

in remote locations.

At the workshop, N. Sian from AIST in Japan presented

a teleoperated system that enables a human operator to

reliably command a very complex humanoid robot to per-

form a variety of challenging everyday tasks (see Figures 1

and 11) [3]. The system integrates various forms of low-

level autonomous motor control and visual perception, as
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Figure 10. K. Hsiao from MIT showed research on whole-body
grasping that enables a simulated robot to learn from teleop-
erated examples. After training, the simulated robot is able to
appropriately pick up objects it has not previously encountered
using whole-body grasps [12].

Figure 11. (a) By integrating autonomous components with
teleoperation, researchers at AIST have developed a system by
which people can reliably control the highly complex HRP-2
humanoid robot to perform sophisticated manipulation tasks
in human environments [3]. (b) Research by K. Hsiao and T.
Lozano-Perez at MIT uses virtual teleoperation to provide
examples of whole body grasps from which a simulated
humanoid robot can learn [12].

(a) (b)



well as higher-level behaviors. The higher-level behaviors

can be interrupted and corrected if the human operator

notices a problem. Similarly, H. Yanco’s group at UMass

Lowell is investigating improved interfaces to the Manus

ARM that incorporate autonomous components in order

to help a disabled user grasp an object more easily (see Fig-

ure 2) [4].

Human Interaction and Cooperation

Humans and robots can also work together while in the same

physical space. Human environments tend to be occupied by

humans, so robots have the opportunity to benefit from

human assistance. For example, the initial version of the com-

mercially successful Roomba relies on a person to occasionally

prepare the environment, rescue it when it is stuck, and direct

it to spots for cleaning and power. The robot and the person

effectively vacuum the floor as a team, with the person’s

involvement reduced to a few infrequent tasks that are beyond

the capabilities of the robot.

Researchers have looked at techniques for cooperative

manipulation that physically couple a robot and a human.

For example, humans and robots have carr ied objects

together, and robot arms have helped guide human actions

by resisting undesirable motions. Robots can also use social

cues and physical cues to make cooperative manipulation

more intuitive. Through eye contact, a vocal utterance, or a

simple gesture of the hand, a robot may indicate that it needs

help with some part of a task. In our work at MIT [5], we

have shown that a person can intuitively work with a robot

to place everyday objects on a shelf. In this work, the

humanoid robot, Domo, was able to cue a person to hand it

an object in a favorable way by reaching towards the person

with an open hand. In doing so, the person solved the grasp-

ing problem for the robot.

Platform Design
Careful design of the robot’s body can reduce the need for

perception and control, compensate for uncertainty, and

enhance sensing. Human environments have very different

requirements from industrial settings, and attendees of the

workshop agreed that the lack of suitable off-the-shelf robotic

platforms is a serious impediment to research.

Safety

Robots that work with people must be safe. Traditional indus-

trial manipulators are dangerous, so people are usually prohib-

ited from being in a robot’s workspace when it is in motion.

Injury commonly occurs through unexpected physical con-

tact, where forces are exerted through impact, pinching, and

crushing. Of these, impact forces are typically the most dan-

gerous, depending on the velocity, the mass and the compli-

ance of the manipulator [13].

Commercially available arms such as the Manus ARM, the

Katana arm from Neuronics, and the KUKA lightweight arm

(based on the DLR arm) are beginning to address these issues.

The Manus ARM incorporates several safety mechanisms,

including current limits for the motors and slip-couplings that

limit impact forces. The Katana arm is lightweight with low

speed and low power. The KUKA arm is lightweight with

force controlled joints that allow it to actively adjust its com-

pliance through closed-loop control using feedback from

torque sensors at the joints.

Researchers have also developed manipulators with pas-

sively compliant joints that incorporate elastic elements. For

example, Stanford has developed Distributed Macro-Mini

Actuation (DM2) specifically for human-friendly robots,

and many robots at MIT, including Domo and Obrero, have

used Series Elastic Actuators (SEAs) [13]. These actuation

methods have additional advantages, since their compliance

is not wholly dependent on closed-loop force control.

These manipulators still have compliance in the event of an

unexpected impact beyond the bandwidth of their closed-

loop force control.

Designing for Uncertainty

Traditionally, industrial robots have eschewed passive physical

compliance at the joints in favor of stiff, precise, and fast oper-

ation. This is a reasonable design tradeoff when the state of
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Figure 12. A compliant grasper developed by A. Dollar and R.

Howe at Harvard University leverages its adaptive physical

design to robustly grasp unknown objects [16].

Human environments have a

number of challenging

characteristics that will usually

be beyond the control of the

robot’s creator.



the world is known with near certainty. Within human envi-

ronments, compliance and force control are more advanta-

geous since they help the robot safely interact with people,

explore the environment, and cope with uncertainty.

A. Dollar and R. Howe from Harvard optimized several

parameters in the design of a robot hand so that it could better

grasp objects with uncertain physical properties (see Figure

12) [16]. The hand, driven by a single actuator, is made

entirely out of compliant urethane materials of varying stiff-

ness. It has embedded tactile and position sensors and is actu-

ated by a remote motor through tendons. The hand’s

compliance, combined with its optimized adaptability, allows

it to robustly form power grasps on a variety of objects in the

presence of large sensing uncertainties. Remarkably, the hand

is also robust to sustained impacts from a hammer.

Our humanoid robots developed at MIT use series elastic

actuators in all the joints of the arms and hands. They also

have compliant rubber skin on their fingers. This passive com-

pliance allows them to more safely explore unknown environ-

ments and adapt to geometric uncertainty. On our robot

Domo (see Figure 3), this compliance helps it to transfer

unknown objects between its hands and place them on a shelf.

When transferring an object between its hands, the grasped

object passively adjusts to the bimanual grasp. When placing

an object on a shelf, the compliance helps the object’s flat base

to stably align with the shelf surface [5]. On our robot

Obrero, compliance in the fingers (see Figure 8) enables the

robot to gently come into contact with objects without

knocking them over, and helps its hand to conform to

unknown objects [8].

On Human Form

Human environments tend to be well-matched to the human

body. Robots can sometimes simplify manipulation tasks by

taking advantage of these same characteristics. For example,

most everyday objects in human environments sit on top of flat

surfaces that can be comfortably viewed and reached by a

human. A robot can more easily perceive and manipulate these

objects if its sensors look down on the surfaces and its manipu-

lators easily reach the surfaces. Similarly, everyday hand-held

objects, such as tools, are designed to be grasped and manipu-

lated using a human hand. A gripper that has a similar range of

grasps will tend to be able to grasp everyday human objects. A

direct approach to taking advantage of these properties of

human environments is to create humanoid robots that emu-

lates the human form, but mobile manipulation platforms can

selectively emulate critical features such as a small footprint,

sensors placed high above the ground, an approximately hand-

sized gripper, and robot arms with approximately human size

and degrees of freedom (see Figure 13).

Control
Within perfectly modeled worlds, motion planning systems

perform extremely well. Once the uncertainties of dynamic

human environments are included, alternative methods for

control become important. For example, control schemes

must have real-time capabilities in order to reject distur-

bances from unexpected collisions and adapt to changes in

the environment, such as might be caused by a human col-

laborator. Many researchers are looking at ways to extend

planning methods so that they will perform well under

these circumstances, including O. Brock’s group at UMass

Amherst and researchers at the University of North Caroli-

na, Chapel Hill,  Carnegie Mellon University, the Universi-

ty of Illinois at Urbana-Champaign, and Stanford [1], [2],

[15]. Other researchers are addressing these issues with

robust closed-loop controllers that make use of rich sensory

feedback. For example, R. Platt and the Robonaut group at

NASA/JSC and R. Grupen’s group at UMass Amherst have

explored ways to learn and compose real-time, closed-loop

controllers in order to flexibly perform a var iety of

autonomous manipulation tasks in a robust manner [6],

[10]. At MIT we often use hand-coded behavior-based

controllers that specify tasks in terms of visual servoing and

other forms of feedback driven control [5].

Grand Challenges
At the end of the workshop, we held a discussion on the

topic of grand challenges for robot manipulation in

human environments. As a group, we arrived at three

challenges that encapsulate many of the important themes

of this research domain. The agreed upon challenges

were: cleaning and organizing a house, preparing and
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Figure 13. Researchers at UMass Amherst have developed a
variety of platforms for manipulation research with distinct
capabilities. These three platforms were used in work present-
ed at (a) and (b) the workshop from R. Grupen’s group and (c)
O. Brock’s group [10], [14], [15]. (a) Dexter is a nonmobile
humanoid robot. (b) uBot-4 is a compact, dynamically stable
robot with the ability to bimanually grasp some objects off of
the floor when teleoperated. (c) UMan is a mobile manipulator
with a single dexterous robot arm (WAM arm by Barrett Tech-
nology) positioned to access everyday objects in human envi-
ronments.

(a) (b) (c)

Perception is one of the most

important challenges facing

the field.



delivering an order at a burger joint, and working with a

person to cooperatively assemble a large structure [1]. 

Disordered House to an Ordered House 

(Reversing Entropy to Create Beauty)

A robot that can enter a home and clean up a messy room

must adapt to the large variability of our domestic settings,

understand the usual placement of everyday objects, and

be able to grasp, carry, and place everyday objects, includ-

ing clothing.

Preparing and Delivering an Order at a Burger Joint

Preparing and delivering an order at an unmodified burger

joint would require a robot to dexterously manipulate flexible

materials, work with tools designed for humans, and perform

a variety of small, but complex, assembly tasks. A mechanized

burger joint with specialized machinery might be more practi-

cal, but this challenge emphasizes manipulation capabilities

that would be of use to a broad set of applications, including

small scale manufacturing tasks and meal preparation (e.g., a

short-order cook or a domestic assistant).

Outdoor Party Preparation

Cooperatively assembling a large structure would require that

a human and robot cooperate in a very direct way with whole

body manipulations, fixturing, insertions, and lifting. One

specific example, would be preparing a backyard or park for

an outdoor event that involves setting up a tent, chairs and

tables. A group of people and robots might work together to

achieve this goal, and people could instruct the robots about

their specific desires (much like a furniture moving situation).

Smooth Paths to Progress
Even though some aspects of these challenges appear within

reach, nearly all of the participants agreed that it would be

premature for researchers to directly pursue them. In this spir-

it, we conclude with several plausible paths for incremental

progress towards these goals.

By Approach

We expect progress to be made along each of the approaches

we have discussed within this article. However, the problem of

robot manipulation in human environments necessitates the

integration of these approaches into functional systems that

can be validated in the real-world on tasks with clear measures

of success.

By Module, Platform, and Algorithm

We would expect research to result in de facto standards for

software modules, hardware platforms, and algorithms. We

already see this to some extent with face detectors, low-

level vision algorithms, and machine learning algorithms.

Since manipulation in human environments is a systems

level problem, shar ing components will be especially

important for progress so that researchers can build on one

another’s contributions, compare approaches, and generate

repeatable results.

From Semi-Autonomy to Full Autonomy

Another smooth path for progress is the gradual automa-

tion of manipulation tasks that currently require a human.

As illustrated within this article, robots that are teleoperat-

ed are excellent candidates for partial automation, and

many researchers are already following this path. In gener-

al, semi-autonomous, human-in-the-loop systems offer the

opportunity for robots to perform useful tasks in the near

term with a human present to take-over when the robot

gets into trouble.

From Simple to Complex Tasks

The Roomba could be considered the first successful

autonomous mobile manipulator for the home, since it

manipulates dirt on the floor. The Roomba partially auto-

mates a common household task. By narrowing the scope

of a task, useful robots could be developed more quickly in

order to drive progress and serve as a foundation for further

capabilities. Rather than push for highly complex tasks,

many researchers are focusing on simpler, core capabilities

such as grasping everyday objects, fetching and carrying

objects, placing objects, being handed objects by a person,

and handing objects to a person. These tasks can be further

constrained by limiting the types of objects the system

works with (e.g., hand sized cylindrical objects) and the

types of places in which it operates (e.g., accessible flat sur-

faces such as desks and tables). Over time, these constraints

could be progressively loosened (e.g., objects that work

with objects that require two hands, and robots that open

cabinets to access more flat surfaces).

Conclusion
Within this article, we have presented our perspective on the

challenges facing the field as informed by the workshop and

our own research. We have discussed potential paths to the

long-term vision of robots that work alongside us in our

homes and workplaces as useful, capable collaborators. Robot

manipulation in human environments is a young research area,

but one that we expect to grow rapidly in the coming years as

more researchers seek to create robots that actively help us in

our daily lives.
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