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SUMMARY

Global changes including increases in temperature, atmospheric greenhouse gases, soil degradation
and competition for land and water resources, will have multiple impacts on rice production systems in
Africa. These changes will affect weed communities, and management approaches must be adapted
to take this into account. Higher temperatures and limited water availability will generally advantage
C4 over C3 plants (e.g. rice). Conversely, elevated carbon dioxide (CO2) levels will improve the
competitiveness of rice relative to C4 weeds, which comprise many of the problem weeds of rice.
Increased atmospheric CO2 levels may also improve tolerance of rice against parasitic weeds, while
prevalence of parasitic species may be amplified by soil degradation and more frequent droughts or
floods. Elevated CO2 levels tend to promote growth below-ground relative to above-ground,
particularly in perennial (C3) species. This may render mechanical control of weeds within a cropping
season less effective or even counterproductive. Increased CO2 levels, rainfall and temperature may
also reduce the effectiveness of chemical control, while the implementation of adaptation technologies,
such as water-saving irrigation regimes, will have negative consequences for rice–weed competition.
Rain-fed production systems are prevalent throughout Africa and these are likely to be most
vulnerable to direct effects of climate change (e.g. higher temperatures and changes in rainfall
patterns). Effective weed management strategies in these environments could encompass off-season
tillage, the use of well-adapted cultivars (i.e. those with drought and heat tolerance, high weed
competitiveness and parasitic weed resistance or tolerance) and rotations, intercropping or short,
off-season fallows with weed-suppressive legumes including those that suppress parasitic weeds. In
irrigated, non-flooded rice systems, weeds are expected to become more serious. Specifically, perennial
rhizomatous C3 weeds and species adapted to hydromorphic conditions are expected to increase in
prevalence. By implementing an integrated weed management strategy primarily targeted at weed
prevention, dependency on flood water, herbicides and mechanical control can be lessened. Off-season
deep tillage, stale seed bed techniques, use of clean seeds and irrigation water, competitive cultivars,
timely transplanting at optimum spacing and judicious fertilizer timings are suitable candidate
components for such a strategy. Integrated, novel approaches must be developed to assist farmers in
coping with the challenges of weed control in the future.
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INTRODUCTION

Rice is an increasingly important commodity in
Africa (Balasubramanian et al. 2007); in 2007, rice
production reached 23·5Mt (FAO 2009). Trends
show production is rapidly increasing and African
production now rivals that of Latin America (Meinke
et al. 2009a). Five main rice agro-ecosystems are dis-
tinguished in sub-Saharan Africa (SSA) based on
hydrology and topography: (1) rain-fed uplands and
hydromorphic slopes (0·39 of total area under rice),
(2) rain-fed lowlands in valley bottoms and flood-
plains (0·33), (3) irrigated lowlands (deltas and flood-
plains) and highlands (0·19), (4) deep-water basins
along major rivers and (5) mangrove-swamps in
lagoons and deltas (4 and 5 combined=0·09)
(Balasubramanian et al. 2007; FAO 2009).

A review of rice yield losses due to uncontrolled
weed growth reported losses in the range of 28–74% in
transplanted lowland rice, 28–89% in direct-seeded
lowland rice and 48–100% in upland ecosystems
(Rodenburg & Johnson 2009). Improving weed con-
trol in farmers’ fields was shown to increase rice yields
by 15–23%, depending on agro-ecosystem, and it is
estimated that weeds may account for annual rice
yield losses in SSA of at least 2.2 million tonnes
equating to US $1.45 billion (Rodenburg & Johnson
2009). Given that demand for food is projected to
rapidly outpace increases in supply (e.g. von Grebmer
et al. 2008), effective weed control is a priority in these
systems.

Important weeds of upland rice include the per-
ennials Imperata cylindrica, Cyperus rotundus and
Chromolaena odorata, the annuals Digitaria hori-
zontalis and Euphorbia heterophylla and the parasitic
weeds Striga hermonthica and Striga asiatica (Table 1).
In lowland rice, the perennial weeds Oryza long-
istaminata and Cyperus spp. and annual weeds
Echinochloa spp., Oryza barthii, Ischaemum rugosum,
Cyperus difformis, Cyperus iria, Fimbristylis littoralis
and Sphenoclea zeylanica cause serious losses.
Common weed management practices in rice-based
cropping systems include soil tillage, flooding, fallow
and crop rotations, clearance by fire, hand- or hoe-
weeding and herbicides; these practices are often used
in combination (Rodenburg & Johnson 2009).

Climate change is one of many risk factors affecting
rice production and weed management. For the
purpose of the present review, ‘climate change’ is
used in the broad sense, including direct and indirect
impacts of climate on the environment and on people.
Major global changes include further increases in
atmospheric greenhouse gases and likely changes in
temperatures (>0·2 °C/decade), soil degradation and
competing claims for land and water (IPCC 2007).
For Africa, climate trends suggest that variability in
rainfall will increase and monsoon regions may be-
come drier (Giannini et al. 2008), leading to a 5–8%

increase in drought-prone areas in the Sahel and
southern Africa by 2080 (IPCC 2007). Equatorial
zones of Africa may receive more intense rainfall
(Christensen et al. 2007). Spatial distribution of future
rainfall, however, remains highly uncertain (Giannini
et al. 2008), particularly for the Sahel for which there
are a number of conflicting projections (e.g. Cook &
Vizy 2006; Hoerling et al. 2006; Biasutti et al. 2008).

While many of the aforementioned changes began
decades ago, the rates of changes have recently
accelerated and impacts are increasingly apparent
(Rozenzweig et al. 2008). This adds urgency to the
required analyses of adaptation options for farmers
and for policy and adaptation measures to be intro-
duced (Meinke et al. 2009b). Changes in atmospheric
carbon dioxide (CO2), rainfall and temperature will
affect weed species’ distribution and prevalence within
weed and crop communities. Climate changes may
also necessitate adaptation of crop management
practices, which in turn affect weed growth and the
proliferation of certain species. Environmental con-
ditions will impact on effectiveness of weed manage-
ment operations such as chemical and mechanical
control. Obviously, the magnitude of these effects will
largely depend on the extent of local and regional
changes to environmental conditions.

The present paper discusses (1) the likely effects of
projected climate changes on the competitiveness and
distribution of major weeds of African rice ecosystems
and (2) the consequences of changing climates and
changing weed community compositions for weed
management in African rice production systems. The
objectives are to describe likely climate change effects
on weeds in African rice production systems and to
identify potentially effective coping strategies for the
resource-poor farmers in these systems.

CLIMATE CHANGE EFFECTS

Direct effects – weed competition, abundance
and distribution

Temperatures, atmospheric CO2 concentrations and
rainfall irregularities will increase (IPCC 2007), and
this will affect weed species in different ways, depend-
ing on their photosynthetic pathways and tolerance to
environmental stress. Under drought and high temp-
eratures, plants with the C4 carbon fixation pathway
have a competitive advantage over plants possessing
the more common C3 pathway (e.g. Yin & Struik
2008). This competitive advantage of C4 weeds
diminishes or even reverses under conditions of high
soil nitrogen or atmospheric CO2 concentrations (e.g.
Carter & Peterson 1983; Bazzaz & Carlson 1984).
Of the 56 weed species most cited in relevant peer-
reviewed literature (Rodenburg & Johnson 2009),
20 species (0·36 of total weed species) are C4 types
(Table 1). The C4-type weed species are most reported
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in upland rice ecosystems (0·52) and least in the
lowlands (0·23). For a C3 crop such as rice, elevated
CO2 levels may have positive effects on crop competi-
tiveness with C4 weeds (Patterson et al. 1999; Fuhrer
2003), and tolerance to Striga infection (Watling &
Press 2000). The latter may be caused by enhanced
rates of photosynthesis which have been shown to play
an important role in sustaining host tolerance against
Striga (Gurney et al. 2002; Rodenburg et al. 2008).
Yet empirical evidence also shows that higher CO2
levels stimulate biomass production of both C3 and
C4 grasses. C3 grass species have a greater increase
in tillering, whereas C4 grass species have a greater
increase in leaf area (Wand et al. 1999). Tillering and

leaf canopy development are important traits known
to affect interspecific competition (e.g. Johnson et al.
1998; Saito et al. 2010). Increased atmospheric CO2
levels are likely to be accompanied by higher tem-
peratures favouring C4 weeds over C3 crops (Fuhrer
2003). A similar shift in weed species composition
can also be expected under increased or prolonged
drought conditions (Bjorkman 1976). Although pre-
cise changes in future precipitation are unknown,
rainfall is likely to become more erratic with a higher
frequency in the occurrences of droughts and floods
(Giannini et al. 2008). Consequently, weeds adapted
to these conditions will gain a comparative advantage.
In the dry-land areas, besides drought tolerant C4

Table 1. Names and biology of important weed species in the three most prevalent rice production ecosystems
in Africa (upland, hydromorphic and lowland)

Upland Hydromorphic Lowland

Widely adapted species
Ageratum conyzoides A A. conyzoides A
Cynodon dactylon P;C4 C. dactylon P;C4

Commelina benghalensis A Commelina benghalensis A
Cyperus rotundus P;C4 C. rotundus P;C4

Digitaria horizontalis A;C4 D. horizontalis A;C4

Panicum laxum A Panicum laxum A Panicum laxum A
Fimbristylis littoralis A;C4 F. littoralis A;C4

Echinochloa colona A;C4 E. colona A;C4

Leersia hexandra P L. hexandra P
Eclipta prostrata A E. prostrata A
Cyperus esculentus P;C4 C. esculentus P;C4

Ecosystem-specific species
Mariscus cylindristachyus P Spilanthes uliginosa A Oryza barthii A
Trianthema portulacastrum A;C4 Rhamphicarpa fistulosa A/fhp Cyperus iria A;C4

Striga hermonthica A/ohp Bolboschoenus maritimus P
Striga asiatica A/ohp Ischaemum rugosum A
Amaranthus viridis A;C4 Ludwigia abyssinica A
Euphorbia hirta A;C4 Ammania prieureana A
Brachiaria lata A Heteranthera callifolia A
Chromolaena odorata P Ipomoea aquatica P
Calopogonium mucunoides P Echinochloa pyramidalis P;C4

Aspilia bussei A Cyperus halpan P
Pennisetum purpureum A;C4 Sacciolepis africana P
Boerhavia erecta P;C4 Acroceras amplectans A
Eleusine indica A;C4 Diplachne fusca P
Imperata cylindrica P;C4 Panicum repens P;C4

Tridax procumbens A Eleocharis spp. A/P
Euphorbia heterophylla A Cyperus difformis A
Paspalum scrobiculatum P;C4 Oryza longistaminata P
Dactyloctenium aegyptium A;C4 Echinochloa crus-pavonis A
Rottboellia cochinchinensis A;C4 Fimbristylis ferruginea P;C4

Pycreus macrostachyos A
Schoenoplectus senegalensis A
Ludwigia adscendens P
Sphenoclea zeylanica A
Rhynchospora corymbosa P

Adapted from: Rodenburg & Johnson (2009). Additional sources on C4 species: Downton (1975), Raghavendra &Das (1978),
Elmore & Paul (1983) and Sage et al. (1999).
A=annual, P=perennial, fhp=facultative hemi-parasitic, ohp=obligate hemi-parasitic, C4=C4 photosynthetic pathway.
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weeds, parasitic weeds well adapted to low rainfall
environments (e.g. S. hermonthica) or temporary
flooded conditions (e.g. Rhamphicarpa fistulosa) could
benefit from greater variability in rainfall (Rodenburg
et al. 2010). Striga spp. infestations are often associ-
ated with low soil fertility (Vogt et al. 1991; Kroschel
1998), and should climate extremes lead to greater soil
degradation (IPCC 2007) this might favour parasitic
weeds. Such a scenario increases the importance of
developing improved soil conservation and fertility
management. Selection of appropriate soil conserva-
tion and fertility measures requires knowledge of local
conditions and an understanding of the overall system
dynamics. For instance, zero-tillage as a component
of conservation agriculture, inappropriate fertilizer
applications or the lack of fertilization can all lead to
increased weed infestations, which in turn increase
herbicide use or reduce fertilizer use efficiencies (e.g.
Liebman & Davis 2000; Giller et al. 2009; Keating
et al. 2010).

Temperature changes will impact the geographic
distribution of weeds (Patterson et al. 1999), with
some species moving to higher latitudes (Patterson
1995) and altitudes (Parmesan 1996). For instance,
Witchweeds (Striga spp.) might extend their geo-
graphic range in this way (Mohamed et al. 2006).
Based on genetic understanding and ecological niche
modelling, Mohamed et al. (2007) suggest that the
Striga area might expand to moderate climate zones.
However, S. asiatica has been found to be relatively
insensitive to temperature (Patterson et al. 1982) and
distribution may be more affected by changes in the
range of the host crop rather than directly by tem-
perature (Cochrane & Press 1997). Phoenix & Press
(2005) argued that this could be true for parasitic
weeds in general. Recent progress in the development
of heat, cold or drought tolerant rice germplasm
increases the adaptive capacity of the crop to future
environmental stress (Wassmann et al. 2009). This
might enable rice to be grown in previously unfavour-
able conditions, which may cause a concomitant shift
in the range of parasitic weeds.

Indirect effects – crop management adaptations and
weed management effectiveness

Water is an increasingly scarce resource in many parts
of SSA (Seckler et al. 1999), and rice varieties and
cropping methods need to be adapted accordingly
(Ingram et al. 2008). For rain-fed rice, drought tol-
erance will be important not only to reduce losses due
to moisture stress but also to maintain or improve
the crop’s competitiveness against weeds (Asch et al.
2005). Elsewhere, systems to conserve irrigation water,
such as aerobic rice and alternate wetting and drying,
may be adopted but will have consequences for weed
abundance, and concomitant rice yield losses, due to
the extended periods when the soil will not be flooded

(Morita & Kabaki 2002; de Vries et al. 2010; Krupnik
et al., in press). Effective weed control technologies for
such production systems will be required. Flooding is
commonly the primary cultural means to suppress
weeds in irrigated rice and even a few millimetres of
water depth will prevent germination and emergence
of the majority of the weeds, such as annual sedges
(e.g. Akobundu 1987; Chauhan & Johnson 2009a). In
Indonesia, Haden et al. (2007) observed an increased
incidence of sedges due to reduced periods of flooding.
Effective weed control by flooding requires the soil to
remain flooded for prolonged periods throughout crop
establishment. Drainage or shallow flooding may
also encourage the emergence of grass weeds such as
Leptochloa chinensis and Echinochloa spp. (Chauhan
& Johnson 2008, 2009b). A shift to weed communities
adapted to hydromorphic conditions may include
species such as Acroceras amplectans, Echinochloa
spp., Leptochloa spp., Eleusine indica, Panicum repens,
Cyperus esculentus, Eleocharis spp., Bolboschoenus
maritimus, Ageratum conyzoides and Eclipta prostrata.
The need for hand weeding has been reported to
increase by 35% as a result of temporary rather than
permanent flooding (Latif et al. 2005). Where irri-
gation water is becoming scarcer, maintaining soil
flooding to suppress weeds is likely to be increasingly
difficult. In these circumstances, where farmers lack
alternative means for effective weed control, yield
losses are likely to rise (e.g. Barrett et al. 2004).

In rain-fed rice fields, a lack of rainfall in the early
part of the wet season may result in inadequate land
preparation or limited flooding of the soil in the early
stages of the crop. In turn, this will limit the oppor-
tunity to suppress weeds through early flooding and
early crop canopy closure. Such disruption is likely to
be most acute in the rain-fed lowlands or inland valley
systems, which is a major agro-ecosystem of Africa.

Effectiveness of weed management practices will
change according to the environmental conditions.
Unfavourable weather may increase the risk of herbi-
cides either causing crop damage or not being effective
(Patterson et al. 1999). Increased temperatures reduce
herbicide persistence in the soil and likewise the
‘windows’ for herbicide effectiveness (Bailey 2004). If
rainfall becomes more frequent and/or intense, ‘rain-
safe’ intervals for herbicides application may become
scarce and soil active herbicides may become less
effective (e.g. Kanampiu et al. 2003). Herbicide use is
expected to increase in the near future and with it
resistant weed ecotypes are increasingly likely to
emerge. Herbicide efficacy may also be affected by
raised CO2 levels, which have been shown to increase
the tolerance of weeds to herbicides (Ziska et al. 1999;
Ziska & Teasdale 2000). Changes in CO2 concen-
trations may alter transpiration, number of leaf
stomata or the thickness of the leaf and through that
affect the absorption or uptake of the pesticide (Ziska
2008). In C3 plants, Wong (1990) found increased

430 J. RODENBURG , H. MEINKE AND D. E. JOHNSON



concentrations of leaf starch under elevated
CO2 which in turn might reduce herbicide efficacy
(Patterson et al. 1999).

Greater CO2 concentrations may stimulate below-
ground growth relative to that of above-ground
growth (Ziska 2003). This will favour rhizome and
tuber growth of perennial weeds, in particular those
following the C3 photosynthetic pathway (Oechel &
Strain 1985), which may render their control more
difficult (Patterson 1995; Patterson et al. 1999). Where
tuber and rhizome growth is encouraged, increased
tillage could lead to a multiplication of vegetative
propagation material (Ziska 2008). This could mean
increasing problems with perennial lowland weeds like
O. longistaminata, Leersia hexandra, B. maritimus,
Sacciolepis africana and Cyperus halpan. Other
perennial weeds with difficult to control below-ground
structures such as I. cylindrica, Cynodon dactylon,
C. esculentus and C. rotundus that are found on up-
land and hydromorphic soils, are all of the C4 type.

OUTLOOK ON WEEDS AND THEIR
MANAGEMENT IN AFRICAN RICE

SYSTEMS

Rice is an inherently weak competitor with most
weeds (e.g. van Heemst 1985) and consequently, yield
losses due to weed competition can be high. Small-
holder rice farmers in Africa have a limited number
of options for preventing weed infestations and con-
comitant crop losses (Rodenburg & Johnson 2009).
Changing environmental conditions may result in
reduced efficiencies of existing weed control practices.
If so, this requires timely identification and charac-
terization of these emerging problems and the devel-
opment of acceptable solutions that need to be
implemented early to be most effective (Howden
et al. 2007).

While there are uncertainties about future climate
changes, it is likely that changes will have differential
effects on weed species and alter the competitive
balance between weed species and between weeds
and rice in all production systems. Species response
will be differentiated by the impact these changes have
on the photosynthesis and resource-acquisition rates.
Resulting changes in competitiveness and abundance
are likely to differ between parasitic and non-parasitic
weeds and between C3- and C4-type weeds. Further,
agro-ecosystem characteristics will determine which of
the environmental factors will have the dominant
effect on crop and weed growth.

Irrigated systems are likely to be impacted mainly
by indirect effects of climate change (e.g. reduced
availability of irrigation water and increased herbicide
tolerance in weeds). In these systems, herbicides are
the primary weed control intervention and some of
these are likely to become less effective due to CO2
increases and more frequently occurring weather

extremes. Moreover, the introduction of water-saving
production methods at certain locations will likely
cause severe increases in weed competition. In irri-
gated rice systems, temperature and rainfall variability
increases may have less impact on weeds than CO2
increases. Higher CO2 concentrations may make
rice and C3 weed species (particularly rhizotomous
perennials such as O. longistaminata, L. hexandra,
B. maritimus, S. africana and C. halpan) more com-
petitive against C4 weeds, whereas mechanical control
may become less effective due to the stimulating effect
on their below-ground growth. To address the antici-
pated changes, integrated weed management strat-
egies need to be developed that target the prevention
of weed invasion, recruitment and reproduction. Such
strategies may comprise combinations of optimal
fertilizer timing and doses (Liebman & Davis 2000),
off-season dry and deep tillage and land preparation
(e.g. Sharma 1997), the use of irrigation water and rice
seeds free of weed seeds (e.g. Dastgheib 1989; Rao &
Moody 1990) and stale seed bed techniques (e.g. Rao
et al. 2007), increased plant densities or improved
arrangements (Phuong et al. 2005), transplanting
of young seedlings (Becker & Johnson 1999a) and
the use of adapted weed competitive rice cultivars
(Haefele et al. 2004; Rodenburg et al. 2009). Effective
approaches that harness available synergies could
lessen dependency on irrigation water, chemical and
mechanical control practices.

Direct effects of climate change are likely to have
substantial effects on rain-fed rice areas as these
systems harbour most of the C4 and all of the parasitic
weed species. These systems are most vulnerable to
rainfall irregularities and soil degradation; in such
areas infestations with parasitic weeds S. asiatica,
S. hermonthica, S. aspera and R. fistulosa could in-
crease (Rodenburg et al. 2010). Furthermore, because
of the likely tolerance to drought and heat, C4 species
are likely to become more competitive in rain-fed rice.
These may include the perennial grasses I. cylindrica,
Paspalum scrobiculatum and C. dactylon, the annual
grasses Rottboellia cochinchinensis, D. horizontalis,
E. indica, Dactyloctenium aegyptium, Pennisetum pur-
pureum, Echinochloa colona and the sedges F. littor-
alis, C. rotundus and C. esculentus. These weeds could
be controlled through integrated approaches that
combine preventive and curative measures. Examples
of potential practices for these environments are the
combined use of organic and inorganic soil fertility
enhancers (e.g. Riches et al. 2005) with optimal ferti-
lizer timing and doses (Liebman & Davis 2000), off-
season dry and deep tillage (e.g. Chikoye et al. 2000),
the use of weed (including parasitic species) suppres-
sive intercrops, crop rotations and short fallows (e.g.
Becker & Johnson 1999b) and the use of well-adapted,
weed competitive and parasitic weed resistant/tolerant
rice cultivars (Rodenburg & Johnson 2009; Rodenburg
et al. 2010). Such cultivars should also possess
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drought and heat tolerance in order to successfully
outcompete or withstand adapted C4 and parasitic
weeds under such conditions.

CONCLUSIONS

The net effect of climate change on weeds in rice
production systems in Africa will be the result of a
complex set of interactions between local environ-
mental, ecological, biological and human factors such
as the production ecosystem, the composition of weed
communities, the management practices, atmospheric
CO2, ambient temperature and soil fertility and water
availability. Interaction effects between key environ-
mental factors (temperature, soil, water and CO2) on
different dominant weed species and communities
should be systematically investigated.

It is desirable that weed management strategies
are sufficiently diverse to lessen dependency on single
strategies of irrigation water, herbicides and mechan-
ical control, and approaches should target likely
problem species such as hemi-parasitic and perennial
rhizotomous weeds. Integrated approaches to prevent
species invasion, recruitment and reproduction, and
based on current knowledge of weed biology and
ecology, are potentially most effective and sustain-
able. Future strategies for climate change adaptation
for rice-based production systems, including novel
cropping systems or improved stress-tolerant culti-
vars, should simultaneously address possible impli-
cations for weed control.

Current understanding suggests that perennial
C3 species such as O. longistaminata, L. hexandra,
B. maritimus, S. africana andC. halpanwill increase in
irrigated rice production systems. Where water-saving
production methods are adopted, the hydromorphic
conditions will favour species such as A. amplectans,
E. colona, Echinochloa crus-pavonis, L. chinensis,
Leptochloa caerulescens, E. indica, P. repens, C.
esculentus, Eleocharis complanata, B. maritimus,
A. conyzoides and E. prostrata.

In rain-fed uplands parasitic weeds, such as
S. hermonthica and S. asiatica, and C4 grasses

I. cylindrica, P. scrobiculatum and C. dactylon,
R. cochinchinensis, D. horizontalis, E. indica,
D. aegyptium, P. purpureum and E. colona and the
C4 sedges F. littoralis, C. rotundus and C. esculentus
will become more dominant.

Timely efforts to fill the most important knowledge
gaps on environment, management and weed inter-
actions through strategic and applied research, and to
generate and disseminate effective and locally appli-
cable weed management strategies are required in
order to raise or even sustain future rice production
for the growing populations of Africa under changing
climates. Design and implementation of such strat-
egies requires interaction and collaboration between
key stakeholders including scientists, extension ser-
vices and farmers.

While atmospheric CO2 levels and temperatures
will increase, the spatial distribution of future rainfall
remains much more uncertain. With the uncertainty
surrounding water availability, combined with limited
understanding of the interactions between changing
environmental factors, the projections of future distri-
bution and importance of particular plant species are
conjecture and must be regularly reviewed. What is
more certain is that in a future characterized by global
changes (including climate change) resources such as
water, land and labour will become increasingly
scarce. Therefore, farmers will require management
strategies including a wide range of technology
options and decision support tools to tackle weeds
and maintain livelihoods.
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