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ABSTRACT

Gating the clock is an important technique used in low
power design to disable unused modules of a circuit. Gating
can save power by both preventing unnecessary activity in
the logic modules as well as by eliminating power dissipa-
tion in the clock distribution network.There is an inherent
pitfall though in implementing gating groups for hierarchical
gated clock distribution because the groups are typically
developed at the logic level with no information of the physi-
cal layout of the clocktree. Depending on the distribution of
underlying sinks, maintaining gating groups can cause a
wiring overhead that is potentially greater than the savings
due to reduced switching. We look at modifications of zero-
skew tree algorithms to consider both the physical and logi-
cal aspects of hierarchical gating. The algorithms are
applied to data taken from a low power ASIC design. The
best gated clocktree is created using both physical and logi-
cal information.

Keywords: clocktree, clockgating, low power, physical
design

1 INTRODUCTION
The most fundamental control signal in a digital circuit is the
clock signal. For a long time, the general theory behind clock
design was that the signal should be kept as clean as possi-
ble, and that a circuit designer should not interrupt or disable
a clock signal. More recently though it was realized that the
clock signal is a major source of power dissipation, both in
the signal itself, and in the unnecessary activity created in
the underlying logic modules. Thus the push was made to
gate the clock signal and disable portions of the clocktree
distribution for reducing power dissipation[2][3][4][5]. A
comprehensive review of clock distribution techniques can
be found in [1].

While gating the clock can provide enormous gains in the
power efficiency of a design, the addition of clockgating

complicates the clock signal distribution. Gated groups are
developed from the logical model of the circuit, yet blindly
applying gating at the logic level ignores the physical design
and location of the group members. An effective low power
gated clocktree tool must balance aspects of the logical and
physical design in order to reach the best solution.

In this paper we look at the impact of the physical design on
a hierarchical gated clocktree and its power dissipation. The
gating is hierarchical because the clock sinks in the tree are
gated individually, and we clockgate the higher levels of the
tree to reduced power. Gated clock distribution in principle
consumes less power due to the reduced switching, but
depending on the physical placement and routing, the wiring
can increase more then the savings from gating the clock. We
present simple examples to show when hierarchical clock-
gating is effective within the clock distribution tree, and
when it becomes prohibitively expensive to use. We modify
the traditional zero-skew clock tree pairing algorithms to
include consideration of the gating groups and to ultimately
develop the best topology for the lowest power dissipation.
These methods are applied to realistic placement, group and
activity data generated from a low power ASIC microproces-
sor to show up to 24% reduction in switched capacitance for
a clocktree in one design example.

2 CLOCKGATED DISTRIBUTION
Most of the published research in clockgating design does
not address the influence of physical design on the effective-
ness of gating the clock. When all of the members of the gat-
ing groups are tightly clustered, gating the clock will not
substantially increase the wiring, but when one considers
that gating groups may not be clustered in areas of a chip, the
wiring overhead must be taken into consideration. One solu-
tion proposed in the literature is to use the gating activities to
influence the floorplanning of physical design [3], but this
may not always be feasible considering interconnect and
critical timing constraints.

An example of the danger in ignoring the physical design is
shown in Fig. 1, where Fig. 1a represents the physical place-
ment of several groups of registers in a circuit design. Fig. 1b
shows the most efficient, ungated clocktree that provides a
balanced clock distribution. If gating is applied blindly, as in
Fig. 1c, registers A1, A2, and A3 will be fed from the same
signal, although A3 is located on the opposite end of the die.
Fig. 1d shows a possible solution where A1 and A2 registers
are gated, but the remaining registers are fed with an ungated
clock because it provides the most power efficient method of



distributing the clock. In an ASIC design methodology
where the logic is synthesized and the cell placement is auto-
mated, multiple gating domains at the logic level can overlap
in the same physical area making this a very real problem,
and due to critical path constraints in the logic it is not
always possible to relocate modules according to the logic
gating structure.

Hierarchical gating in the clocktree creates new timing con-
straints that must be considered. One problem is that the gat-
ing signal must arrive in time to enable the clock in the upper
stages of the tree, but in fact the gating signal control edge is
most likely generated from registers on the lowest level in
the clocktree. Thus the control signal has less than a full
clock cycle in order to stabilize and provide gating signals
for signals higher in the tree. A careful timing analysis must
be performed on gating signals in order to guarantee timing
constraints, and if a gating signal is along the critical path, it
may not be feasible to gate the clock higher in the tree.

2.1 Clock routing algorithms
There are many algorithms available to generate zero-skew
clocktrees for arbitrary placements in a plane. The original
method of means and medians (MMM) by Jackson, Srini-
vasan, and Kuh [6] demonstrated a top-down approach by
recursively partitioning the tree into groups until reaching
the clock sinks. A very different approach was taken by
Cong, Kahng, and Robins (KCR) who developed a bottom-
up matching approach in building the balanced clock tree
[7]. Their method matches all the sinks in the plane into pairs
with a minimum of total wiring, and then uses the balanced
skew points between pairs as the connection points for the
next level of matching. A recent advance in the design of
zero-skew trees is the Deferred-Merge-Embedding (DME)
algorithm, a clocktree algorithm that starts with a bottom-up
matching of clock sinks (using any of the developed match-
ing heuristics), and then determines the exact zero-skew

point for each pair with a top-down approach [8].

There have been many significant improvements based on
these algorithms for zero-skew tree design:

• Planar routing, where none of the routing wires cross,
thus enabling a signal layer routing with no vias [9][10].

• Variable wire-size widths to control delay [11].
• Buffer insertion in the clocktree to minimize power

[3][12][13].

2.2 Increase in clockgated wiring
One problem with gating as previously formulated is that it
forces a top-down approach to the design at the logic level
that does not take into account the physical design of the
low-level sinks. Consider the case of a zero-skew tree in Fig.
2, where two clockgated domains are placed together (the
shading in the circles denotes the two groups). Routing them
in one large group as in Fig. 2a creates a minimum size tree,
but the tree must use ungated clock signals. Fig. 2b shows
that by enforcing independent trees for each group there is an
increase in the total wiring, but the clock signals are gated.
The essential problem with gated clocktree routing is to bal-
ance additional wiring with reduced signal activity.

In order to further illustrate the wiring overhead with gated
groups, we consider a random distribution of several gated
groups in a physical layout, which represents the case where
clockgated groups are intermingled within the physical lay-
out. The total wirelength to route a zero-skew tree for n ran-
domly placed modules in a l1 by l2 area (Fig. 2a shows such

an example tree) is [7].

Theorem 1: Partitioning n modules with a uniform random
distribution in a unit square into m independent groups will

increase the average wiring for a binary tree by  in which
each group is strictly maintained, as opposed to wiring n
modules in a single binary tree.

Proof: Consider a unit routing area with n modules. The

total wirelength will be proportional to . When the mod-

a) Physical layout of a circuit b) ungate clocktree
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Fig. 1. a) shows the physical placement of several registers in a
circuit. b) represents a clean, ungated clocktree. c) demostrates
a possible reorganization of bottom level drivers to strictly
maintain clockgating groups. d) shows a possible solution that
balances both total wire while maintaining some gating.
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Fig. 2. Two clock-routing strategies with clockgated groups. In
a), the clocktree is routed with the same ungated signal to all
sinks regardless of groups. In b), the sinks are partitioned into
two independent groups and their gated clocksignals are
routed independently but with an increase in total wiring.
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ules are partitioned into m independent groups, each sub-

group will require a tree of wirelength . When the
wirelength of all the subtrees and summed together, the wir-

ing is  for an increase of  over an ungated tree (1).

Theorem 1 is only a rough estimate considering that is based
on a order estimate. In addition, at some point the indepen-
dent trees must all be connected, adding some additional
wiring. The main point to realize is that as more gated
groups are mixed in the same area of a circuit, more wiring
overhead will be created in order to route those signals inde-
pendently.

The ultimate goal of clockgating is to reduce the overall
power dissipation in a circuit design, but just considering the
increase in wiring capacitance does not provide the complete
picture. The power dissipation of a gated wire is proportional
to the switched capacitance, calculated as the product of

total capacitance and the signal activity: .

2.3 Additional power overhead
The switched capacitance equation is a simplistic view of the
power dissipation for a gated clocktree, because it is based
purely on the wiring. In reality, clockgating within a tree cre-
ates other overhead components, such as the logic required
to disable the clock signal for each group in the tree which
leads to:

• the use of a logical gate to replace a buffer in the tree,
• the generation of a gating control signal,
• the routing of the control signals to each gated buffer.

In a buffered tree, the logic gates can replace the buffers with
minimal impact on power dissipation, because most of the
gate capacitance will be switched as well. When using hier-
archical gating the lowest level registers already use enable
signals, thus the gating signals are already available. The
hierarchical gating signals on higher levels are then gener-
ated with a logical OR of the subgroup signals, which adds
extra logic to the design.

A possible significant power overhead is the routing of the
gating signals to the specific points in the clocktree. Our
assumption for gating signals is that they are well-behaved,
in the sense that in order to maintain a given activity  for
the clock, the gating signal has a much lower frequency than
the clock signal. This means that the gating signal gates the
signal for relatively long periods, as opposed to gating and
ungating the clock every other cycle.

The overhead becomes minimal with the well-behaved
clockgate assumption, so we will make this assumption for
the following simulations on a real clock routing problem
from an ASIC core microprocessor.

3 GATED CLOCKTREE ALGORITHMS

3.1 Methods of pairing
The examples in the previous sections have shown that gat-
ing groups can sometimes cause problems in the physical
design of the tree, the key being in the distribution of the
underlying nodes. Highly clustered members of the same
gating group will not show the increase in wiring that com-
pletely random distributions have, thus algorithms to develop
gating clocktrees must be modified to consider these factors.
In order to explore the relationship further, the following
modifications to the KCR greedy pairing algorithms were
developed to balance gating groups with keeping a minimal
length of wiring. The algorithms are illustrated in Fig. 3.

• NO-GROUPS (Fig. 3a) - This is the traditional matching
algorithm, where the only determining factor is mini-
mizing the overall wiring. If any two gated group mem-
bers happen to be paired together, then they can be
gated. This looks at purely physical placement.

• HARD-GROUPS (Fig. 3b) - This strictly enforces the
matching among gating groups that are “alike”. For
example with four clockgating groups, each of the four
independent groups are paired using the NO-GROUPS
algorithm. When no more group members can be paired,
the logic for gating is placed at the head of each tree,
and the grouping restriction is removed. This looks only
at the logical gating information.

• SOFT-GROUPS (Fig. 3c) - This variant is similar to the
NO-GROUPS algorithm but it tries to minimize
switched capacitance. The cost function for pairing two
nodes is not based purely on distance, but on the
switched distance. This will penalize pairings between
unlike members, and reward connections of the same
groups, but only if they are physically close. This algo-
rithm looks at both physical and logical information.

Each of the three pairing algorithms have strengths and
weaknesses depending on the distribution of gating groups.
If one considers clustering of gating group members (the
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Fig. 3. Examples of gated pairing algorithms. a) NO GROUPS
minimizes total wiring b) HARD GROUPS also minimizes total
wiring, but pairings only allowed between similar clockgated
nodes. c) SOFT GROUPS measures pairing cost as switched
distance, total distance multiplied by the signal activity.

c) SOFT GROUPSb) HARD GROUPSa) NO GROUPS



typically assumption in previous works for clockgating,) all
of the pairing algorithms work well because the closest
nodes for the minimum solution are already members of the
same gating group. The other extreme of gating distribution
is when the gating groups are randomly dispersed. NO-
GROUPS finds the minimum wiring solution and essentially
ignores gating possibilities unless two nodes just happen to
be near. HARD-GROUPS on the other hand will ignore close
nodes of different groups in order to pair nodes that poten-
tially could be far apart. While HARD-GROUPS enables gat-
ing of nets, it may increase the wiring so much as to negate
the power savings depending on the activity. The problem is
that HARD-GROUPS ignores the switching, but it is the
switching that determines power dissipation of the net.
SOFT-GROUPS performs better in this situation as it main-
tains minimum wiring in the pairings, but it can pair nodes
from the same group that are further apart if the switching
can compensate for the wiring.

Fig. 4 shows examples of the trees that would be generated
after recursively calling the algorithms on balance points
between pairs. The NO-GROUPS and HARD-GROUPS trees
are similar to their counterparts in the example in Fig. 2, and
the selection between the two depends solely on the net
switching activity. The SOFT-GROUPS tree provides a com-
promise between the two extremes of fully gated versus fully
ungated trees, by gating on the first levels and then using an
efficient ungated clock to feed the higher levels of the tree.

The SOFT-GROUPS pairing does have problems in that as
soon as a group is paired with a node from a different group,
no more gating can be performed at the higher level. Thus
with SOFT-GROUPS, the pairing works well on the first
level, but matching groups becomes harder on the next lev-
els. SOFT-GROUPS can get trapped in a local minimum on
the first couple of levels, and eliminates gating in the higher
levels that could have resulted in further power savings.

3.2 UNGATE operation
A fourth heuristic was developed to exploit partial gating in
the clocktree as with SOFT-GROUPS, but to also avoid the
local minimum problem at the lower levels. The new algo-
rithm, called UNGATE, performs a top-down analysis on the
tree to decide whether to keep the gating groups. The differ-
ence is that UNGATE operates on a fully gated tree built with
HARD-GROUPS, and then recursively traverses the tree to
break apart the gating when desired. By making the gating

the default, and forcing the algorithm to actively break gat-
ing sections, it tends to keep gating higher in the tree. Fig. 5
shows an example operation where a single gated tree can be
broken into two separate gated trees, which then can be
reconnected with an ungated signal.

The UNGATE algorithm ungates a node when it determines
that a better low power solution would be to use an ungated
clock. The basic idea is to look at a particular gated subgroup
and estimate the wiring for both the gated and ungated ver-
sion of the tree for all the surrounding nodes (not just mem-
bers of that gating group). The estimate is calculated by
recursively calling the NO-GROUPS and HARD-GROUPS
algorithms described in the previous sections on the nodes in
the surrounding area. After each gated group has been ana-
lyzed with UNGATE, the entire tree is rebuilt with the NO-
GROUPS algorithm on the remaining nodes and the heads of
the gating groups left by the UNGATE operation.:

This heuristic looks at the physical design of the circuit to
make better decisions on gating nets. At the higher levels of
the tree, chances are that many groups will be mixed
together, and the tree will use an ungated clock signal. As the
UNGATE algorithm proceeds down the tree, it ungates sig-
nals where it estimates the grouping is detrimental to power
dissipation, and keeps gating in sections of the tree where
many of the same nodes are clustered together. By working

Fig. 4. Examples of the resulting trees when the various pair-
ings algorithms are used recursively on the balance points.

c) SOFT GROUPSb) HARD GROUPSa) NO GROUPS
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Fig. 5. Example of the UNGATE operation where a grouped
tree is partitioned into two independent groups fed by an
ungated clocksignal.

b) after UNGATEa) before UNGATE

function ungate ( GatedTree )
{

nodes = find_enclosed_nodes( GatedTree )
ungated_ power = treerouter (nodes,no_groups);
gated_power = treerouter(nodes,hard_groups);
// if ungated power is less, then break up the group
if ( ungated_power < gated_power )  {

ungate( GatedTree->left() )
ungate( GatedTree->Right() )

}
// when the gated version prevails, add the entire
// node to the list of remaining nodes to route
else {

NewClockSinks.Add ( GatedTree )
}

Fig. 6. UNGATE Algorithm Pseudocode



on a top-down approach, UNGATE is less likely to get
trapped into a local minimum, but instead it starts with a
fully gated tree, and determines where to disable the gating.
Fig. 7 shows an example UNGATE operation on a gated tree
from the HARD-GROUPS pairing example. After the ungate
algorithm has completed, the entire tree is rebuilt using the
NO-GROUPS pairing as seen in Fig. 8.

3.3 Results of Design Example
In order to evaluate the potential advantages of these algo-
rithm changes, they were tested on a set of clock sink loca-
tions, gating groups, and activities generated from two
versions of an ASIC core microprocessor design. The gating
signals for the lowest clock sinks were taken from the regis-
ter enable signals, and the hierarchical gating groups were
selected based on a correlation threshold of similar signals.
Thus the higher the threshold, the more individual groups
there were, but each of the groups were smaller. For a lower
correlation threshold, the groups were bigger, but the signals
were less similar, thus reducing the effective signal activity

(the gating signal must be the least common denominator
between the members).

Our first three pairing heuristics were used with the KCR
G+H+E algorithm to build a clocktree. The NO-GROUPS
solution showed an average total wiring value of 12.15 and
7.61 units for the two design examples across all the differ-
ent groups assignments. With HARD-GROUPS the average
total wiring was almost 31% and 17% larger for the two
design examples, but the switched capacitance was down by
11% and 8% respectively. The SOFT-GROUPS variant
showed a slight increase in total wiring, but the switched
capacitance was decreased by 14% and 9% respectively. By
far the best gain was achieved with the UNGATE operation
with 26% and 16% reduction in average switched capaci-
tance relative to the ungated tree.. .

It is important to note the total wiring for the UNGATE with

Fig. 7. An example of the UNGATE operation performed on a
HARD GROUP tree. The algorithm encloses a group starting
at the top and determines if the groups should be broken. When
broken, the algorithm then examines the two underneath chil-
dren for the same operation.  a), b) and c) show steps to ungate
the first group, and d), e), and f) show the steps for the second

f)e)d)

c)b)a)

Fig. 8. Shows the resulting tree of the UNGATE operation. a) is
the orginial HARD-GROUPS tree and b) shows the tree after it
was UNGATING and rerouted with NO-GROUPS.
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Fig. 9. Shows the ratio of switched wiring for each of the gated
clocktree algorithms for Design #1.
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Fig. 10. Shows the ratio of switched wiring for each of the
gated clocktree algorithms for Design #2.



10 and 12 groups on the first design example and 4 groups
for the second example because in these cases, the total wir-
ing was actually less then the NO-GROUPS alternative. The
explanation for this is that all heuristics are non-optimal and
can get trapped into local minima. Even considering using
those results as the ungated baseline, the best UNGATE solu-
tions of 8.48 units and 6.05 units are still 24% and 16%
lower for the two design examples respectively.

4 CONCLUSIONS
The clock tree is a good target for power reduction in proces-
sor designs because it switches all the time, consuming
power every cycle. Gating the clock is an important tech-
nique that can shutdown portions of the network and prevent
power dissipation, but it must be carefully applied and it
must consider the physical design aspects. The all or nothing
approach to gating may lead to problems, while the optimal
solution seems to point to a partial approach, one that bal-
ances efficient wiring with the power savings due to gating.
The clock trees presented here demonstrate some the basic
principles of selectively gating higher in the clocktree. The
UNGATE operation gives an algorithmic solution to combin-
ing information for the logic and physical design aspects to
build an effective gated clocktree.
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NO GROUPS HARD GROUPS SOFT GROUPS UNGATE

#
GROUPS

total
wire

switched
wire

total wire
switched

wire
total wire

switched
wire

total wire
switched

wire

25 12.19 10.81 15.37 10.00 12.58 10.44 12.70 8.80

19 12.11 10.68 15.68 10.14 12.50 9.79 12.66 8.79

13 12.18 10.85 16.07 10.51 12.32 9.92 12.84 8.48

12 12.18 11.14 16.20 11.22 12.32 10.78 11.56 9.10

10 12.08 11.30 15.98 12.11 12.23 11.22 11.15 9.69

Table 1.Gated clocktree routing algorithm wiring results for Design #1 (237 nodes)

NO GROUPS HARD GROUPS SOFT GROUPS UNGATE

#
GROUPS

total
wire

switched
wire

total wire
switched

wire
total wire

switched
wire

total wire
switched

wire

16 7.61 7.04 8.92 6.72 7.76 7.03 7.64 6.12

11 7.64 6.90 8.95 6.69 7.66 6.77 7.87 6.37

9 7.64 6.90 8.97 6.97 7.62 6.78 7.57 6.05

7 7.62 6.99 9.11 7.35 7.64 6.95 7.91 6.62

4 7.53 7.16 8.37 7.33 7.48 7.09 7.17 6.62

Table 2.Gated clocktree routing algorithm wiring results for Design #2 (146 nodes)


