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Challenges for the evaluation of digital health solutions—A
call for innovative evidence generation approaches
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The field of digital health, and its meaning, has evolved rapidly over the last 20 years. For this article we followed the most recent
definition provided by FDA in 2020. Emerging solutions offers tremendous potential to positively transform the healthcare sector.
Despite the growing number of applications, however, the evolution of methodologies to perform timely, cost-effective and robust
evaluations have not kept pace. It remains an industry-wide challenge to provide credible evidence, therefore, hindering wider
adoption. Conventional methodologies, such as clinical trials, have seldom been applied and more pragmatic approaches are
needed. In response, several academic centers such as researchers from the Institute of Global Health Innovation at Imperial College
London have initiated a digital health clinical simulation test bed to explore new approaches for evidence gathering relevant to
solution type and maturity. The aim of this article is to: (1) Review current research approaches and discuss their limitations; (2)
Discuss challenges faced by different stakeholders in undertaking evaluations; and (3) Call for new approaches to facilitate the safe

and responsible growth of the digital health sector.
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INTRODUCTION

Digital health has evolved rapidly since the concept was first
introduced in 2000 by Seth Frank'? The FDA considers digital
health as a broad scope that includes categories such as mobile
health, health information technology, wearable devices, tele-
health and telemedicine, and personalized medicine®, a definition
we follow in this article. Indeed, the numbers of digital health
solutions are booming, for example, more than 300,000 health
applications exist with more than 200 added daily*. Digital
solutions can be grouped as follows, based on potential risk to
patients®: (1) Solutions that improve system efficiency but with no
measurable patient outcome benefit; (2) Mobile digital health, that
inform or deliver basic monitoring, and encourage behavior
change and self-management; (3) Clinical decision support (CDS),
and prediction models, that guide treatment, deliver active
monitoring, calculate and/or diagnose.

The evidence requirements of regulators are determined by a
product’s intended use claims, as such, a large proportion of
digital health solutions (e.g. administrative tools and wellness
apps) fall outside of their jurisdiction. Therefore, a huge challenge
for end users, such as patients and providers (e.g. healthcare
professionals, hospital administrators), is how to determine a new
solution’s credibility and compliance with standards. Furthermore,
end users have different thresholds for acceptance of innovation
and can be grouped into five archetypes: innovators, early
adopters, early majority, late majority, and laggards®. In addition,
aging adults, considered amongst the most digitally divided
demographic group’, present unique challenges and dedicated
efforts exist to develop strategies for implementation”'°.
Conversely, challenges exist for healthcare innovators to best
demonstrate solution impacts and to ensure compliance with
standards, these include: unclear end-user expectations; uncer-
tainty of evidence generation approaches; and, keeping up to date
with the evolving compliance landscapes.

This article discusses the challenges for providing timely and
robust evidence, to meet end-user expectations, in the context of

digital health solutions. Specifically, we consider how the cadence
of traditional research approaches are misaligned with the “fail
fast, fail often” mantra espoused by technology start-ups. In
addition, we introduce clinical simulation-based research as a
potential opportunity to bridge the evidence gap.

A RAPIDLY EVOLVING GUIDANCE AND REGULATORY
LANDSCAPE

Over the last 10 years a plethora of guidance has been developed
for digital health innovators. In Table 1, we highlighted 10 of the
key guidance (e.g, Continua Design Guidelines 2010, WHO
monitoring and evaluating digital health solutions 2016, NICE
evidence standards framework 2019; US FDA pre-certification
program—a working model 2019, and FDA Proposed Regulatory
Framework for modifications to Artificial intelligence/Machine
learning-based Software as a Medical Device 2019). We ordered
them by date first published and provided for each guidance a
brief summary, applicable areas within digital health, releasing
organization, and its main activities (Table 1). We observed that
development of such documents follows a pattern: initial
development by industry, optimization by non-government
organizations, and finally refinement by government agencies. In
addition, academic initiatives and institutions have produced
critical thought leadership, often acting as counterbalance to
industry proposals (Table 2; The digital health scorecard 2019). In
Table 2, we highlighted five academic recommendations relevant
to undertaking evidence generation studies for digital health
solutions.

Until recently regulators relied upon modifications to existing
medical device (software) regulations and innovators were
encouraged to conform to development standards, as shown in
Table 3, where we highlighted eight regulations and standards
relevant to digital health solutions (e.g., IEC Medical device
software, 1SO Health informatics—requirements for an electronic
health record architecture). However, the speed of development,
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Table 2.

Selected academic recommendations relevant to undertaking evidence generation studies for digital health solutions (not exhaustive).

Tool/framework Document descriptions

Applicable areas within digital health Date first
published

Quality in prognosis studies (QUIPS)'"

The Cochrane risk-of-bias tool for
randomized trials (RoB2)'%?

The risk of bias in nonrandomized
studies of interventions (ROBINS-I)'%3
participant selection, etc.)

PROBAST: A Tool to Assess the Risk of
Bias and Applicability of Prediction
Model Studies'®*

comparative studies.
The digital health scorecard?

healthcare systems).

6 factors to consider when evaluating validity and
bias in studies of prognostic factors: participation,
attrition, prognostic factor measurement,
confounding measurement and account, outcome
measurement, and analysis and reporting

Set of domains of bias to guide the evaluation
about features of a trial that are relevant to risk of
bias based on answers to the signaling questions

Tool to assess risk of bias in non-randomized
studies over 7 domains (e.g., missing data,

Tool to assess the risk of bias and applicability of
prediction model studies (20 questions). Informed
by a Delphi procedure involving 38 experts and
refined through piloting. It is not suitable for

Academic developed framework that proposes
validation should include three aspects: (1)
technical validation (e.g., how accurately does the
solution measure what it claims?), (2) clinical
validation (e.g., does the solution have any support
for improving condition-specific outcomes?), (3)
system validation (e.g., does the solution integrate
into patients’ lives, provider workflows, and

Prognosis models (incl., 2006

individualized predictive model)

Randomized studies (suitable for 2008 (updated

individually randomized, parallel- in 2011)
group trials)

Non-randomized studies 2016
Predictive models (incl., CDS 2019
algorithms)

All digital health solutions 2019

diversity of interventions, and potential risks has finally prompted
policy-makers to produce more targeted guidance on solution
classification and evidence requirements>''~'* (Tables 1 and 3).
For example, one initiative, the FDA Pre-certification Programm,
seeks to streamline the approval of Software as a Medical Device
(SAMD), and proposes to assess both development organization
and product capabilities. Notwithstanding, current guidance does
not go far enough to enable innovators and end-users to know
what evidence generation approaches are appropriate, and
practical, for all classes of digital health solutions throughout the
product lifecycle.

TRADITIONAL APPROACHES TO EVALUATION OF DIGITAL
HEALTH SOLUTIONS

The most commonly recognized evidence for healthcare inter-
ventions is the randomized controlled clinical trial (RCT)™>®, yet,
only a handful of products have been tested in this way as shown
by recent systematic review'” and our searching results in Table 4,
where we illustrated recent studies evaluating digital solutions
and their methods (including study designs, study length, sample
size, etc.). Indeed, a recent systematic review of publications
between 1995 and 2016 identified just 24 RCTs for the high-risk
CDS category'’. In our opinion, this lack of studies indicates that
these methods are no longer practicable, likely due to the speed
of digital product development and iterative upgrading. In Fig. 1,
we mapped existing approaches along two dimensions; strength
of evidence and study duration, which demonstrated the current
methodological gap to evidence needs and opportunity for more
innovative and agile approaches. In this section we highlight a few
of the more common methodologies, discuss strengths and
limitations, and provide examples of their application (Table 4).

Surveys and interviews

In the early stages of development innovators seek to establish
product usability, feasibility, and efficacy'®. Surveys and/or inter-
views are often employed, which are low-cost, efficient, scalable

npj Digital Medicine (2020) 110

tools to collect attitudes, user experience, and suitability insights.
Commonly used methods include usability testing, user-center
design, net promoter score survey (e.g. to rate likelihood to
recommend a product), online surveys, and log-file data analyses
(e.g. to evaluate how users interact with the digital solution)'.
Such approaches have been used to explore user views on the
usefulness of digital storytelling®®, to assess a web-based network
for MS patients?’, and to collect attitudes towards digital
treatment for depression®?. Despite being common, few efforts
are turned into peer-reviewed publications'®, likely because the
main purpose was to generate insights for internal use (e.g.
product development) or external customer communication (e.g.
case studies, presentations), and can be challenging to pass the
peer-review for such work due to its relatively lower evidence
strength'®23,

A key approach for digital solution development is usability
testing which has been widely utilized to examine whether
specified users can achieve intended use effectively and
efficiently?*2°. Typically, an intended user completes tasks
and is observed for where they encounter problems. This can
be exploratory, to identify new features or functionalities, or
comparative testing A vs. B2”-?8, Studies are conducted by UX
researchers, who synthesize results and translate to actions
(e.g. product improvements). Data collected can be qualita-
tive (e.g. observations of problems) and/or quantitative (e.g.
task time, task success rates). Evidence strength depends
upon study design, for example, task-based and controlled
studies that collect quantitative data and can be replicated in
other settings/sites, generate stronger evidence, whilst
surveys and self-reported behaviors provide weaker evidence,
as suggested by UX practitioners®®. Controversy exists
regarding the appropriate number of participants. Whilst
there is no “single correct number”, for formative testing 5
participants is common (“the magic number 5”), compared
with 20 participants for summative tests, which offer a tighter
confidence interval®.
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Is simulation-based research
an approach to bridge the gap?

Survey and interviews (incl.,
usability testing)

Increasing evidence level

Expert opinion / case example

Methodological gap exists for faster
‘ and high-quality evidence generation

Innovative & pragmatic approaches needed:
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Prospective RCT studies

Prospective observational
studies

Retrospective
observational studies

Fast-evidence
generation

Longer-time to
evidence generation

Fig. 1 Existing approaches for health digital solution evaluation, current methodological gap and emerging innovative pragmatic
approaches to fill such gap. Note, the position of each methodology is meant to be illustrative and reflecting general cases.

Prospective studies

Prospective RCTs are the most accepted method for evaluating
healthcare interventions®'. For end-users, not considered “early
adopters”, such studies are critical to justify adoption decisions.
The randomization unit can be individuals, groups (“clusters”), or
even specific solution components®2. Choice of the study designs
heavily depends on the digital solution and objectives of the
evaluation.

Individual-randomization trials (IRTs) are well-suited for digital
solutions targeting an individual user, such as patient-level
randomization (e.g. symptom self-monitoring*®) or clinician-level
randomization (e.g. digital pathology algorithms for patholo-
gists**). This is traditionally the most commonly used experi-
mental design in healthcare research (e.g., clinical trials for the
development of drugs and diagnostic tests)*®, however for digital
health solutions, we found few studies employed strict individual
randomized designs (Table 4; e.g., refs. **3%). One reason is that
individual randomization is not always possible or appropriate as
in the examples provided below.

Cluster-randomization trials (CRTs), by contrast, are better suited
for digital solutions supporting group efforts (e.g. solutions
supporting tumor board meetings®°), and this approach has been
increasingly adopted by public health researchers*®~*2, CRTs are
often used in situations when contamination may occur; for
example, where individuals in the same cluster have been
randomized to different intervention groups, or for logistic,
feasibility or ethical reasons®. Attractive features include:
increased administrative efficiency; decreased risk of experimental
contamination (e.g. where control group individuals adopt the
intervention)*’; and, enhancement of subject compliance®. In
addition, CRTs allow both direct and indirect effects of an
intervention to be evaluated—a particular advantage when both
effects are hypothesized to be important, e.g. in vaccine field
trials*®. Disadvantages include: reduced statistical efficiency
relative to IRTs*®; overmatching; and, subsampling bias*’“%,
Analysis commonly employs multi-level modeling**°.

Micro-randomization trials (MRTs) are helpful when researchers
want to determine empirically the efficacy of a specific
component (e.g., which component of an intervention should be
delivered, and whether it had the intended effect)?. MRT involves
randomly assigning an intervention option at each time point that
the component could be delivered (e.g., see examples in the ref. >’
on p. 5 and ref. *»>'2, and can be particularly powerful in the
early stages of product development®’. MRTs generate long-
itudinal data with repeated measures of participants’ behaviors,
context, and psychosocial factors, and can be analyzed by

Scripps Research Translational Institute

methods, such as multilevel models and generalized estimating
equation®'>3>4,

The most commonly used method for evaluating digital health
solutions, however, is the pre—post design, as demonstrated by a
previous systematic review'” and supported by our own searches
(Table 4). A standard approach of pre-post design involves: pre-
phase, which provides control data; “washout” period’* (i.e., with
no interventions implemented with a time gap up to several
months), to allow familiarization and to limit bias related to
implementation®?%; post-phase to collect data on solution
effectiveness. Existing studies are often undertaken at a single
site (vs. multi-site), which is typically more practical and affordable.
Typically, this design requires a longer duration, making it difficult
to evaluate continuous solution upgrades (i.e. new features and/or
bug fixes), which are often observed in digital health products. In
addition, it is not optimal for testing medium-term or longer-term
clinical outcomes, because it is difficult to determine independent
effects when patients may appear in both pre-phase and post-
phase. Data analysis generally employs methods, such as analysis
of variance (ANOVA) and analysis of covariance (ANCOVA) or non-
parametric tests (depending on the underlying distributions)*’.

Relatively few multi-site studies have been conducted'’ (we
also listed some examples in Table 4), nevertheless, a variety of
designs have been attempted in this context including:
pre-post>8, cross-sectional with non-equivalent control®®, cross-
sectional with internal control®®, and randomized controlled
trial®’. For multi-site RCTs, some sites are assigned as controls
and the rest as the experimental condition. For this approach,
control and experimental sites should be matched along key
characteristics (e.g., workflow, patient characteristics), which can
be difficult to achieve. The main advantage is reduction in study
duration. Disadvantages include: higher set-up efforts; increased
cost; and, challenges to identify matched sites. Various tests are
employed such as t-test, non-parametric tests, or other advanced
techniques (depending on the underlying distributions)®2.

Retrospective studies

Retrospective studies can be employed to analyze pre-existing
data, such as patient charts or electronic medical records. Types of
retrospective studies include case series, cohort, or case-control
studies. They are typically quicker, cheaper, and easier®® than
prospective studies because data are already collected, and are
commonly used to generate hypotheses for further investigation
by prospective studies. The disadvantages are, that they are
subject to biases and confounding factors, such as patient
information loss or distortion during data collection®, risk factors

npj Digital Medicine (2020) 110
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present but not captured, normal growth or maturation influence,
attrition bias (e.g. patients with unfavorable outcome(s) less likely
to attend follow-up)®*®°, and selection bias due to non-random
assignment of participants®®, Such biases threaten internal
validity, therefore, retrospective studies are considered (particu-
larly by the academic groups) inferior as compared to RCTs®>7°, It
remains as an open question whether this is still the case for
digital health solutions, particularly for the ones of lower-risk class.

To date, few publications have evaluated digital solutions with
retrospective data, likely due to limited use of digital solutions in
clinical practice, and challenges for data access (e.g. GDPR).
Nevertheless, one such study from India investigated concordance
between the treatment recommendations of an artificial intelli-
gence (Al) algorithm compared with actual tumor board
recommendations®” (Table 4). Strictly speaking this study was a
hybrid of retrospective (treatment recommendations from Tumor
Board 2014-2016) and prospective (treatment recommendations
from Al algorithm in 2016). A key limitation of the study was that
breast cancer treatment knowledge was not constant for the two
conditions, because of the evolving clinical practice standards.
Additional, prospective studies would be required to examine
impacts on clinical outcomes, efficiency, and mental fatigue of
clinicians.

Systematic reviews

Systematic reviews have a key role in evidence-based medicine
and the development of clinical guidelines®®7°. Reviews on a
specific solution can provide stronger evidence for its impacts, but
require a sufficient number of individual evaluation studies. A
possible limitation for such work in digital health is that included
studies would need to be matched to the same mechanism of
intervention, disease area, and measurable outcome.

Systematic reviews of prediction models are a new and evolving
area and are increasingly undertaken to systematically identify,
appraise, and summarize evidence on the performance of
prediction models”'~”3. Frameworks and tools exist to facilitate
this including: prediction model risk of bias assessment tool
(PROBAST), quality in prognosis studies (QUIPS), revised Cochrane
randomized comparative design (ROB), risk of bias in nonrando-
mized studies of interventions (ROBINS-I). Details provided in
Table 2.

Economic evaluation

Demonstration of positive economic benefits are critical for the
majority of end-users to justify solution adoption. In addition, such
data is important for other critical actors (e.g. Payers, Government
agencies, Professional Societies) to endorse the need for change.
The World Health Organization (WHO) guidelines provide a good
overview of options for economic evaluation (Table 4.8 in WHO
guideline'®) including: cost-effectiveness analysis, cost-benefit
analysis, cost-consequence analysis, cost-minimization analysis,
etc. However, for all of the aforementioned methods, tracking
usage and performance data of users compared to non-users, is
required.

The critical evidence gaps for digital health solutions

In general, approaches for evidence generation at early stages of
product development deliver weaker evidence. Although, such
efforts may be enough to support internal needs, and can
convince “early adopters”, they are insufficient to satisfy the
“majority” of a solution’s potential beneficiaries. These groups
require, and expect, more robust, traditional evidence approaches.
Currently, and in our opinion, there is a gap between quick, lower-
cost approaches applied at the early stages of product develop-
ment and higher-cost approaches needed to convince the
majority of stakeholders.

npj Digital Medicine (2020) 110

THE CHALLENGE OF THE TRADITIONAL APPROACH FOR
DIGITAL HEALTH INNOVATORS

It is our opinion that traditional methods to develop more robust
evidence are incongruent with the agile approach taken in
software development (e.g., mismatch between the length of RCTs
and the typical development and update cycle of software). As
such, traditional approaches present fundamental limitations for
researchers to create evidence for digital health solutions. In fact,
evaluation of digital health solutions has been identified as
requiring improvement, and has been cited as a major obstacle for
wider adoption’*7¢, The paradox at the heart of this problem is
that, “without evidence healthcare providers would not adopt a
solution; without solution adoption it is very difficult to generate
evidence to convince healthcare providers”.

Digital solution evaluation requires collective efforts from
multiple parties, such as health authorities, healthcare providers
(incl.,, academic medical centers), and manufacturers such as small
and medium-sized enterprises (SMEs), multinational corporation
(MNCs). Whilst they face shared difficulties with the current
approaches for evidence generation (e.g. significant time and
cost), they also have circumstance-specific challenges.

SMEs—Limited resources to undertake clinical studies

SMEs typically prioritize and allocate their research and develop-
ment budget to product development. Anecdotal evidence
suggests that close relationships between innovator and adopter
are a critical driver of initial adoption decisions. Wider implemen-
tation requires robust evidence of benefit, yet this is difficult to
prioritize given the many challenges for establishing new
ventures. In addition, well designed and executed studies require
skilled researchers, often via collaboration with academia, adding
further complexity. Moreover, it has been estimated that the
timescale for submitting a research proposal and receiving ethical
approval for a pilot or trial study can take as long as 3 years'®. As
demonstrated in a recent report'’, the biggest obstacle for
providing evidence of effectiveness reported by companies, is the
cost and timeframe for evaluation.

MNCs—Out of date evidence not an investment priority

Larger corporations have more resources to develop evidence but
are equally limited by time. For internal budget allocation, it can
be difficult to provide rationale for investments into expensive
and time-consuming clinical studies for early-stage solutions when
such products are constantly evolving. Given it typically takes 2-3
years to conduct a study, evidence published today may reflect a
product that has been updated and refined multiple times.
Furthermore, for many companies’ investments in sales and
manufacturing, for example, are more tangible with more
predictable return on investment than those in clinical studies.

The same challenges (as SMEs) exist around navigating the
complex infrastructure of the healthcare system, dealing with the
cultural resistance to digital solutions, and identifying appropriate
principle investigators for the evaluation studies. Despite the long-
existing collaborations between large health abd life science
companies and principal investigators in, for example clinical trials
for drug development, this group of researchers may not
necessarily be willing to conduct studies to evaluate digital
solutions, as they require different settings, capabilities and also
deliver different scientific output—benefits on the operational
level impacting cost and indirectly patient outcome versus a drug
that can improve patient outcome directly.

Academic institutions—focus on research output not widespread
adoption

A growing number of academic centers have created digital
health research programs to develop and evaluate digital health
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solutions. However, such research units generally favor traditional
research methodologies because of the increased likelihood of
high-impact publication. As such, the timeliness of studies is
largely immaterial, therefore, potentially valuable solutions may be
delayed and/or are never implemented at scale. Obtaining
sufficient research funding can also be a challenge.

EVOLVING PRAGMATIC APPROACHES FOR EVIDENCE
GENERATION

In our opinion, large differences exist between the evidence
required for initial adopters (e.g., surveys and interviews, case
studies), and that required for the majority (prospective RCT
studies). Other research areas, such as drug development, have
demonstrated that pragmatic approaches can be adopted to
control cost at early stages (pragmatic clinical trials, basket of
baskets, umbrella trials, etc.””~”®). The “gold standard” RCT remains
but for later-stage final assessment.

The concept of “simulation” is not new and is the methodo-
logical foundation for human behavior experimental research (e.g.
neuroscience and experimental psychology). The assumption is
that people behave similar to real-life if key components of the
scenarios are extracted and fidelity maintained. Various
approaches for simulation could be applied to evaluate digital
solutions, such as, computational, system, and clinical simulation.

Computational simulation for software evaluation involves two
steps: verification and validation®°. Verification checks if a system
was built according to specification, and validation checks that a
system meets user expectations. The most common application of
computational has been for verification. Typically, this involves
simulated outcomes based on synthesized or real cases, before
involving users/clinicians. Recent efforts have extended its use to
non-regulated and on-market products (e.g., Google Alexa;
Table 4). This approach is more applicable for products where
the outputs can be evaluated for individual users, and not for
clinical management tools where a group of users are targeted
(e.g. multidisciplinary tumor boards).

System simulation adopts a system engineering view and
methodology to model the effect of an intervention on a
healthcare system (e.g. multi-site hospital network) without
disrupting the real health care setting®'. It has gained some
traction (ASCO QCS Keynote topic by Joe Simone, literatures®*%3),
however, to date we are not aware of the use of system simulation
to evaluate a digital health solution, perhaps because of the
significant complexity to establish models that represent a
healthcare system.

Clinical simulation was traditionally developed and used in
training medical residents, and it was further developed as an
approach to test systems and digital solutions with representative
users doing representative tasks, in representative settings/
environments®. In our opinion, can be complementary to many
of the traditional approaches reviewed above that require the use
of a digital solution in real clinical practice, and could bridge the
evidence needs between those of “early adopters” and the
“majority”. Clinical simulation provides a good balance between
the strength of evidence (e.g., “near-live” clinical scenarios), whilst
remaining cost-effective and timely for fast version updates
(Fig. 1). Previous work demonstrated, the total cost for such a
simulation was as little as 2750 USD, including set-up, subject and
personnel cost®. A recent cost-effective analysis suggested that
introducing simulation into a product development lifecycle could
lead to cost savings of 37-79%%°. Other advantages include:
scalability'®, flexibility in design of studies (e.g. different scenarios,
various types of participants), feasibility in being implemented as
remote and/or distributed®, and ability to collect behavioral and/
or cognitive metrics. Sophisticated approaches and equipment
can be employed, such as eye-tracker analysis or measurement of
EEG, which would not be possible in real clinical practice.
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Furthermore, clinical simulation may also be helpful in facilitating
patient engagement and/or Patient and Public Involvement and
Engagement (PPIE), an initiative aiming to involving patients and/
or representatives from relevant public bodies in the research®.

Clinical simulation has been increasingly used in evaluating
digital health solutions, including five studies in Table 4, and a
further twenty studies from ITX-lab evaluating clinical information
systems®. For example, in one study®® primary care physicians
interacted with videoclips of professional patient actors providing
standardized responses to clinical scenarios and utilized a CDS
tool of clinical prediction rules via an EMR system. In another
recently published study®', cognitive load and performance of
physicians was evaluated for different conditions by randomly
assigning participants to baseline EHR (control) or enhanced EHR
(simulated environment with features such as automatic sorting
and decision support instructions). Moreover, a recent interview
study of 10+ companies reported that they found this approach
feasible for evidence generation for their own digital solution'®.

Several academic centers have established clinical simulation
test environments, including: The School of Health Information
Science (University of Victoria); The Department of Development
and Planning (Aalborg University); The IT Experimentarium (ITX)
lab (Danish Institute for Medical Simulation)®*; and, The Institute of
Global Health Innovation (IGHI) (Imperial Colleague London)®%.
Indeed, researchers from IGHI have established a simulation test
bed specifically to explore application to test digital health
solutions. Initial work evaluated the impact of a digital solution on
the conduction of cancer multidisciplinary team (MDT) meetings.
56 healthcare professionals (e.g. pulmonologist, oncologists,
radiologists, clinical nurse specialists, and thoracic surgeons),
who were regular participants at lung cancer tumor boards, were
recruited to take 10 simulated MDT sessions. High-fidelity mock
patient cases were developed by the study team and clinical
experts®>. Participants discussed up to 10 patient cases, using a
standard UK approach to conduct MDTs (paper handout and PACS
system) in the control condition, compared with the NAVIFY
Tumor Board solution. A manuscript detailing the learnings and
results from this pioneer work is under development.

Whilst clinical simulation offers opportunities to prospectively
test a digital solution quickly, safely and cost-effectively prior to
implementation, there are a few limitations in its use. First, high-
fidelity is a prerequisite for generating valid and effective
evidence. Therefore, researchers should take efforts to create
scenarios representing real clinical practice, recruit the most
representative end-users as participants, and provide comprehen-
sive trainings of the digital solutions to the participants before
their simulation sessions. Second, while the regulatory space
evolves fast, we think clinical simulation results itself alone
probably are not adequate for approval application from Health
authorities, particularly for higher-risk group of digital solutions
that would need to be approved as SaMD. Nevertheless, in these
cases, clinical simulations can help to provide initial insights for
product development, reduce safety risk for patients, and guide
the design of large-scale real clinical studies. Third, for digital
solutions that are already adopted in clinical practice, leveraging
real-word data (RWD) is probably more suitable. RWD studies
could be systematically employed to undertake near real-time
evaluation during pilot implementation and post-market monitor-
ing. Indeed, studies utilizing real-world data (RWD) have been
encouraged to support regulatory decision making (e.g. The 21st
Century Cures Act; Table 3); have been used for clinical evidence
generation (e.g. diagnostic and treatment patterns)®*°¢; and can
demonstrate solution utility (e.g. meta-data associated with
solution features and functionalities).

Finally, we believe clinical simulation can be employed in
combination with traditional study designs, e.g. individual-
randomization,  cluster-level randomization, and  micro-
randomization to examine different types of digital solutions.
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For example, clinical simulation-based study with micro-
randomization design can be a powerful and pragmatic approach
to evaluate the digital solutions with multiple components at early
stage of the product development.

CONCLUSION

Innovators face significant challenges to overcome the “no
evidence, no implementation—no implementation, no evidence”
paradox in digital health. We believe that innovative approaches,
such as simulation-based research, can enable the generation of
higher-quality, lower-cost, and more timely evidence. By con-
sidering such methods, end-users will encourage developers to
undertake research activities, rather than be intimidated by the
complexity, cost, and duration of traditional approaches.
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