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ABSTRACT

Recent coordinated efforts, in which numerous general circulation climate models have been run for a

common set of experiments, have produced large datasets of projections of future climate for various sce-

narios. Those multimodel ensembles sample initial conditions, parameters, and structural uncertainties in the

model design, and they have prompted a variety of approaches to quantifying uncertainty in future climate

change. International climate change assessments also rely heavily on these models. These assessments often

provide equal-weighted averages as best-guess results, assuming that individual model biases will at least

partly cancel and that a model average prediction is more likely to be correct than a prediction from a single

model based on the result that a multimodel average of present-day climate generally outperforms any in-

dividual model. This study outlines the motivation for using multimodel ensembles and discusses various

challenges in interpreting them. Among these challenges are that the number of models in these ensembles

is usually small, their distribution in the model or parameter space is unclear, and that extreme behavior is

often not sampled. Model skill in simulating present-day climate conditions is shown to relate only weakly

to the magnitude of predicted change. It is thus unclear by how much the confidence in future projections

should increase based on improvements in simulating present-day conditions, a reduction of intermodel

spread, or a larger number of models. Averaging model output may further lead to a loss of signal—

for example, for precipitation change where the predicted changes are spatially heterogeneous, such that

the true expected change is very likely to be larger than suggested by a model average. Last, there is little

agreement on metrics to separate ‘‘good’’ and ‘‘bad’’ models, and there is concern that model devel-

opment, evaluation, and posterior weighting or ranking are all using the same datasets. While the multi-

model average appears to still be useful in some situations, these results show that more quantitative

methods to evaluate model performance are critical to maximize the value of climate change projections

from global models.
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1. Introduction

With climate change over the past 50 years or so now

firmly established to be mostly due to human influence

via the burning of fossil fuels (Solomon et al. 2007),

concerns about future climate change of much larger

magnitude than observed are increasing, and attention is

increasingly directed toward projections from climate

models in the hope for policy-relevant information about

expected changes and guidance for appropriate mitiga-

tion and adaptation measures. The degree of confidence

we place on model results, however, essentially depends

on whether we can quantify the uncertainty of the pre-

diction, and demonstrate that the results do not depend

strongly on modeling assumptions. Since there is no

direct verification of future changes’ forecasts, model

performance and uncertainties need to be assessed indi-

rectly through process understanding and model evalua-

tion on past and present climate.

Uncertainties in future projections stem from differ-

ent sources and are introduced at various stages in the

modeling process. Forcing uncertainties (reflected by

different economic and societal developments and po-

litical decisions) are often circumvented by focusing on

(specific) projections—that is, predictions conditional

on an assumed scenario (e.g., Nakicenovic and Swart

2000). Initial and boundary conditions are mostly of

minor importance for long-term climate projections. By

far the largest contribution to uncertainty stems from

the fact that climate models are imperfect and there-

fore their projections uncertain. This contribution can

be further separated into model uncertainty because

of limited theoretical understanding (inability to un-

derstand a process in the first place—for example, how

aerosols affect cloud formation), uncertainty in model

parameters, and structural model uncertainty (inability

to describe a known process accurately in the model).

Parametric uncertainty is introduced by the fact that for

many small-scale processes in models, their large-scale

effects need to be empirically described rather than re-

solved, and that the values in these parameterizations

are not always well constrained and are not directly ob-

servable in the real world. Structural uncertainty (some-

times also termed model inadequacy) means that no set

of parameters will make the model agree perfectly with

observations (e.g., Sanderson et al. 2008), because certain

processes are missing or are only approximated in the

model [see, e.g., Stainforth et al. (2007) andKnutti (2008a)

for a more detailed discussion].

One way to study uncertainty is to consider results

from multiple models. The ‘‘multimodel’’ approach pro-

vides a sensitivity test to the models’ structural choices.

Additionally, an implicit assumption exists that multiple

models provide additional and more reliable information

than a single model (see section 2), and higher confidence

is placed on results that are common to an ensemble,

although in principle all models could suffer from similar

deficiencies. But for the nonexpert, a collection of results

is oftenmost useful when combined and synthesized. The

motivating question behind this study is how model

trustworthiness can be increased by combining results of

multiple models.

2. Model diversity: Potentials and challenges

Different scientific questions require different models

in terms of resolution, components and processes, and

spatial domain. However, there are also families of mod-

els of the same type—that is, multiple models incor-

porating the same set of processes at similar resolutions.

They partly sample the structural model uncertainty and

can be seen as multiple credible approximations of the

truth, given some constraints in complexity and com-

putational cost. These are often seen as coexisting rather

than competing models (Parker 2006). While two mod-

els may make assumptions on smaller scales that could

be seen as inconsistent, both models would agree with

observations within some uncertainty (typically a sum of

observational uncertainty and the structural model er-

ror) and would therefore be considered plausible. These

model families are usually either variants of a single base

model with perturbed parameters [so-called perturbed

physics ensembles (PPEs); e.g., Forest et al. 2002; Knutti

et al. 2002; Murphy et al. 2004; Stainforth et al. 2005]

or multimodel ensembles (MMEs)—that is, a somewhat

arbitrary collection of different models of similar struc-

ture and complexity (e.g., Eyring et al. 2007; Plattner

et al. 2008). The ensemble used here is from the recent

World Climate Research Programme (WCRP) Coupled

Model Intercomparison Project phase 3 (CMIP3; Meehl

et al. 2007b) and consists of 23 state-of-the-art atmosphere–

ocean general circulation models (AOGCMs) from 16

institutions and 11 countries. One ensemble member

for each model is used. The CMIP3MME provided the

basis for the projections of the latest Intergovernmental

Panel on Climate Change (IPCC) Fourth Assessment

Report (AR4; Solomon et al. 2007). An extensive dis-

cussion and evaluation of these models and an overview

of the projections are given in the relevant IPCC chap-

ters (Christensen et al. 2007; Hegerl et al. 2007; Meehl

et al. 2007a; Randall et al. 2007). An overview of CMIP3

is given by Meehl et al. (2007b), and a list of models and

institutions is also provided by Gleckler et al. (2008).

The data are available from the Program for Climate

Model Diagnosis and Intercomparison (PCMDI) Web
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site (available online at http://www-pcmdi.llnl.gov/ipcc/

about_ipcc.php). The detailed structure of these models,

the resolution, and the exact number of models, how-

ever, are not relevant for the issues discussed here. Is-

sues will be similar for future multimodel ensembles,

and some of the conclusions are likely to apply to other

research fields where predictive models need to be com-

bined. Most of the discussion similarly applies to PPEs,

but since structural errors are likely to be even more per-

sistent when all models share the same core, PPEs may, in

fact, offer even harder challenges.

a. Prior distribution

Synthesizing MMEs or PPEs is a problem that can be

cast in a Bayesian framework, where a prior distribution

determines the initial weight distribution of the sample

of models or sample of predictions available for in-

tercomparison, and data (observations) may serve to

redistribute the weight among them on the basis of their

performance (the likelihood used in the Bayesian anal-

ysis). The questions most relevant to this problem then

are as follows: What is the prior distribution of these

models? Is the sample randomly selected, or systematic,

or neither? Are the data significantly constraining the

final result or is the prior? We can fairly confidently

answer the last question: for both PPEs andMMEs, data

constraints are weak at best and do not change the shape

and width of the prior distribution robustly (Frame et al.

2005). It seems crucial then to consider the prior distri-

bution, and in this respect a fundamental difference

exists between PPEs and MMEs. Because of compu-

tational costs, and the large number of model parame-

ters (typically a few dozen), a comprehensive sampling

in AOGCM space is impossible. Large PPEs such as

climateprediction.net (Stainforth et al. 2005) use tens of

thousands of members and can explore a wide range of

solutions, but they are always structurally constrained

to a single model. Most other AOGCM ensembles are

small (i.e., a few tens of models). In either case a crit-

ical issue remains, that of the definition of a uniform

prior in model space, which ideally would let the data

have the greater impact on the final result. There is no

absolute distance metric in model space, and unifor-

mity can only be defined with respect to a given input

or output quantity. Whatever distance metric is chosen,

though, in a systematic or random sampling like PPEs

(e.g., Forest et al. 2002; Knutti et al. 2002; Murphy et al.

2004; Stainforth et al. 2005), it is at least clear how the

models are distributed; however, forMMEs like CMIP3,

the models are sampled neither randomly nor system-

atically; the ensemble is determined by whichever mod-

eling center had interest and resources to contribute.

Most groups provide only their ‘‘best’’ model, so the

ensemble should be seen as a collection of carefully

configured ‘‘best estimates’’ rather than an attempt to

sample the range of all possible models. In an ensem-

ble of opportunity where the number of models is

small, the problem of not sampling the full uncertainty

range may thus be severe. The ensemble sampling also

changes from one intercomparison to the next, so pro-

jections in future ensembles may change just because of

the prior sampling (i.e., model selection in the inter-

comparison), even if the understanding of the system

does not change.

A simple case where the prior distribution was found to

matter even within the set of CMIP3 models was the dis-

tribution of simulations across scenarios. Figure 1a shows

the mean and one standard deviation global surface

temperature ranges for the Special Report on Emissions

Scenarios (SRES) A2, A1B, and B1 (Nakicenovic and

Swart 2000) and the historical run from all CMIP3 mod-

els. The two lower emissions scenarios (B1 and A1B)

appear to have a wider uncertainty range in 2100 than the

high emission A2 case; although, on the basis of often-

used pattern scaling arguments, one would expect the

opposite, as the uncertainty scales approximately linearly

with warming (Knutti et al. 2008). Figure 1b shows the

standard deviations, minimum to maximum ranges in

2100 for all models, and the subset of models that have

run all scenarios. The apparent contradiction in un-

certainty ranges in Fig. 1a occurs simply because fewer

models had run the higher A2 scenario. If the subset of

models with all scenarios available is considered, then the

uncertainty is strongly reduced for the lower emissions

scenarios. Further details are given byKnutti et al. (2008).

The uncertainty estimate based on the empirical distri-

bution of the projections of these models can only be

wider than the prior distribution of the ensemble if the

variance is artificially inflated. This is a challenge, since it

requires assessing the likelihood of outcomes that are not

simulated by any model. Here we note that the conse-

quences of underestimating the uncertainty from an en-

semble of simulations have important repercussions when

the simulations are used as input to impact models. That

is, ‘‘best case’’ and ‘‘worst case’’ outcomes that could di-

rectly affect the severity of impactsmay bemissed in favor

of more centrally distributed and less drastic outcomes.

b. Model averages, independence, and

structural error

There is empirical evidence from various areas of nu-

merical modeling that a multimodel average yields better

prediction or compares more favorably to observations

than a single model. Examples include health (Thomson

et al. 2006), agriculture (Cantelaube and Terres 2005),

predictions of the El Niño–Southern Oscillation (ENSO;
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Palmer et al. 2005), and detection and attribution (Gillett

et al. 2005).Weather and seasonal forecasts show improved

skill, higher reliability, and consistency when multiple

models are combined (Krishnamurti et al. 1999; Doblas-

Reyes et al. 2003; Yun et al. 2003). For a single variable,

the multimodel combination might not be significantly

better than the single best model, but a large benefit is

seen when the aggregated performance on all aspects

of the forecast is considered (Hagedorn et al. 2005).

Models can simply be averaged (‘‘onemodel, one vote’’)

or can be weighted—for example, using Bayesian meth-

ods, where weights are based on past relationships be-

tween forecasts and verifications. Weighted averages

are found to perform better in many cases (Robertson

et al. 2004; Min and Hense 2006; Peña and Van den

Dool 2008; Weigel et al. 2008), provided that sufficient

information is available to determine the weight (see

section 2c).

For several generations of climate models, it has been

shown that the multimodel average for a variety of vari-

ables mostly agrees better with observations of present-

day climate than any single model, and that the average

also consistently scores high in almost all diagnostics

(Lambert and Boer 2001; Phillips and Gleckler 2006;

Randall et al. 2007; Gleckler et al. 2008; Pincus et al.

2008; Reichler and Kim 2008; Pierce et al. 2009). While

the improvement was sometimes quantified in these stud-

ies, it was rarely discussed whether the improvement was

as large as expected and how it should relate to im-

provements in projections.

Near-surface temperature is used in the following

section for illustration, because models can simulate

temperature reasonably well and because good obser-

vations and reanalysis datasets are available, but similar

results are expected for other variables. Figure 2a shows

the mean bias of local temperature for a collection of

single models for boreal winter and summer (the abso-

lute bias at every grid point averaged across all models),

whereas Fig. 2b shows the absolute value of the bias for

the multimodel average. The multimodel average per-

forms better in simulating the climatological tempera-

ture field. There is, indeed, improvement in some areas;

however, other locations are almost unaffected by av-

eraging, indicating that errors are similar in many

models. The largest errors also tend to be in the same

locations where model spread is large. These are often

caused by known deficiencies in the models not resolving

processes accurately because of resolution (e.g., convec-

tion or coastal upwelling in the ocean, topography of

mountains), not representing processes well because of

inappropriate parameterizations or poor parameter

choice (e.g., tropical variability related to ENSO), or not

representing them at all (forcings not considered, lack of

vegetation model, among others). Note that observations

(whether reanalysis or station data) are not always ac-

curate and also exhibit biases. This point is discussed at

the end of this section.

A plausible explanation why the biases are not re-

duced is if the errors are not random but correlated

across models. A histogram of all pairwise correlation

FIG. 1. (a) Multimodel mean and one std dev uncertainty ranges for global temperature

(relative to the 1980–99 average for each model) for the historic simulation and projections for

three IPCC SRES scenarios. (b) Mean and one std dev ranges (lines) plus minimummaximum

ranges (symbols) for the subset of models that have run all three scenarios (squares) and for all

models (circles). The model spread for the scenarios B1 and A1B depends strongly on what

prior distribution of models is assumed.
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values of two-model bias patterns (Figs. 3a and 3b)

supports that. Correlations are largely positive and

reach values up to 0.9 in cases where the two mod-

els from the same institution [e.g., the two Geophysical

Fluid Dynamics Laboratory (GFDL) models] or where

two versions of the same model but different resolution

[e.g., Canadian Centre for Climate Modelling and Anal-

ysis (CCCma)] are compared. The result is that simple

averaging is not very effective. It is instructive to study

how the bias is reduced as the size of the ensemble used in

the average is increased. Figures 3c and 3d show the root-

mean-square (RMS) bias of the model average as

a function of the number of models (i.e., averaging the

models first, calculating the bias, and then averaging over

space to estimate a typical local bias of the model aver-

age). The solid red curve shows the average, resulting

from taking many different subsets of models; the red

dashed lines indicate the range covered by different ran-

dom subsets. If all model errors were random in a large

sample of models, then the error of the mean should

decrease with the square root of the number of models

(black dotted lines). Indeed, it does, but not to zero but

to a residual that is more than half the initial value. If we

assume a correlation structure between the grid points

of a pattern—for example, as illustrated in Figs. 3a and

3b—then it is possible to calculate the theoretical RMS

(Figs. 3a and 3b, black dashed) and to show that it

converges to s
ffiffiffi

r
p

, where s is the variance of the pattern

and r is the average correlation (see Fig. 3 caption for

the full equation).

The interesting conclusions from Figs. 3c and 3d are

that for present-day temperature, half of the typical biases

would remain even for an average of an infinite number

of models of the same quality. The remaining bias for

22 models is 2–3 times larger than if the models were

independent and the errors were purely random. Con-

siderable improvement is only seen for up to about 5

models, and after 10 models the biases are almost stable.

The blue lines indicate the bias of the subset of the two

best models [best in this case meaning the general cir-

culation models (GCMs) whose December–February

(DJF) and June–August (JJA) surface temperatures for

the period 1980–99 agree most closely with 40-yr Eu-

ropean Centre for Medium-Range Weather Forecasts

Re-Analysis (ERA-40)], three best models, and so on,

and they suggest that a few good models are better than

the multimodel average; the average soon gets worse

when poorer models are added. It should be noted here

that the models that are best for temperature are not

necessarily best for other quantities, but there is a ten-

dency for goodmodels to score high onmany diagnostics

(Gleckler et al. 2008). This reflects, in part, the amount

FIG. 2. (a) Absolute bias in 1970–99 average surface temperature fromERA-40, averaged across all CMIP3models

for DJF and JJA. (b) Same as in (a), but bias shown for the multimodel average. In some locations, biases from

observations are reduced but the improvement by averaging is very heterogeneous.
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of effort going into the development of a model but also

the fact that many variables in the climate are linked,

such that biases in one variable will lead to biases in

many others.

The reduction of biases by averaging depends not only

on the geographical location but also on the magnitude

of the initial bias. Figure 4 shows the distribution of

present-day temperature biases in present-day clima-

tology for each model, the multimodel mean, and the

average of the five best models (with regard to simu-

lating temperature, as described earlier). The distribu-

tion of the model average has more pronounced long

FIG. 3. (a),(b)Histograms of correlation coefficients for all possible pairs of 1980–99 surface

temperature biasmaps of the CMIP3models forDJF and JJA. For independent bias patterns,

correlations should be distributed around zero. Positive correlations indicate that biases have

similar patterns. (c),(d) RMS error of 1980–99 surface temperature (averaged over space,

relative to ERA-40) shown as a function of the number of models included in the model

average. Red dashed indicates the range covered by randomly sampling the models for the

subset; red solid line indicates the average. The RMS error converges to a constant value that

is more than half of the initial value for one model. The black dashed line is the theoretical

RMS based on the correlation structure similar to (a),(b) and is given by s[(1 1 (N 2 1)

r)/N]1/2 with s the variance and r is the average correlation. In this case s and r were chosen

to fit the red solid line. If the model biases were independent, then the RMS error for a large

sample of models should decrease with the square root of the number of models (dotted). The

blue line results if the models are sorted by how well they agree with DJF and JJA obser-

vations combined, and it indicates that the average of a few good models outperforms an

average of more models with poorer performance.
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tails than the single models; that is, the extreme errors

are reduced less effectively than smaller amplitude er-

rors, suggesting that there are, indeed, large errors

resulting from processes that are similarly misrepre-

sented in many models and therefore are hard to

eliminate. As a caveat, observational and reanalysis

datasets, of course, also have biases. For temperature

these biases are quite small, and the conclusions would

be similar for station data or other reanalysis datasets.

But for evaluation on other quantities—for example,

radiation or precipitation, where little or no data are

directly assimilated—this is a major issue. Models used

for reanalysis run at much higher resolution than those

in CMIP3, but results for some variables are still based

on parameterizations similar to those in CMIP3 models.

In an analysis such as the one mentioned earlier, any bias

in the observations (whether station or reanalysis) would

appear as a model error persistent across all climate

models, and the conclusions drawn earlier for temper-

ature are only justified because the model errors are

generally much larger than the uncertainties in the ob-

servations (see, e.g., Knutti et al. 2006, their Figs. 1 and 2).

c. Dependence of projection uncertainty on the

number of models

As shown in the previous section, the biases of indi-

vidual models are correlated. For the present-day state,

sophisticated statistical methods also suggest that the

equivalent number of independent models in CMIP3

is much smaller than the total number of models (Jun

et al. 2008a,b). It is unclear how this model dependency

structure maps into the future, and by construction it

is impossible to determine that because of the lack of

‘‘observed truth’’ for the future.

Physical understanding of the assumptions underly-

ing the models suggest that the models are not indepen-

dent and distributed around the truth, yet many Bayesian

methods assumemodel independency (Giorgi andMearns

2002, 2003; Tebaldi et al. 2004, 2005; Greene et al. 2006;

Furrer et al. 2007b; Tebaldi and Knutti 2007; Smith et al.

2009; Tebaldi and Sansó 2009). The assumption of in-

dependence is equivalent to the interpretation that each

model approximates the real world with some random

error. Such as in a case where a quantity is measured

with a random error, multiple measurements will im-

prove the accuracy of themeasurement average, and the

uncertainty in themean value will shrink with the square

root of the number of measurements N as N increases

(Lopez et al. 2006). The implication of the indepen-

dence assumption is that uncertainties decrease as more

models are considered, shown for illustration in Fig. 5

for the method of Furrer et al. (2007a,b) and Smith et al.

(2009). Because these methods determine a central ten-

dency common to all models rather than a posterior

predictive of a single ideal model projection, it is not

surprising that the uncertainty [measured in terms of the

width of the probability density function (PDF)] de-

creases with more models. Thus, it comes down to a

somewhat philosophical question of the quantity we are

actually trying to estimate.

The signal of change underlying the truth and model

simulations is the abstract concept whose uncertainty is

characterized by the posterior distribution, which, in

these Bayesian treatments, decreases in width with the

FIG. 4. Box plots of surface temperature biases from ERA-40 for all models and grid

boxes, along with the average of all models (red) and the average of the five models that

show the smallest RMS temperature biases (blue). The box marks the median and inter-

quartile range, the line marks the 5%–95% range, symbols mark the minimum-to-maximum

range. One minimum value is out of range and not shown. While averaging reduces the

biases, the tails of the distributions shrink proportionally less than the central part of the

distributions.
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number of models considered. An alternative view of

the simulations’ relation to the uncertain future climate

is to consider each model trajectory as a possible future

path for earth’s climate and to accordingly represent

the uncertainty in future projections by the posterior

predictive distribution of a new GCM, whose width is

of the same order of magnitude as the range of model

projections. This proposal is made explicit in Tebaldi and

Sansó (2009) and Annan and Hargreaves (2010).

In contrast, the probabilistic method by Watterson

(2008) and studies based on detection and attribution fin-

gerprint scaling (Allen et al. 2000; Stott and Kettleborough

2002; Stott et al. 2006) assume no improvement with

additional models, which is equivalent to the assumption

that each model is a plausible representation of true

world, and one of them is right; however, we do not

know which one (of course, strictly, no model is right

because we know they are all incomplete, although the

prediction of one could be right for a certain quantity).

This issue of how much additional information is pro-

vided by more models is only now being explored and

discussed. While it may be reasonable to assume some

improvement in a projection when a few models are

available as opposed to one (in particular, when pre-

dicting many quantities), a very large number of models

should not infinitely improve our confidence, as long as

they are based on the same knowledge, make similar as-

sumptions, or worse (but quite common) if they use parts

of the code of existing models.

3. Model evaluation and weighting

Strictly, the calibration and evaluation of climate model

predictions is impossible, as projections of climate change

relate to a state never before observed. As we cannot

evaluate centennial prediction, the evaluation of cli-

mate models is, therefore, on the observed present and

past climate rather than the prediction. If the model

matches the observed data, it only tells us that the data

are consistent with the model. One of the difficulties is

that the observations often have been used in the mod-

eling process before, to derive parameterizations, or to

tune earlier versions of models. Therefore, there is a risk

of double-counting information, overconfidence, or cir-

cular logic if model evaluation and weighting is done on

the same datasets that were used to develop the models.

Thus, it is important thatmodels are used to simulate past

climates much different from today as part of the process

to establish credibility of the model’s responses.

If the model and data do not agree, it could be for a

variety of reasons: it could depend on the particular

metric being evaluated, how various quantities interact

FIG. 5. (a) PDFs for annual global temperature change for the period 2080–99 relative to

period 1980–99 from the Bayesian method by Furrer et al. (2007a,b), for the A1B scenario and

for 4, 10, and 21 models. (b) Width of PDF (2.5%–97.5%) of temperature change in different

regions (DJF, A1B, 2081–2100 vs 1981–2000) as a function of the number of models included,

based on the method by Smith et al. (2009), the most recent version of the method originally

proposed by Tebaldi et al. (2005). The analysis was repeated many times with different subsets

of models and then the results were averaged. A fit (solid) of the form 1/N1/2 where N is the

number of models is given for illustration for N . 6. Because the models are assumed to be

independent, the uncertainty of the projections is reduced for a larger number of models in all

cases shown.
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in the model, and which parameter is compared to what

observations. For any of these reasons, the interpretation

could result in a judgment that the model is in error, the

observational data are inadequate, or a combination of

both. Agreement between the model and observed data,

however, should be seen as a necessary but not sufficient

condition (Oreskes et al. 1994). Note here that we should

not expect perfect accuracy from models, but we can be

satisfied with models that are adequate for a particular

purpose. Weather forecast models, for example, do not

contain a dynamic ocean component, yet they prove to be

useful for the purpose of predicting weather for the next

few days (and adding an ocean would not improve the

forecast). An energy balance climate model does not

even resolve the dynamics of the atmosphere, but it can

easily replicate the global temperature evolution over the

past century (Knutti et al. 2002; Meinshausen et al. 2008).

a. Why do we trust models?

Confidence in climatemodels comes from the fact that

they are at least partially based on physical principles

known to be true (e.g., conservation ofmass, energy, and

momentum) and that we understand the results in terms

of physical processes (Bony et al. 2006) and can track

them across hierarchies of models (Held 2005). Climate

models reproduce many aspects of the current cli-

mate and its forced and unforced variability quite well

(Räisänen 2007; Randall et al. 2007; Gleckler et al. 2008).

Trends over the instrumental period resulting from an-

thropogenic forcings are well captured in most models

(Barnett et al. 2005; Hegerl et al. 2007; Knutti 2008b).

An important independent line of evaluation is provided

by paleoclimate evidence, for example, from the last

glacial or interglacial period. Since boundary conditions

for paleoclimate are quite different from today’s cli-

mate, a model’s ability to simulate past climate is an

illuminating test of the model’s assumptions. Though

uncertainty in proxy data is often large for the distant

past, some credibility of the model as well as the actual

climate system response to different forcings can be

established (e.g., Liu et al. 2009). On the other hand, in

some models the response to radiative forcing in a Last

Glacial Maximum state, for example, has been shown to

be quite different from the response in current climate

(Crucifix 2006; Hargreaves et al. 2007). The nature of the

forcings for paleoclimate and future projections is often

also quite different.

Models continuously improve in simulating the present-

day climate (Reichler and Kim 2008), and general as-

pects of projections from newer models usually agree

with older ones.Model agreement is often interpreted as

increasing the confidence in the newer model however,

there is no obvious way to quantify whether agreement

across models and their ability to simulate the present or

the past implies skill for predicting the future. A more

in-depth discussion of these topics is given by Smith

(2002), Tebaldi and Knutti (2007), and Knutti (2008a).

b. Model evaluation and tuning

In computationally cheap climate models, the cali-

bration of parameters can be done by minimizing some

cost function using search algorithms (e.g., Andronova

and Schlesinger 2001; Forest et al. 2002; Knutti et al.

2002, 2003; Annan et al. 2005; Beltran et al. 2005; Frame

et al. 2006; Hegerl et al. 2006; Meinshausen et al. 2008).

Because of the complexity of AOGCMs and the asso-

ciated computational cost, model tuning (defined as the

adjustment of a model parameter within some known

observational range) or calibration by automated pro-

cedures (e.g., finding optimal parameter values by min-

imizing some error metric) is usually unfeasible. Model

calibration is mostly done in individual parts of the

model and involves expert judgment. Formal metrics to

quantify agreement with data are complemented with

experience from other models to make choices. The

number of intermediate versions of a coupledGCM that

can be afforded is small, often only a few to a few tens

before a final version is selected (CCSP 2008, their Table

4.2). In the few cases where large perturbed parameter

ensembles were calculated, the standard model was

found to be surprisingly close to the best-performing

model (e.g., Sanderson et al. 2008, their Fig. 7l), given

the enormous degrees of freedom resulting from dozens

of uncertain parameters. This suggests that expert judg-

ment is very efficient in finding a good model (relative to

the other models in the set) with a small number of trials.

The model evaluation process is often not documented

and is rarely based on clear procedures and statistical

methods. Apart from the computational cost, one reason

certainly is the fact that the metric to minimize is not

clear. As discussed earlier, climate models serve multiple

purposes, so it is not even clear what the best model

(given some finite resources) would be. Tuning of model

parameters in the sense of blindly minimizing errors

without understanding the model’s behavior or going

outside known observational uncertainty is, therefore, not

common in GCMs, and available observations are clearly

relied upon for guidance in physically plausible tuning.

Statistical methods to evaluate and weight models are

not routinely used in GCM development, but they have

been used to a posteriori combine models or deter-

mine parameter ranges and distributions from both PPE

(Murphy et al. 2004; Piani et al. 2005; Knutti et al. 2006;

Murphy et al. 2007) and in Bayesian methods using

MME (Giorgi and Mearns 2002, 2003; Tebaldi et al.

2004, 2005; Greene et al. 2006; Furrer et al. 2007b;
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Tebaldi and Knutti 2007; Smith et al. 2009; Tebaldi and

Sansó 2009). However, the field is still in its infancy, and

no consensus exists on how models should be best

evaluated. In the IPCC AR4 (Randall et al. 2007), the

evaluation of models was mostly an expert assessment

discussing what aspects of climate are well simulated,

where models have improved, and what difficulties re-

main. The models were assessed as a group rather than

as individuals, and future projections did not weight

individual models or select subsets. No overall perfor-

mance metrics or rankings were proposed. Results were

either presented as multimodel equal-weighted aver-

ages or as a collection of individual models to show the

model spread, but without any quantitative information

of how the model spread should be interpreted or as to

which models may be more credible.

The main issue with model performance is that there

is virtually an infinite number of metrics that can be

defined, and a large number of them may be defensible

for certain purposes.Whether amodel is ‘‘good’’ or ‘‘bad’’

depends on the question at hand. Models have been

evaluated on many different quantities but mostly on

the present-day mean climate and variability; however,

for the upcomingCMIP5-coordinatedmodel experiments,

paleoclimate simulations will be used for the first time

as a standard part of the evaluation process (Taylor et al.

2009). Prior to this, the present-day climate was used as

a standard reference, at least partly because most of the

observations are about the present-day mean state and

variability and because we believe that we understand

many aspects of the present climate rather well. It may

also be a remnant from earlier times whenmulticentury

transient simulations were not yet possible. The question

of whether the simulation of the present-day climate

matters for future projections is difficult to evaluate.

For example, significant efforts go into improving tropical

variability in models’ simulations of El Niño and signifi-

cant improvements have been made, yet models do not

agree on the sign of future El Niño change. This is at least

partly due to the large multidecadal and centennial time-

scale variability of ENSO (seen in observations and in

multicentury control runs from climate models), and

sampling issues related to this nonstationary base state

cause difficulties in evaluating what the future behavior

of El Niño may be. For many large-scale changes—for

example, temperature projections, which still are un-

certain by about a factor of 2 even on the global scale—

tropical variability related to ENSO is probably of minor

importance, as the effect of ENSO on global temperature

is only on the order of 0.18C. On the other hand, ENSO

will have a strong effect onAustralian water availability.

Therefore, using ENSO as an example where inherent

low-frequency variability may make it difficult to ever

provide an accurate projection of future El Niño behavior,

model development and evaluation is often done based on

processes of interest rather than on an analysis of what

quantity would be most important to be well represented

in the model to make an accurate prediction. Multimodel

ensembles are of value here because they allow for a

determination as to why models agree or disagree, thus

shedding light on where efforts are best spent to improve

a prediction. Indeed, the CMIP3 archive has sparked

many attempts to isolate why models differ, for example,

by quantifying agreement in different feedbacks (e.g.,

Bony et al. 2006; Soden and Held 2006).

Good agreement with observations in onemetric does

not guarantee good performance in other variables, but

correlations of performance across variables at least

within one component of the climate system are quite

high because many variables are influenced by the same

processes and parameterizations. Models that represent

some basic variables, such as temperature and precipita-

tion, well often also perform well in other variables (e.g.,

Gleckler et al. 2008).

c. Model weighting

Models can be combined by experts defining certain

(sometimes ad hoc) selection criteria to pick subsets of

more skillful models. In the absence of formal methods

to weight models other than including or excluding

them, this may be a useful approach. To give a few ex-

amples, van Oldenborgh et al. (2005) quantified the ef-

fect of climate change on ENSO using a subset of the

CMIP3 models, and several studies predicted changes in

Australian rainfall and runoff based on subsets and

rankings of models (Perkins et al. 2007; Maxino et al.

2008; Pitman and Perkins 2008). Waugh and Eyring

(2008) and Eyring et al. (2007) assessed the performance

of stratospheric chemistry–climate models but found

only small differences between weighted and unweighted

projections. Schmittner et al. (2005) produced projections

of future changes in the Atlantic meridional overturn-

ing circulation and also found unweighted averages to

be similar to the weighted ones, but they report a de-

crease in the model spread after weighting. Santer et al.

(2009) found that detection and attribution of water va-

por changes are insensitive to model quality. Tempera-

ture and precipitation changes were calculated based on

CMIP3 by considering all models (Meehl et al. 2007a),

or based on weighting with current climatology (Giorgi

andMearns 2002, 2003; Tebaldi et al. 2004, 2005).Greene

et al. (2006) additionally used observed trends for

weighting.

In the area of weather and seasonal prediction, the

ensemble approach is well established (e.g., Fraedrich
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and Leslie 1987; Doblas-Reyes et al. 2003; Hagedorn

et al. 2005). Despite the success of combining models in

other areas, such attempts are still rare in the climate

community, and many people are reluctant to deviate

from the interpretation of the family of coexistingmodels

(Parker 2006). Some scientists argue that we cannot at-

tach weights, produce meaningful PDFs, or even define

the space of plausible models (Stainforth et al. 2007),

because all models have essentially zero weight. This may

be strictly true, but from a pragmatic point of view,model

selection is already routinely done. Newer models are

developed and older ones are phased out in newer in-

tercomparisons and IPCC reports (Meehl et al. 2007a),

thus giving them zero weight. Clearly, there are many

issues with PDFs derived through statistical analysis of

MMEs, but the problem may lie more in how to com-

municate and interpret them than in whether or not they

should be constructed in the first place. PDFs are, of

course, always conditional on the model, statistical as-

sumptions, and observational constraints (although that

generally is not informative for the decision maker with-

out further discussion of the model’s trustworthiness).

One way to test whether some observed quantity is

important for a prediction is to consider the correlation

between the observed quantity and the prediction across

a set of models. If the correlation is weak, then the ob-

servation likely has little effect on the prediction and

weighting or creating a subset based on that quantity will

not impose any constraint on the prediction. It may,

however, introduce spurious biases in the projection if

the sample size is small (selecting a subset of 5 or so

models out of 20 will have the tendency to reduce the

model range and variance even if the subset is chosen

randomly). If the correlation between an observation

and a prediction is strong, then that means that the ob-

servation may be a good predictor for the quantity of

interest, and a constraint on the observation will con-

strain the future. The assumption, of course, is that the

correlation across several models represents the influ-

ence of a process that affects both the observation and

the prediction and not just the simplicity of the under-

lying model—that is, that all models are based on the

same parameterizations. In many cases (e.g., where ob-

served greenhouse attributable warming is related to

future warming) this assumption is justified; however,

particularly in PPEs where all models share the same

structural core andmany constraints are applied without

understanding the processes behind it, the correlation

may, indeed, be unphysical. There is also the assumption

that an observation does not manifest itself differently

in different models because of nonlinear interactions, or

that several observations can have different realizations

in different models due to such interactions.

The correlations between predictions and observa-

tion features of the current climate mean state (which is

predominantly used for model evaluation) are predom-

inantly weak if existent at all. Figures 6a and 6b show the

correlation of the CMIP3 seasonal temperature biases

as compared to ERA-40 near-surface temperature for

the period 1980–99 (aggregated as root-mean-square

over space) and future global seasonal warming for the

period 2080–99 in the A1B scenario. Correlations are

vanishingly small, and even if both winter and summer

are considered and related to simple quantities such as

the transient climate response and climate sensitivity

(Figs. 6c and 6d) to exclude the effect of different forc-

ings, the correlations do not improve. Thus, the climate

response does not seem to depend in an obvious way on

the pattern of twentieth-century temperature, at least in

the range of models considered.

This is consistent with the fact that newer climate

models reproduce the current climate significantly more

accurately than older ones (Randall et al. 2007; Reichler

and Kim 2008), yet the spread of projections on both

global and local scales is not decreasing very much

(Knutti et al. 2008). For example, the range of climate

sensitivity has only decreased from 1.58–4.58 to 2.08–

4.58C over the last two decades. In the most recent

CMIP3 intercomparisons, the standard deviation of all

model climate sensitivities was 0.69, which is reduced

but not significantly so from the earlier CMIP1 andCMIP2

intercomparisons (0.78 and 0.92, respectively; one stan-

dard deviation), after several years of model development,

more observational data for model evaluation, and an

increase in computational cost of probably at least two

orders of magnitude. These results are also consistent

with recent studies that found only a weak statistical

relation between observations of the present-day cli-

mate and climate sensitivity (Murphy et al. 2004; Piani

et al. 2005; Knutti et al. 2006; Sanderson et al. 2008). It is

also in agreement with the results of Jun et al. (2008b),

who noted that there was very little correlation between

the ability of the climate models to simulate the ob-

served patterns of the mean temperature and the ob-

served patterns of the temperature trend.

Rather than relating global performance in simulating

surface temperature to the prediction of future warming,

one may argue that model performance on local-to-

regional scales should be considered and used for re-

gional projections. That is, if there is a high correlation

between a good performing model in a certain location

and a preferred value of future climate change, then

perhaps that agreement would provide information on

what the future climate change may be. But there is still

no guarantee that good present performance is a predictor

of future climate change, since future climate change is
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unknown. Figure 7 shows the correlation between the

performance in simulating current surface temperature

and predicted warming by the end of the century in the

A1B scenario at each grid point. While there is cor-

relation between the present surface temperature and

future warming in some locations, the correlation is

weak. On land its absolute magnitude exceeds 0.4 only

in a few locations, indicating that the current tempera-

ture explains less than 20% of the model spread in most

locations. But because the number of models is small,

many correlations occur by chance, and the distribution

of correlations for all grid points does not strongly dif-

fer from a null hypothesis where all points were purely

random (Figs. 7b and 7d). Most correlations should,

therefore, be seen as essentially random. On the basis of

a similar analysis but using regional patterns andmultiple

variables, Whetton et al. (2007) concluded that applying

weights based on present-day climate was useful, but

correlations [in their case, based on the regions defined

by Giorgi and Francisco (2001)] also rarely exceeded

0.4 and therefore provide a very weak constraint. Cases

have been reported where correlations between obser-

vations and predictions are strong—for example, be-

tween the seasonal cycle and climate sensitivity (Knutti

et al. 2006), the albedo feedback on seasonal and de-

cadal time scales (Hall andQu 2006), past and future sea

ice reduction (Boe et al. 2009), or for the amplifica-

tion of tropical surface temperature variability on short

and long time scales (Santer et al. 2005). In some cases

weighting or selecting a subset of models leads to

smaller model spread for predictions—for example, for

Australian rainfall (Perkins et al. 2009; Smith and

Chandler 2010)—but in most cases these are carefully

selected quantities based on process understanding rather

FIG. 6. Scatterplots of rms error from ERA-40 surface temperature for different seasons

(DJF, JJA) vs predicted (a) DJF warming, (b) JJA warming difference of 2080–99 from 1980–

99 in the A1B scenario, (c) climate sensitivity equilibrium global surface warming for 23CO2,

and (d) transient climate response global surface warming at the time of CO2 doubling in a

1% yr21 CO2 increase scenario. Each circle marks one model. Correlations are near zero in all

cases, indicating that the climatology of surface temperature is weakly related to the predicted

warming.
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than on a broad aggregation of model biases across space,

time, and variables.

However, one may also argue that evaluating models

only on a single variable is an approach that takes a too

narrow focus. Reichler and Kim (2008) evaluated the

CMIP3 models on a large set of variables of the present-

day mean climate state and combined all errors into

a single number. Herewe use an updated version of their

results based on four seasonal mean results from 37

different observed climate quantities (T. Reichler 2008,

personal communication) but only use the ranking of the

models rather than the overall performance index to

generate different subsets. The hypothesis is that the

spread of projections from a subset of N good mod-

els should be smaller than the spread of all models.

Figure 8 shows the ratio R of the standard deviation of

N good models to the standard deviation of all models

for the precipitation trend (percent change in local

precipitation per Kelvin change in global temperature

calculated for each grid point and each model for the

period 1900–2100). The ratio R is determined at every

grid point, and the results are shown as box plots, for the

two best models (leftmost), three best models (second

from left), and so on. RatiosR of less than unity indicate

that the spread of the N best models is smaller than the

spread of all models. Note that the precipitation re-

sponse is spatially heterogeneous, so one would not

expect the box plot widths to decrease with a subset of

better models, but one would expect R to be lower on

average if the subset of models was in closer agreement

than the set of all models. The median (box center) and

mean (red solid line) of R at all locations is, indeed,

smaller than unity, but a close inspection shows that

most of that effect is an artifact of the standard deviation

being a biased estimator of the spread for small samples.

For normally distributed numbers and sample sizeN5 2,

the standard deviation underestimates the real spread

by roughly 20%, forN5 5 by 6%, and forN5 10 by 3%

(red dashed line). Themaps showR for a subset of the 11

best versus all 22 models and reveal a picture without

any obvious structure. In fact, the same figures for

a random subset of models are almost undistinguishable.

FIG. 7. Correlations between mean temperature for the period 1980–99 and predicted warming for the period

2080–99 in the A1B scenario at each grid point, for (a) DJF and (b) JJA. Contour intervals are 0.2, correlations

smaller than20.4 and larger than10.4 are shown in blue and red, respectively. (right) The distribution of correlation

values for the CMIP3 models (circles) and the distribution that would result from normally distributed random

numbers. Most correlations are insignificant and are expected to appear by chance because the number of models is

small.
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The somewhat surprising conclusion from this analysis

is that if one would perform a ranking of all models

based on a comprehensive set of global present-day di-

agnostics and select a subset of models that agree well

with observations, then the tendency for a better con-

strained projection (on average in all locations) would

be very small in most cases.

Probabilistic projections based on fingerprint scaling

(Allen et al. 2000; Stott and Kettleborough 2002; Collins

et al. 2006; Harris et al. 2006; Stott et al. 2006) also

amount to reweighting, albeit of a single model’s pro-

jections; however, in this case the relation between the

past and present is clearly quantified and understood in

terms of the overall feedback strength. Models with a

stronger greenhouse warming over the past decades show

a higher warming in the future. Similar arguments hold

for probabilistic studies of global temperature constrained

by the observed surface warming, ocean heat uptake,

and radiative forcing (e.g., Forest et al. 2002; Knutti et al.

2002), where the performance of a model often relates

clearly to the future prediction, at least for the next few

decades.

In summary, this section highlights the difficulty with

weighting models based on observations. Correlations

between observed quantities and predictions are small in

many cases, resulting in little, if any, change in a weighted

FIG. 8. Ratio R of the std dev of a subset of N good models (for present-day climatology) to the (a) std dev of all models, for different

sizes of the subset and annual mean precipitation trend (percent per kelvin global temperature change over the period 1900–2100) and (b)

the dry season (three driest consecutive months at each grid point). For example, for N 5 3, R is the std dev of GFDL Climate Model

version 2-1 (CM2-1), Max Planck Institute (MPI)-ECHAM5 and Met Office (UKMO)-Hadley Centre Global Environmental Model

version 1 (HadGEM1), divided by the std dev of all models. HereR is calculated at every grid point and summarized in the box plot. Ratios

R less than unity indicate that the subset of goodmodels has a smaller spread in the predicted rainfall trend. (left) The box plots ofR for all

grid points and different subsets of models. The box marks the median and interquartile range, the line marks the 5%–95% range. The

model names of the ranking used (updated fromReichler and Kim 2008) are given in the figure. The red solid line indicates the mean ofR

over all grid points. The red dashed line is what would result from normal random numbers, because the std dev is negatively biased for

small samples. (right) The ratio R for the 11 best models vs all models. While the spread for a subset of good models decreases in some

places, the effect is small, and there is little benefit of selecting a subset.
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average and small reductions in the model spread. This

does not imply that a weighting of models is impossible

in principle, but it indicates that the choice of a mean-

ingful metric is far from trivial. A few recent studies

reported a reduction in model spread after evaluating the

models on multiple criteria, but whether the prediction is

in fact more accurate remains to be seen (and it will take

a long time to find out). In most studies the weighted

averages and model spread are similar to those of the

unweighted ensemble, a result explained by the absence

of correlation between the observations used to weight

the models and the models’ future projections.

4. Model combination and loss of signal

A last issue that deserves attention is the fact that an

average of multiple models may show characteristics

that do not resemble those of any single model, and

some characteristics may be physically implausible. If

two variables—x and y—are related in a nonlinear way,

then the average of x and the average of y from several

models will not follow the original relation between x

and y. Therefore, a model average state may not even be

physically plausible. In cases where there is a bifurcation

between multiple solutions, an average state may not

exist. While these issues may not be serious for most

large-scale climate projections as long as the perturba-

tions are not large, there is the issue of loss of signal,

which is serious and has not been addressed so far. One

such case is the predicted change in precipitation, re-

sulting from anthropogenic warming. While models

agree on the large-scale drying in the subtropics and

the wettening of the high latitudes, the locations of the

maximum changes are often a bit shifted. In some areas

the models also predict opposite signs in the trends.

Figures 9a and 9c showmultimodel precipitation changes

displayed as maps, similar to those presented in the

IPCC AR4 (Alley et al. 2007, their Fig. SPM 7), except

that trends (as before) in percent change in local pre-

cipitation per kelvin change in global temperature are

calculated for each grid point and each model for the

period 1900–2100 rather than showing the difference

between the end of the twenty-first century and the pres-

ent as in IPCC. The trends are used tomaximize the signal

using a 200-yr period and to reduce the effect of differ-

ent global temperature change in the differentmodels. If

anything, the models should agree better among each

other, but the maps are very similar to those in the IPCC

AR4 (Alley et al. 2007) and the conclusions will not

depend on these choices. Changes are shown for the an-

nualmean rainfall (Figs. 9a and 9b) and for the dry season

(Figs. 9c and 9d), that is, for the driest three consecutive

months in the present at each grid point. Further details

are given by Solomon et al. (2009). A histogram of the

land area (restricted to 608S–608N, as this is essentially

the area relevant for agriculture) that is undergoing

a certain change in precipitation shows that almost ev-

ery model (light blue lines) shows drying of more than

15% K21 for the annual mean and more than 20% K21

in the dry season in some places, but the multimodel

average (black line) does not. The distribution of pre-

cipitation is much narrower for themodel average because

changes are of opposite sign or maxima are not collo-

cated in the individual models. If the distributions of the

individual models are averaged (dark blue line), then

the individual distribution is about 50% wider than the

multimodel distribution (black line). If we interpret the

CMIP3 models as a collection of predictions of which

one may be the truth (of course, none is exactly) but we

do not know which one, then the average precipitation

change expected is 50% larger than the multimodel

mean suggests. Large drying may well occur in some

locations even if the multimodel average has lost that

signal. This is particularly disturbing because plants

have thresholds beyond which they can no longer sur-

vive, and the difference in effects between using the

individual models or the multimodel may thus be very

large. The presentation of a multimodel mean map for

precipitation without any further discussion of this prob-

lem may, therefore, be misleading, especially if used to

inform adaptation decisions. The idea of robust decision

making (Lempert and Schlesinger 2000; Dessai et al. 2009)

requires sampling of a broad range of outcomes, and

precipitation is a good example where such concepts are

likely to be more useful than model averages.

5. Conclusions

In this study we have shown that extracting policy-

relevant information and quantifying uncertainties from

ensembles of opportunity of climate models is difficult.

The prior distribution of the models is important but

unclear, except that it is likely too narrow and not cap-

turing the full range of plausible models. An average of

models compares better to observations than a single

model, but the correlation between biases among CMIP3

GCMs makes the averaging less effective at canceling

errors than one would assume. For present-day surface

temperature, for example, a large fraction of the biases

would remain even for an infinite number of models of

the same quality. Extreme biases tend to disappear less

quickly than smaller biases. Thus, models are dependent

and share biases, and the assumption of independence

made in some studies is likely to lead to overconfidence,

if the uncertainty is measured by the standard error of

the ensemblemeans (inversely proportional to the square
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root of the ensemble size). Quantitative methods to

combine models and to estimate uncertainty are still in

their infancy. Some studies have proposed ad hoc

methods for weighting or selecting subsets of models but

few have demonstrated any improvement in the pro-

jections’ skill or that the evaluation criterion is even

relevant to the forecast. International assessments by

IPCC (Randall et al. 2007) or the U.S. Climate Change

Science Program (CCSP 2008) evaluate models but

provide little information of how model error/bias

translates into bias in future projections. They show

what models can and cannot simulate in the present, but

a discussion whether this should make us confident or

not for the predictions made is often missing. The issue

of combining models will become more important with

the availability of more computing power and more

models. Future ensembles may be more heterogeneous

as some models include more components (e.g., chem-

istry, ice sheets, dynamic vegetation, upper atmosphere,

carbon cycle, land use), and some groups are starting to

produce perturbed physics ensembles with their model.

One would hope that a model that can reproduce many

observed features is a better model than one that is

unable to do so. However, defining performance metrics

that demonstrably relate to prediction skill remains

a largely unresolved problem. It is shown here that most

straightforward metrics (e.g., root-mean-square errors

from climatology) do not correlate with future pro-

jections on a large scale. Local biases also correlate

weakly with local projections. Selecting subsets of models

based on an overall evaluation of how they simulate

present-day climatology is shown to have a small effect on

the spread of projections. While there may be benefits in

selecting subsets of models in certain areas after careful

process-based assessments, a general recipe or an overall

model ranking for all purposes seems unlikely to exist.

Understanding what makes the projections of two

models agree or disagree, evaluating models on key

processes, developing metrics that demonstrably relate

to projections, and searching for emerging constraints in

the system on the basis of observations (Knutti et al.

2002; Stott and Kettleborough 2002; Hall and Qu 2006;

FIG. 9. Precipitation trend (in percent per kelvin global temperature change over the period 1900–2100, relative to the base period

1900–50) for (a) the annual mean and (c) the dry season (three driest consecutive months at each grid point). White is used where fewer

than 16 of 22 models agree on the sign of the change (see Solomon et al. 2009 for details). (b),(d) Distribution of the fraction of land area

between 608S and 608N that shows a certain drying or wettening. Light blue lines indicate each CMIP3model; the average of the light blue

lines is given in dark blue. The black distribution is the result for themultimodelmean shown in the left panels. The expected precipitation

change in the multimodel mean is about 30% smaller than in any single model.
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Knutti et al. 2006) may be ways forward. Large perturbed

physics ensembles with multiple models may help find

constraints valid across structurally different models.

Seamless prediction—that is, the initialization with ob-

servations and evaluation on weather and seasonal time

scales using climate models—could help provide con-

straints on feedbacks that operate on both short and

long time scales. Paleoclimate provides another op-

portunity to evaluate models, although observational

uncertainties tend to be large in the distant past. New

methodologies—such as stochastic-dynamic parameteri-

zation [Palmer et al. 2009, unpublished manuscript (avail-

able online at http://arxiv.org/ftp/arxiv/papers/0812/0812.

1074.pdf)], where stochastic parameterization schemes

are devised to represent model uncertainty to produce

the benefits of amultimodel ensemble in a singlemodel—

could eventually provide an alternative to the current

multimodel ensemble methodology.

The community would benefit from new methods to

intelligently combine perturbed physics and multimodel

ensembles, as well as statistical methods that can in-

corporate structural model uncertainty. Thus, taking

advantage of the characteristic that the multimodel

ensemble average outperforms any individual model,

methodologies could be developed to better assess

uncertainty by using this information combined with

characteristics of the range of model realizations. Such

methods, however, require a set of models that have a

reasonable spread with which to begin. In fact, it is likely

that more could be learned from a model that is on the

outer edge of the range than from another model near

the center of the range. Model diversity is important for

these kinds of multimodel exercises, with the range of

model realizations providing information that informs

the plausible spread ofmodel realizations. It is alsomore

useful if the data used for development is not the same as

that for evaluation and weighting.

Given the demonstrated difficulties in defining model

performance and the lack of consensus on selecting and

weighting models, methods to combine models should

be assessed carefully and compared to multimodel en-

semble averages and information derived from model

spread. The overconfidence achieved by improper weight-

ing may well be more damaging than the loss of infor-

mation by equal weighting or no aggregation at all. As

long as there is no consensus on how to properly produce

probabilistic projections, the published methods should

be used to explore the consequences arising from differ-

ent specifications of uncertainty.

The lack of consensus on combining models also

underscores the need for decisions that are robust

against alternative future climate outcomes (Lempert

and Schlesinger 2000; Dessai et al. 2009). In certain cases,

the simple specification of a few illustrative models as

alternative plausible outcomes without probabilities (sim-

ilar to the illustrative SRES scenarios) may also be a

useful and transparent choice to test the sensitivity of

adaptation and policy decisions to the uncertainty in

future climate change. However, there is some danger of

not sampling the extreme ends of the plausible rangewith

a few cases—for example, very high climate sensitivities

that are not present in CMIP3 (Knutti and Hegerl

2008)—and the danger that the illustrative models will

be interpreted as equally likely, even if no probabilities

are specified. In any case we feel that as the amount of

data from climate models grows and as the dependency

structure across the ensemble gets more complex when

perturbed parameter versions of some models become

available, metrics to evaluate models and quantitative

methods to extract the relevant information and to syn-

thesize it are urgently needed.
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