
Challenges in Building Scalable Virtualized Datacenter
Management

Vijayaraghavan Soundararajan and Kinshuk Govil
VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94306

{ravi,kinshuk}@vmware.com

ABSTRACT
Virtualization drives higher resource utilization and makes
provisioning new systems very easy and cheap. This combination
has led to an ever-increasing number of virtual machines: the
largest data centers will likely have more than 100K in few years,
and many deployments will span multiple data centers. Virtual
machines are also getting increasingly more capable, consisting of
more vCPUs, more memory, and higher-bandwidth virtual I/O
devices with a variety of capabilities like bandwidth throttling and
traffic mirroring.
To reduce the work for IT administrators managing these
environments, VMware and other companies provide several
monitoring, automation, and policy-driven tools. These tools
require a lot of information about various aspects of each VM and
other objects in the system, such as physical hosts, storage
infrastructure, and networking. To support these tools and the
hundreds of simultaneous users who manage the environment, the
management software needs to provide secure access to the data
in real-time with some degree of consistency and backward-
compatibility, and very high availability under a variety of failures
and planned maintenance. Such software must satisfy a continuum
of designs: it must perform well at large-scale to accommodate the
largest datacenters, but it must also accommodate smaller
deployments by limiting its resource consumption and overhead
according to demand. The need for high-performance, robust
management tools that scale from a few hosts to cloud-scale poses
interesting challenges for the management software. This paper
presents some of the techniques we have employed to address
these challenges.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems

General Terms
Performance, Management, Measurement, Design.

Keywords
Virtual Machine management, cloud computing, datacenter
management, management workload

1. INTRODUCTION
One of the killer applications of virtualization is server
consolidation. Many datacenters have a policy of running a single
application per server, even if the application is mostly idle and
the resulting physical server utilization is only 5% on average.
Virtualization allows these low-utilization applications to run in
isolated containers on a single physical host. For example, rather
than employing 10 physical servers, each with a single application

running at an average utilization of 5%, a single physical server
can house the 10 applications in separate virtual machines and
utilize 50% of capacity of physical servers. In addition to better
efficiency, virtualization allows administrators to deploy VMs on
existing hardware rather than purchasing new hardware every
time new applications are deployed. The subsequent reduction in
hardware has a number of implications: 1) fewer servers to
manage, 2) fewer servers consuming power, and 3) less power
needed for cooling.
The benefits of virtualization do not stem from just reduced
hardware cost. Virtualization drastically simplifies the day-to-day
life of a datacenter administrator in a variety of other ways:
deploying virtual servers is vastly simpler than deploying physical
machines, involving essentially a file copy followed by a
customization script as opposed to racking up a physical server
and connecting the server to power grids, networks, and storage
endpoints. Keeping applications running during maintenance
windows is also simpler with virtualization: an administrator can
move virtual machines (VMs) while they are still running, fix the
hardware they had previously been running on, and then move the
VMs back, all without incurring application downtime. This can
be significantly more difficult in a physical environment.
Datacenter management software is responsible for these
deployment and migration tasks, and the combination of high-
performance virtualization and a feature-rich management layer
has enabled a number of end-users to employ a ‘virtualization-
first’ policy when it comes to provisioning new servers.
The design of the management layer is driven by the need to
create features that simplify day-to-day operations. As datacenters
grow in terms of number of servers and applications being
managed, the management layer must provide these services at
scale to meet increased demand. Virtualization further increases
the scale of computation. For example, recent hardware advances
have allowed more CPUs to be run on an individual socket [2][10]
and more VMs to run per core. Higher-density DIMMs allows
VMs with larger memory to run on a single machine. High-speed
IO and convergent IO fabrics have allowed larger numbers of IO-
intensive VMs to run on the same host. As a result, the datacenter
is comprised of many more computing elements than in the past.
For example, in 2003, the standard virtualization building block
was a 2-way SMP host. Each CPU would run between 4-8 VMs,
for a total of 8-16 VMs per host. With today’s technology, we see
32 cores per host, and with 8-10 VMs per core, this leads to 256-
320 VMs per host. With a standard 40-host rack, this leads to over
12,000 VMs in a rack vs. 640 VMs in a rack circa 2003.
Moreover, the memory allocated for a VM has increased
dramatically as well, from an average of around 256MB for server
workloads in 2003 to 4-8GB today. As for I/O, 10Gbps

95

networking is becoming the standard deployment per host (with
100Gbps on the horizon) and 8Gbps is seeing rapid adoption for
connection to Fibre Channel arrays.
As the above numbers suggest, datacenters will potentially have
hundreds of thousands of VMs in a compute farm, and the ability
to quickly display relevant information to an administrator is vital.
At these scales, the MTBF of components practically ensures that
there will be constant failures, and the ability to hone in on these
failures and signal them to the administrator is necessary. Finally,
as more and more mission-critical applications run in VMs, the
availability of this infrastructure becomes more important, so
availability of both the applications and the management
infrastructure is essential. As a concrete example, when customers
employ desktops using Virtual Desktop Infrastructure (VDI), if
the desktops are temporarily unavailable due to issues with the
management infrastructure (especially at 9am when employees
come in to work and access their desktops in a single burst), the
result is a significant loss of productivity across an entire
corporation.
In this paper, we discuss some of the challenges we encountered
in creating a scalable virtualized management infrastructure. We
discuss our mechanisms for supporting for large numbers of hosts,
VMs, and administrators while still providing fairness, security,
availability, robustness, and backward compatibility. Each of
these issues requires careful coordination between the hypervisor
layer and the management infrastructure.
The structure of this paper is as follows. In section 2, we will give
a brief overview of management infrastructure in virtualized
environments. In section 3, we discuss some of the challenges
faced in designing an infrastructure for use at both small and large
scales. In section 4, we describe our mechanisms for dealing with
these challenges. In section 5, we describe our techniques for
testing at scale. We give concluding remarks and areas for future
work in section 6.

2. VIRTUALIZATION MANAGEMENT
To understand the needs of virtualization management, it is
helpful to consider the administrative requirements of a non-
virtualized datacenter. On a day-to-day basis, a datacenter
administrator must perform a variety of tasks:
1. Deploy new systems. This involves attaching machines,

networks, and SANs to the infrastructure and making sure
new systems fit within the power budget for a rack or
datacenter.

2. Deploy new applications. An administrator may be asked to
create instances of applications (like databases or mail
servers) for end-users. This may involve deploying a new
system just for this application, or trying to find an existing
server to host the application.

3. Perform ongoing maintenance. In large datacenters,
machines are periodically powered-down for software or
firmware upgrades, or machines that have malfunctioned are
taken off-line. In addition, machines may need to be
reconfigured (with additional network cards or storage
adapters added to the host) or networks and storage may need
to be re-partitioned as more users come online.

4. Perform performance debugging. If an end-user complains
that her application is not performing well, a datacenter
administrator might need to examine the hardware and
software configuration of the host to determine why.

Figure 1: Contrasting Physical Datacenter Management and
Virtualized Datacenter Management. In a physical
environment, each host may run a single application, and the
management layer must monitor hosts, applications, storage, and
networking. In a virtualized environment, applications run inside
VMs, and the management layer must also monitor VMs and the
hypervisor. In VMware vSphere, the monitoring servers are called
vCenter servers, and the physical hosts run ESX.

5. Perform proactive system monitoring. Many datacenters
have a network operations center (NOC) for giving a high-
level view of the entire datacenter. The NOC can show at a
glance which hosts are up, which hosts have failed, and
which networks and storage devices are available or are
experiencing contention (and might cause outages). When
there is contention, an administrator may need to do manual
load balancing by moving applications among servers.

6. Perform backups and recovery. One of the most important
tasks in a datacenter is making sure that mission-critical data
is backed up, and that data can be recovered in case of an
outage.

The administrator of a virtualized datacenter has all of the above
tasks, but many of them are made easier with virtualization. For
example, deploying a virtual server in a virtualized environment is
nearly analogous to deploying a new application in a physical
infrastructure, and can be as simple as selecting an existing host,
cloning the VM files to that new host, and running a
customization script to modify IP addresses and host names, all
without the need for new cabling, additional hardware, or
consideration of whether there is sufficient power budget within a
rack. Figure 1 illustrates the similarities between the management
infrastructures for a physical datacenter versus a virtualized
datacenter. In general, there is a central server or group of servers
to monitor the status of each host and propagate information to
each of the system administrators. In addition, configuration and
statistics information is persisted in a database. Finally,
management systems provide an administrator user interface
(“Admin UI”) in order to allow system administrators to perform
tasks on the infrastructure, for example, reconfiguring or
rebooting a host. There are several commercially available tools
for monitoring and management of both physical and virtual
infrastructures[4][6][8][9][11][12][18].

2.1 Virtualization Operations
In addition to the standard operations in the datacenter,
administrators in virtualized environments perform a number of
operations that are unique to virtualization.

96

1. Live migration. Live migration [13] involves moving a VM
from one physical host to another while the VM is still
running. This is used when a given host requires maintenance
but its VMs must be kept running, and is also used for load
balancing, in which VMs are moved from heavily-loaded
physical servers to lightly-loaded servers to balance the
overall CPU/memory resource usage in the datacenter..

2. Snapshot operations. A Create Snapshot operation
checkpoints the state of a VM. This allows a user to perform
operations on the VM and then rollback to a known state in
case of failure. A common use for snapshots is when
installing the latest version of an application. The user
snaphots the VM and then installs the software. If the
installation succeeds, the snapshot can be removed and the
user simply continues from the current state. If the software
is buggy or crashes, however, the user can revert the
snapshot, restoring the VM to the checkpointed state without
the software installed. Committing a snapshot means writing
to disk all of changes that occurred since the VM
snapshot was taken, and removing the snapshot file.

3. Clone VM. A VM clone creates a replica of a powered-off
VM. One common use case occurs when a new employee
joins a company and the standard desktop VM image is
cloned and customized for the new employee.

These benefits are some of the reasons that virtualization has
become the backbone of various cloud-computing platforms
[1][17]. Because of the scale of cloud computing, there is the
additional complexity of a large number of administrators for the
physical/virtual servers and end-users for the virtualized
applications. Moreover, datacenters are becoming multi-tenant:
that is, multiple customers are sharing the same physical
infrastructure, so security and isolation between users is crucial.
To illustrate the importance of management operations in the
virtualized datacenter, Table 1 shows the frequency of the various
operations observed across a number of production virtualized
datacenters [16] as a function of the number of VMs. In addition
to the operations described earlier, the table includes one more
operation, Patch Install, which involves installing a patch on a
physical host (e.g., updating the hypervisor) or installing a patch
in a VM (e.g., updating the guest OS with the latest security
fixes). Virtualization is particularly valuable with patching, since
the state of a VM can be captured with a snapshot prior to
installing the patch, and if the patch causes the VM to crash, the
snapshot can be reverted.
As the table indicates, the valued-added services (provisioning,
live migration) are performed quite frequently, even in production
datacenters. Consider powering on VMs. It may be rare to power
on thousands of physical hosts in a short time window, but this
may be routine in a datacenter with a thousand VMs. In addition,
in many datacenters, these operations may be very bursty, with the
number of operations varying dramatically depending on the day.
For example, there may be more snapshots taken on a day when a
new software package is being tested, and far fewer on other days.
In addition, these bursts typically occur during short maintenance
windows within the datacenter, causing temporary large spikes in
management operations [16].

Table 1: Management Operations at Various Customer Sites.
Virtualization enables different types of operations from a
physical datacenter. These operations often scale with the size of
the inventory.

Operation Observed Frequency in Various
Datacenters

VM reconfigure 2x per day per VM

Automated Live Migration 6x per day per VM

VM powerOn 1x per day per VM

VM powerOff 1x per day per VM
VM reset 2x per day per VM

Patch Install 1x per day per VM

Create Snapshot 3% of VMs per day

Snapshot Revert 12% of VMs per day

Snapshot Commit 1% of VMs per day

VM Clone 2% of VMs per day

2.2 VMware vSphere Architecture
The management layer designed by VMware is known as vSphere
[18]. The base vSphere architecture is similar to Figure 1, and
includes a single monitoring (vCenter) server, a database for
archiving configuration and performance data, and agents running
on each physical (ESX) host. The vCenter server also supports an
API for third-party tools and UI clients to perform and monitor
operations on vSphere [21]. The vCenter server itself is a
collection of processes for monitoring the individual hosts and
maintaining a cache of state about those hosts. Any commands
from UI or third-party clients must first communicate with the
vCenter server. For example, if a user wishes to power on a VM,
the user selects the VM to be powered on, and the client sends the
command to the vCenter server. The vCenter server redirects the
command to the appropriate physical host where the VM is
located and tracks the progress of the task on the host. The agents
on the host perform the command and then send a task completion
along with updated configuration information to vCenter, which
archives the information in the database. In addition to performing
tasks, the vCenter server also functions as a monitoring server,
collecting statistics information from each host on a periodic
basis. If a client wishes to observe resource usage information
about hosts and VMs (for example, the CPU usage of a group of
VMs over the last hour), these requests go to the vCenter server,
which queries hosts and the database to retrieve the latest version
of the data and then sends this data back to the requesting client.
In addition to updating vCenter after task completions and
providing up-to-date utilization statistics, hosts also periodically
synchronize with the vCenter server to keep it up-to-date. For
example, if the amount of disk space available to a host changes
because additional VMs have been deployed on that host, then the
vCenter server is apprised of this change. These changes are then
persisted to the database. The vCenter server contains an in-
memory version of much of the data so that client requests can be
satisfied quickly.
In large environments, it is helpful to split the physical hosts
among several vCenter servers, as indicated in Figure 1. In
vSphere, the vCenter servers are connected via Linked Mode.
Linked mode serves two main purposes. First, it allows UI

97

aggregation and provides a single view for the entire
infrastructure: the user logs in to a single vCenter server, but
information for all vCenter servers is presented in the same view,
and queries for any of the servers are seamlessly redirected to the
appropriate server. Second, in Linked Mode, user roles are
synchronized across the vCenter monitoring servers using LDAP,
allowing an administrator to assign privileges once and have those
privileges applied across the entire environment.
There are interesting tradeoffs in the overall architecture of
whether management code should reside on several dedicated
server VMs or should be spread onto every single ESX host. We
believe we should leverage ESX hosts for stateless work that
reduces load on the network and the management servers, but that
the bulk of the state should reside on the management servers. In a
number of environments, there will be several management
servers, and they should coordinate with each other to provide a
seamless experience.

3. REQUIREMENTS AND CHALLENGES
AT SCALE
To build a management infrastructure like vSphere, we have to
consider a variety of use cases. Some deployments consist of just
a few hosts and hundreds of VMs, while others have thousands of
hosts and tens of thousands of VMs and geographically-
distributed administration. At cloud-scale, these numbers can
easily grow by another factor of ten. In addition, customers will
have different numbers of end-users, administrators, and third-
party clients interacting with the infrastructure. We tried to design
vSphere with the goal of being able to scale to all of these use
cases.
What are the requirements that result from such scale? From a
user’s perspective, there are several key requirements:
1. Performance/Fairness. The virtualization layer must provide

performance guarantees based on what the end-user has
purchased, while the management layer must provide
fairness guarantees between administrators. For example, the
management layer must make sure that if there are hundreds
of administrators, each is still able to submit tasks and
perform monitoring operations at the same time without
interfering with each other. Moreover, this fairness must be
enforced when resources are oversubscribed, regardless of
the number of end-users or administrators.

2. Security. There are many aspects to security in a virtualized
environment. The most straightforward consideration is
preventing users from interacting with each other’s VMs.
Another aspect is ensuring that a given VM does not
consume all of the resources on a host and therefore prevent
another VM from running. Moreover, the management layer
must close any covert channels: it must guarantee that a
given customer is unable to snoop on the network packets of
another customer, for example, or read the memory locations
of another customer’s VMs. Finally, the management layer
must provide roles and permissions in order to control what
operations can be done by end-users vs. what operations can
be done by administrators. With increasing numbers of users
and VMs, the number of combinations of users, objects, and
permissions grows drastically, and it is the responsibility of
the management infrastructure to keep the overheads small
while still providing sufficiently granular permissions.

3. Robustness. Different environments have radically different
deployment concerns. For example, environments that span
multiple geographies need to worry about low-bandwidth,
high-latency communication between a central monitoring
server and the hypervisors. The enterprise customer may
have large numbers of geographically-distributed hosts, each
with a lot of memory, may have hundreds of VMs per host,
and may require large-scale automation, while a small-to-
medium business (SMB) customer may only have a few
hosts, and may perform all tasks manually using a UI. The
overhead of virtualization management in each case should
scale with the number of managed entities, rather than be a
fixed cost per host, and the management tools should cater to
both types of customers.

4. Availability. For the enterprise datacenter running mission-
critical applications, the management layer itself may qualify
as a mission-critical application, and therefore must be
highly-available. As environment sizes grow, failures are
guaranteed to happen with some regularity, and must be
properly handled. For deployments with remote sites, the
central administrators must rely on an always-available
management layer, since the physical hosts are not easily
accessible.

5. Backward Compatibility. As a datacenter or group of
datacenters becomes larger, environments will be upgraded
on a rolling basis, and the management layer must be capable
of dealing with such heterogeneity.

For software maintainability purposes, it is important that the
VMware vSphere software conform somewhat to a ‘one-size-fits-
all’ design schema. Specifically, a single platform must be
capable of supporting customers of all shapes and sizes, rather
than having custom software for each use case.

4. APPROACHES TO ISSUES OF SCALE
In this section, we discuss how vSphere tackles some of the issues
of scale presented in the previous section.

4.1 Performance/Fairness
With a large number of users and workloads, the system needs to
ensure that each workload is getting its proper share of resources.
The ESX kernel ensures that different VMs running on the same
host get the share of resources that they are entitled to by time
slicing CPU, chaining memory allocations, and throttling I/O
bandwidth. Distributed Resource Scheduling (DRS) [19], in
coordination with the ESX-level schedulers, ensures that VMs
across a group of ESX hosts are getting the appropriate share of
resources by adjust host-level entitlements and live-migrating
VMs.
Besides VM resource-consumption fairness, we also need to
provide fairness for management operations, because management
operations can also be resource-intensive and consume shared
resources. For example, unchecked numbers of concurrent live
migrations could overwhelm the network while transferring
memory between hosts. In addition, unchecked storage live
migration (Storage VMotion) [23] and clone operations could
overwhelm the storage subsystem. Finally, an administrator may
continuously keep issuing VM power on/off operations faster than
the time it takes to power on/off a VM.
We have built multiple mechanisms to limit the impact of such
scenarios. For live migration and storage VMotion, we have
configurable limits on how many simultaneous instances of these

98

operations to allow per host, per network, and per storage
endpoint. The defaults are chosen based on experimentation, but
this is not ideal because the best values really depend on the
hardware capabilities and dynamic load. In the future, we plan to
monitor hardware capability and load to decide how many such
operations to allow simultaneously.
To prevent one user from continuously issuing more operations
and adding significant latency for other users, we have
implemented a simple mechanism where the queue of waiting
operations is grouped by user/session, and we have policies to
make sure each user/session gets a turn. To allow load balancing
of requests and to avoid starvation of client calls to the server, the
vCenter server contains multiple thread pools for different types
of requests. Client data-retrieval requests, requests for
synchronizing data between hosts and the vCenter server, and
client task requests are served from different pools. Each
incoming request to the vCenter server contains a client identifier
so that the server can load balance requests among clients. These
policies currently do not treat all users and extensions the same,
but we plan to have a better prioritization in the future.

4.2 Security
As scale increases, the size of the attack surface increases, which
makes it harder to administer and reason about the security policy.
We use several techniques to reduce this complexity. The ESX
hypervisor is responsible for isolating VMs from one another and
making sure they don’t access each other’s state. For
communication among VMs within and across hosts, products
like vShield Zones [24] provide firewall, NAT, and intrusion
detection/prevention capabilities. For dealing with administrator
and end-user access throughout the infrastructure, vSphere
provides a comprehensive permissions model. Permissions are
defined as a 3-tuple: user, action, object (user A is allowed to
perform action B on object C).
To simplify the administration of the entire environment, we
reduce the number of tuples by allowing grouping in all three
dimensions (users, actions, and objects). For example,
permissions can be assigned according to groups defined by the
underlying user-management/authentication mechanisms (e.g.,
Active Directory or LDAP), so that all users in a particular
/etc/group or Windows group can be given the same permissions.
Actions are grouped into roles. The system comes with
predefined roles that contain actions typically performed by users
with that role/job. For example, the default VM user role includes
power-on, power-off, reset, and suspend commands, but does not
include ESX host configuration commands. Users can customize
these roles, and these settings are replicated to all vCenter servers
grouped together in linked mode to reduce complexity even
further in distributed or multiple site environments. Objects are
grouped into hierarchical folders, similar to a filesystem directory
structure. Permissions assigned at a folder level are propagated to
all descendants of the folder unless overridden at a lower level.
This model works well in most cases, but as we scale bigger and
encounter more diverse organizations, we are investigating
providing grouping label/tag-based and query/expression-based
grouping of objects in the future.

4.3 Robustness
4.3.1 Network Topology
The issues of scale do apply solely within a datacenter. For
example, in remote-office/branch office (ROBO) scenarios, a

store may have a large number of branches geographically
distributed across a continent or around the world. Each store has
some physical hosts running VMs, and management is often
centralized at the main headquarters. The stores are connected to
the centralized manager over WAN links. As a result, the latencies
for management operations can be longer than for a standard
datacenter deployment, and depending on the loss characteristics
of the connection, the centralized manager may be disconnected
from the remote hosts at various times. Moreover, the bandwidth
will be much less than in datacenter deployments. Finally,
administrators themselves typically communicate with the
centralized manager over WAN links, and slow access provides a
poor user experience.
The limited bandwidth available between the hosts and central
manager suggests that data transmission must be minimized. The
primary method of dealing with the high-latency, low-bandwidth
links between the central management server and the remote
offices is to limit the amount of data to be transferred and also
allow disconnected operation. In vSphere, we use compression to
limit the data communicated between the ESX hosts and the
vCenter server. This data compression applies to all data:
configuration changes, task updates, and statistics traffic.
Moreover, for communication between clients and the vCenter
server, we have APIs for clients to subscribe to specific fine-
grained changes on a per-object basis (like VMs or hosts),
allowing clients to receive changes rather than constantly
retrieving the entire configuration data for an object on any action.
Another important consideration with poor connectivity is that the
remote hosts should operate whether or not they are connected to
the centralized manager. This means that VMs should continue to
run whether or not the ESX host is connected to the centralized
manager, and it also means that an administrator be able to make
changes to a host even if that host is not connected to the
centralized manager. In vSphere, VMs will continue to run
whether or not the ESX host is connected to a vCenter server. In
addition, we have designed our APIs such that the administrator
UI can connect to a vCenter server or connect directly to an ESX
host. If an ESX host gets disconnected from its vCenter server, the
administrator can still manage the host in the short term by
connecting to it directly. Any changes that occur during the
disconnection phase are automatically merged to the vCenter
server when connectivity is restored.

4.3.2 APIs
Another issue of robustness concerns our APIs. The management
API needs to be simple enough that administrators can write
scripts to monitor or perform tasks, while rich enough to allow
third-party developers to create customized large-scale monitoring
tools. Moreover, the underlying primitives must provide enough
expressiveness that higher-level software can perform well at
scale. For example, consider a query to request configuration data
for all VMs. The result set may include metadata describing the
object and specific attribute requested, and may repeat this data
for each object. While this script may work well for small
environments 10 VMs, it may perform very poorly or cause undue
load on the vCenter server when applied to 1000 VMs because of
the overhead of processing the metadata. As mentioned earlier, to
address this challenge, our API allows users to specify which
objects and which data to retrieve at a fine granularity. A standard
method to achieve scalability is to use this API to create multiple
clients that monitor disjoint sections of the environment and send
requests to the vCenter server separately. For ease of use, we also

99

provide scripting toolkits for high-level languages like Perl and
PowerShell [21]. These toolkits are targeted for simple scripting
by administrators. These toolkits are layered upon a web services
API that allows low-level access to every object in the
environment: the user has the option to use this web services API
to generate client-side stubs in whatever language they wish (e.g.,
Java, Ruby, or Python). The impedance match between the toolkit
and the API can be challenging. For example, a toolkit may
retrieve metadata for objects on each invocation because each
invocation is assumed to be stateless, while a program written
using APIs may optimize network bandwidth by explicitly
caching such metadata. The proper choice of toolkit vs. direct API
programming depends on administrator needs and which
resources are most constrained: for a WAN environment, perhaps
network bandwidth is more expensive and direct API
programming is necessary, while a datacenter may have a lot of
network bandwidth and may find a toolkit suitable.

4.4 Availability
Even with the highest-quality components with large MTBFs,
when operating in a large environment with many instances of the
components, failures happen frequently [3][5][14]. We need to
design the management software assuming that failures will
happen and limit the impact of failures. The typical ways of doing
this are either to have redundant components when the cost is
acceptable, or restart failed components as fast as possible.
For virtual machines, VMware Fault Tolerance [15] keeps a
shadow VM for every protected VM, running in lock step with the
primary. It requires high-quality network connection between the
two. If that cost is too high, customers can choose to run VMware
High Availability [20] to restart VMs quickly.
Besides building these availability features for VMs, we also need
to limit the impact of faults that affect the management software,
because customers rely on it during critical times, such as in the
morning when people arrive at work and need to power on virtual
machines for their desktop. For a large VDI customer with, say,
10K employees, every minute the management software is
unavailable during office arrival time means (1 minute * 10K
employees =) 166 hours of lost productivity.
Currently, we address this problem in two ways: 1) partition the
environment into multiple vCenter monitoring servers that are
linked together but fail independently (Linked Mode), and 2) rely
on a hot standby to quickly restart the affected vCenter monitoring
application. We keep a passive system booted up into the OS
ready and synchronized with updates from the primary active
server. As soon as a failure is detected, the standby server will
start up the vCenter monitoring application and connect to the
vCenter monitoring database. We have optimized the vCenter
monitoring server application startup process so that the newly-
started application can be ready in a few minutes even when
managing up to 10K VMs. In the future, we plan to further
optimize this down to less than a minute, and also explore
active/active clustering.

4.5 Backward Compatibility
Designing for scalability is challenging by itself, but is even more
difficult when taking backward compatibility into account. The
vSphere management layer deals with two very different types of
backward compatibility issues, both of which are affected by large
scale: managing multiple versions of the ESX hypervisor and
serving earlier versions of the vSphere management API. In
typical datacenters, hardware is upgraded during periodic refresh

cycles, rather than all at once. With larger and larger
environments, the number of disparate versions of the hypervisor
can increase, and the management layer must be capable
managing these hosts properly. Moreover, interoperability
between hosts is important because some VMs may be mission-
critical and therefore must be live-migrated from a host-to-be-
upgraded to another host.
The vSphere management layer provides support for backward
compatibility in two ways. First, the API for communication
between the vCenter server and each host is versioned—this
allows the vCenter server to determine the capabilities of each
host. Second, when vCenter first connects to a given ESX host,
vCenter uploads a versioned management agent onto that host. All
communication between vCenter and a host occurs via this agent.
Each combination of vCenter server and ESX host has a version
of this agent, and when a host is upgraded, vCenter automatically
uploads the proper version of this agent to the host.
Sometimes, design for scalability requires coordination between
the vCenter server and ESX hosts. This is easy enough to do with
new ESX versions, but factoring in older hosts makes this quite
challenging. For example, one scalability issue is network traffic
for propagating statistics and configuration updates between ESX
hosts and the vCenter server. At small scales, this traffic is
negligible compared to the available bandwidth, but at very large
scales, this traffic can ultimately overwhelm the network,
especially when links are slow or have extremely limited
bandwidth. To combat this issue, we introduced data compression
in all messages sent from the ESX host to the vCenter server. In
order to retrofit this to older hosts, we needed to download a new
agent onto the ESX host and choose the proper layer in the stack
at which the compression could be performed (in this case, the
SSL layer), since older versions of the host are not aware of the
compression capabilities.
The vSphere management layer provides a rich API for
developing monitoring, control, and automation software. This
API has been around for several years and we guarantee backward
compatibility of this API. Many companies have built products
using this API. Some aspects of the API make it hard to remove
scalability bottlenecks in the system, because the API provides a
level of consistency across large set of objects. In some cases,
even though the API documentation does not provide such
guarantees, the existing implementation provides them, and
several third-party products rely on them. Changing even these
would mean that those higher-level products would break and
result in a poor experience for the end user. In many cases we
have been able to address the API compatibility challenges by
separating the API servicing code from the core of the vCenter
code. In some cases we have introduced alternative (more
efficient) interfaces and asked higher-level software developers to
switch to it; however, that is a much slower process, since third
party developers have their own installed base and backward
compatibility issues.

5. SCALABILITY TESTING
One of the biggest challenges in the design of a management
system is testing at scale. Testing requires generating a
representative management load on a representative environment
and determining how various attributes scale. As the number of
VMs to be managed grows larger and larger, it becomes infeasible
to create complete setups of such sizes. Instead, fast and accurate
simulation and modeling is crucial.

100

A large virtualized environment consists of several vCenter
servers in linked mode, more than hundred administrators,
thousands of hosts and tens of thousands of VMs. To get the best
accuracy, we simulate all the interactions between hosts/VMs and
the management servers, but we do not modify the management
server code itself. We have developed a simulated ESX host
which can simulate VMs as well, but is much more lightweight
than an actual host. In order to keep the simulation highly accurate
and to reduce the maintenance cost, the simulated host runs
mostly unmodified management agent software that would
normally run on real ESX hosts, but we stub out the bottom layer
that interacts with the ESX kernel and VMs. Currently, a typical
physical host can run more than 30 simulated hosts and 1000
simulated VMs. These simulated hosts and VMs support the most
common virtualization management operations described in
section 2, and we model typical latencies of these operations by
delaying the responses.
In order to simulate administrator operations, we have a
benchmark suite which uses our APIs to send management
commands (e.g., power on VM, VMotion, snapshot VM) to the
vCenter server. The breakdown and frequency of commands is
determined by profiling customer data. We typically run
workloads that are at least 2x or 3x the worst customer loads we
have seen in practice, in order to guarantee the reliability of
vSphere. We measure the throughput and latency of commands
and assess how the system behaves as we vary the number of
VMs, hosts, administrators, and monitoring tools that access the
APIs. For each experiment, we also measure CPU, memory, and
I/O consumption of the vCenter servers and the databases to give
sizing guidance to users. That data combined with profiling tools
also helps us find the next code path we need to optimize.
In order to simulate various deployment strategies, we also utilize
network simulation to inject latencies between the vCenter server
and the simulated hosts. To simulate the remote branch office
with poor WAN connectivity, we insert a router VM between the
vCenter server and the ESX hosts and vary the latencies and error
rates of the packets between vCenter and the hosts. We then
perform our load tests to determine the impact on throughput and
latency of the vCenter server.
In the future we will have to simulate bigger environments, so we
are investigating ways of reducing the resource consumption of
host simulator even further while still maintaining the accuracy.
One approach we are considering is to leverage the homogeneity
of VMs in the simulation and share the VM specific state across
several VMs.

6. CONCLUSIONS AND FUTURE WORK
Virtualization increases resource utilization and takes advantage
of emerging hardware trends in multi-core CPUs, high-speed IO
devices, and enhanced memory systems. To best take advantage
of these features, the virtualization management infrastructure
must be scalable at all levels, secure, low-overhead, and
extensible. We implement a highly-concurrent management layer
with fine-grained synchronization to enable scale-up with more
CPU and memory resources on a given management node. We
allow federation among management instances to provide scale-
out support. Typically, scaling work involves fixing locking
bottlenecks and improving inefficient code. While there are a
number of interesting challenges there and we have come up with
novel solutions to them, this paper focuses on the other work we
have done in order to scale the system.

In addition to increases in managed hosts and VMs, increased
scale also means there are more users interacting with the system,
so the system has to provide fairness for all limited and shared
resources in a way that does not impact overall throughput and
latency of operations. The system also needs to provide secure
access and ease the manageability burden of implementing the
desired security policies. APIs also need to be properly designed
for ease of use and efficient data management at scale.
Management software needs to be designed for a bigger variety of
network topologies and has to gracefully adapt to connectivity
failures. Faults are not exceptions but rather normal behavior for
large systems, so we have to contain the impact of faults and
recover quickly. Improving the system in all these facets becomes
even more challenging due to backward compatibility constraints
inherent in large systems with a big ecosystem utilizing the rich
APIs.
Scale will keep getting bigger for the foreseeable future because
users are getting more comfortable with virtualization and are
moving all server applications/workloads to virtual environments.
Also, users are shifting desktop computing to virtual machines in
backend servers and relying on thin terminals to access them.
Finally, there is a shift towards cloud computing, and this means
the cloud service providers will be supporting very large
environments that support the computing needs of several
companies. We need the management software to scale to match
these needs, and as we progress into the future and these trends
become reality, the increased scale will continue to present new
and interesting challenges for management software. For example,
one of the major research questions is how to monitor large
environments. Various solutions exist for Grid-style computing
[11] or for warehouse-sized computers [3][4][5], but part of the
challenge is adapting such solutions for virtualized infrastructure,
specifically, finding ways to correlate application performance
within a VM to resource usage on the underlying host. In addition,
visualizing such large amounts of data so that administrators can
quickly diagnose and fix issues is quite challenging, as is
automated health monitoring so that human intervention is not
required. We will have to invent more novel techniques to address
these challenges.

7. ACKNOWLEDGMENTS
We’d like to thank E. Lewis, Priti Mishra, Balaji Parimi, Shankar
Unni, Ben Verghese, and Xiaoyun Zhu for invaluable feedback on
earlier versions of this paper.

8. REFERENCES
[1] Amazon EC2. http://aws.amazon.com/ec2.

[2] AMD Magny-Cours.
http://www.amd.com/us/products/server/processors/6000-series-
platforms/Pages/6000-series-platform.aspx

[3] Barroso, L., et al. The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines. Morgan and Claypool
Publishers. 2009.

[4] Boulon, J., et al. Chukwa, a large-scale monitoring system. In
Proceedings of CCA '08. Oct 2008

[5] Dean, J. Designs, Lessons, and Advice from Building Large
Distributed Systems. Keynote from LADIS 2009 (Big Sky, Montana,
October 10-11, 2009).

[6] Dell. Dell OpenManage. http://dell.com/openmanage

101

[7] EMC. EMC Symmetrix DMX-3 950 specifications.
http://www.emc.com/coll ateral/hardware/specification-sheet/c1153-
dmx3-950-ss.pdf

[8] HP. HP OpenView. http://hp.com/openview

[9] IBM. IBM Tivoli. http://www-01.ibm.com/software/tivoli

[10] Intel Nehalem.
http://www.intel.com/p/en_US/products/server/processor/xeon7000

[11] Massie, M.,et al. The Ganglia Distributed Monitoring System:
Design, Implementation, and Experience. In Parallel Computing
Volume 30, Issue 7, pp 817- 840, 2004.

[12] Microsoft. Microsoft System Center Virtual Machine Manager.
http://.microsoft.com/systemcenter/virtualmachinemanager/

[13] Nelson, M., et al. Fast Transparent Migration for Virtual Machines.
In Proceedings of USENIX ’05 (Anaheim, CA, April 10-15, 2005).
391-394.

[14] Pinheiro, E., et al. Failure Trends in a Large Disk Drive Population.
In Proceedings of FAST ’07 (San Jose, CA, February 13-16, 2007).
17-28.

[15] Scales, D., et al. The Design of a Practical System for Fault-Tolerant
Virtual Machines. In SIGOPS Operating Systems Review. Volume
44, Issue 4. 2010.

[16] Soundararajan, V., and Anderson, J. M. The Impact of Management
Operations on the Virtualized Datacenter. In ISCA ’10 (Saint-Malo,
France, June 19-23 2010). 326-337.

[17] Terremark. http://vcloudexpress.terremark.com/

[18] VMware vSphere.
http://www.vmware.com/products/vsphere/overview.html

[19] VMware. VMware DRS. http://www.vmware.com/products/drs/

[20] VMware. VMware High-Availability.
http://www.vmware.com/products/high-availability

[21] VMware. VMware SDKs and APIs.
http://www.vmware.com/support/pubs/sdk_pubs.html

[22] VMware. VMware Site Recovery Manager.
http://www.vmware.com/products/site-recovery-manager

[23] VMware. VMware Storage VMotion.
http://www.vmware.com/products/storage-vmotion/

[24] VMware. VMware vShield Zones.
http://www.vmware.com/products/vshield-zones/

102

