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Challenges in coupled-channels calculations
of heavy-ion fusion reactions

Henning Esbensen

Argonne National Laboratory, Argonne IL 60439, USA

The approximations that are commonly made in coupled-channels calculations of heavy-
ion fusion reactions are reviewed in order to show where uncertainties exist and improvements
can be made. In particular, the failure in modeling the fusion at extreme subbarrier energies
is discussed.

§1. Introduction

Heavy-ion fusion is a sensitive probe of the structure and the size of the react-
ing nuclei.1) This is most clearly seen in coupled-channels analyses of the fusion
cross sections measured on a series of isotopes with the same projectile. There are
several uncertainties in such analyses that I would like to point out, namely, in the
nuclear interaction between the ions, in the structure input, and in the truncation
of the coupled channels considered. The calculations are usually performed in the
so-called rotating frame approximation, and the couplings that excite the reacting
nuclei are usually derived in a macroscopic model. The fusion process by itself is sim-
ulated by in-going-wave boundary conditions, which are imposed somewhere inside
the Coulomb barrier.

When analyzing fusion data one should be aware of all of these uncertainties
and approximations. This is particularly important when analyzing high precision
fusion data. In order to generate a good fit to the data, one may be tempted to
use interactions or form factors that are unrealistic and inconsistent with scattering
data. One way to avoid this danger is to analyze elastic and inelastic scattering data
within the same coupled-channels calculation that is used to calculate the fusion.
Such calculations may be difficult and time-consuming because it is necessary to
include all the reaction channels that have an effect on fusion, and also all the
channels that can affect the scattering observables of interest. Another problem is
that the rotating frame is not reliable at smaller scattering angles, so one would have
to go beyond this approximation and include full angular momentum coupling. This
would make the calculation even more challenging.

While the elastic and inelastic scattering is sensitive mostly to the interaction and
form factors at large radial separations,2) say outside the Coulomb barrier, the fusion
is primarily sensitive to the these quantities in the vicinity of the Coulomb barrier.3)

Recently it has been recognized that coupled-channels calculations of fusion can also
be sensitive to the interactions inside the Coulomb barrier. This has become evident
from calculations performed at extreme subbarrier energies.4)

I will illustrate some of the features of coupled-channels calculations by present-
ing results for the fusion of 27Al+74Ge. I will also discuss the behavior of fusion
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cross sections at extreme subbarrier energies, where an unexpected steep falloff with
decreasing energy has been observed for several heavy-ion systems.5)

§2. Macroscopic description of surface modes

In the macroscopic model of heavy-ion reactions,6) the surface of a nucleus is
parametrized as

Ri(r̂, αλ,µ) = Ri

(
1 +

∑

λµ

α
(i)
λµ Y ∗

λµ(r̂)
)
, (2.1)

where r̂ specifies a spatial direction and α
(i)
λµ are the so-called deformation amplitudes.

The latter amplitudes generate rotational excitations or vibrational excitations of
surface modes. One assumes furthermore that the nuclear interaction is a function
VN (∆s) of the surface-surface distance ∆s between the reacting nuclei,

∆s = r −R1 −R2 − δR, (2.2)

where
δR =

∑

λµ

R1α
(1)
λµY ∗

λµ(r̂) + R2α
(2)
λµY ∗

λµ(−r̂) (2.3)

is measured along the spatial separation r of the two nuclei.

2.1. Interactions

The ion-ion potential is defined as the ground state expectation of the nuclear
interaction,

U(r) = 〈g.s.| VN (r −R1 −R2 − δR) |g.s.〉. (2.4)

To calculate matrix elements of the interaction VN (∆s) one would need a structure
model for the excited states of the two nuclei. The simplest approach is to consider
rotational excitations or pure harmonic vibrations. A more general description in
terms of anharmonic vibrations was recently applied.7)

A great advantage of the harmonic oscillator model for vibrational excitations is
that the matrix elements of VN can be expressed in terms of derivatives of the ion-ion
potential U(r) (a general expression is given in appendix A of Ref. 8). Thus we do
not need to know VN but can instead use U(r) and parametrize it, for example, as
a Woods-Saxon well. If we only consider excitations of one- and two-phonon states,
then all the necessary matrix elements can be generated (to leading order in the
deformation amplitudes) from the following linear and quadratic interactions

δV
(1)
N = −dU(r)

dr
δR, (2.5)

δV
(2)
N =

1
2

d2U(r)
dr2

[
(δR)2 − 〈g.s.| (δR)2 |g.s.〉

]
. (2.6)

Another approach is to start with a parameterization of the interaction VN and
then calculate the matrix elements explicitly.9), 10) One problem is that the ion-ion
potential, Eq. (2.4), and also other form factors, would become more and more
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diffuse as one included more and more states.9) It is therefore much more appealing
to start from an empirical parameterization of the ion-ion potential U(r).

Matrix elements of the Coulomb interaction can be generated from the linear
interaction

δV
(1)
C =

∑

λµ

3Z1Z2e
2

(2λ + 1)rλ+1

[
Rλ

C1 α
(1)
λµ Y ∗

λµ(r̂) + Rλ
C2 α

(2)
λµ Y ∗

λµ(−r̂)
]
, (2.7)

whereas the quadratic and higher-order Coulomb fields are less important,10) and
they are therefore often ignored.

2.2. Structure model dependence

There are basically two ways one can determine the matrix elements of the
interactions Eqs. (2.5-2.7). One way is to adopt a particular structure model, such
as a harmonic oscillator, a rotational model, or an anharmonic vibration.7) The
advantage of these models is that one can calculate all the matrix elements that
are needed. The other approach is to determine the matrix elements from other
measurements, such as inelastic scattering. Here the disadvantage is that many of
the matrix elements are not known; the most one can hope for is matrix elements of
the linear interactions Eqs. (2.5,2.7).

The deformation amplitudes that appear in the Coulomb and nuclear fields,
respectively, are in principle different. However, matrix elements of the nuclear
amplitudes are often unknown, so to proceed one assumes that they are identical to
the corresponding electromagnetic matrix elements. In either case, the direct matrix
element of the deformation amplitude, between the ground state and an excited
state, is expressed in terms of the β-value,

〈λµ|αλµ|g.s.〉 =
βλ√

2λ + 1
. (2.8)

This expression is independent of the particular nature of the excited state (vibra-
tional or rotational). Diagonal matrix elements of the linear interaction, on the other
hand, are model dependent. They always vanish in the vibrational model but they
can be non-zero in the rotational limit. An example is the 2+ state in a quadrupole
deformed nucleus. Here one has the diagonal matrix element

〈20|α20|20〉 = −
√

5
16π

4πQ2

3ZeR2
C

, (2.9)

which is expressed in terms of the quadrupole moment Q2 of the 2+ state.
The diagonal matrix elements of the quadratic interaction δV

(2)
N are also model

dependent. Thus for a vibrational one-phonon state |λµ〉 one finds that

〈λµ|δV (2)
N |λµ〉 =

d2U

dr2

(βλR)2

4π
, (2.10)

whereas in the rotational limit one obtains

〈20|δV (2)
N |20〉 =

4
7

d2U

dr2

(β2R)2

4π
(2.11)
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for the |2+,m = 0〉 state. The off-diagonal matrix elements of the quadratic in-
teraction are less model dependent because they can be expressed as products of
linear matrix elements (see appendix A of Ref. 8). This is very fortunate because
the off-diagonal matrix elements have a much larger influence on subbarrier fusion
than the diagonal have.20)

2.3. The ion-ion potential

An important issue is how to determine the ion-ion potential. In most coupled-
channels calculations of fusion one uses a real and energy-independent ion-ion poten-
tial, and one tries to include explicitly the couplings to all channels that can affect
the fusion. When analyzing scattering data, on the other hand, one employs energy
dependent complex optical potentials. The imaginary part is introduced to simulate
the effect of absorption into channels that are not included explicitly.

It has been recognized that the real and the imaginary parts of the empirical
optical potentials for elastic scattering are (approximately) related by a dispersion
relation.11) The rather sudden disappearance of the ‘absorption’ at energies below
the Coulomb barrier implies (via the dispersion relation) a strong energy dependence
of the real part of the optical potential at energies near the Coulomb barrier. This
is referred to as the threshold anomaly.11)

In coupled-channels calculations, where one uses an energy-independent ion-ion
potential, one generates effectively an energy dependent polarization potential, for
example, in the elastic scattering channel. The real and imaginary parts of the
polarization potential are also related by a dispersion relation.12) It is therefore
clear that the ion-ion potential one should use is not unique but depends on the
states that are included explicitly (or rather not included) in the calculations. A
good example of this dependence is illustrated in Ref. 13). Here the effect of the
3− state in 16O, which has a rather high excitation energy of 6.13 MeV, is shown
to produce an adiabatic potential renormalization. Couplings to this state lead to a
constant shift in energy of the calculated fusion cross section, but the shape of the
cross section as a function of energy is essentially unaffected.

An empirical potential has been extracted from elastic scattering data.2) The
analysis was based on the observation that the real part of the ion-ion potential is best
determined for classical trajectories that lead to rainbow scattering. The extracted
potential has been parametrized as a proximity type potential of the form6)

U(r) = − R1R2

R1 + R2

16πγa

1 + exp[(r −R1 −R2)/a]
. (2.12)

The parameters of this interaction are given in section III of Ref. 6). Roughly
speaking, the diffuseness is of the order a ≈ 0.63 fm, and the nuclear radii are
Ri ≈ 1.2 A1/3. The maximum nuclear force is consistent with the proximity force
between two touching spheres (with a nuclear surface tension of γ ≈ 1 MeV/fm2).
This interaction is a good starting point for coupled-channels calculations; often only
minor adjustments are needed to achieve a reasonable fit to data. It is also reassuring
to know that the exponential tail of the interaction is in good agreement with folding
model predictions (see section III of Ref. 6).
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§3. Rotating frame approximation

Coupled-channels calculations of fusion are usually performed in the so-called
iso-centrifugal approximations,14) where one assumes that the orbital angular mo-
mentum L for the relative motion of projectile and target motion is conserved. This
approximation allows one to choose the z-axis along the center of mass distance r,
and it is therefore also referred to as the rotating frame approximation.15),16) This
approximation implies that the magnetic quantum number M of the initial intrinsic
spin of the reacting nuclei is also a conserved quantity, because the µ = 0 component
is the only component of the interactions that survives when r̂ = ẑ, c.f. Eq. (2.3).

Let us by |nM〉 denote the states of interest in a coupled-channels calculation,
as for example the single and double excitations, and also the mutual excitations, of
the low-lying 2+ and 3− states in projectile and target. The total wave function has
the following form in the rotating frame approximation

ΨM =
i

2k0r

∑

n,L

φLM
n (r) |nM〉 PL(cos(θ)), (3.1)

where M denotes the conserved projection of the intrinsic spin on the rotating z-
axis, and ~k0 is the relative momentum in the entrance channel. The main reason for
making the rotating frame approximation is that the number of coupled channels is
considerably smaller than when the angular momentum coupling is treated correctly.
A state with spin λπ, for example, is represented by only one channel in the rotating
frame approximation, whereas at least λ + 1 channels will be needed in general.

3.1. Coupled equations

For each (L,M) one has now the following set of coupled differential equations
for the radial wave functions,[

H0 + En −E
]
φLM

n (r) = −
∑

n′
〈nM |δV |n′M〉 φLM

n′ (r), (3.2)

where

H0 =
~2

2M0

(
− d2

dr2
+

L(L + 1)
r2

)
+

Z1Z2e
2

r
+ U(r) (3.3)

is the Hamiltonian for radial wave function in the elastic channel when all couplings
on the r.h.s. of Eq. (3.2) are set equal to zero. The r.h.s. of Eq. (3.2) contains the
diagonal and off-diagonal matrix elements of the interaction δV = δV

(1)
C + δV

(1)
N +

δV
(2)
N + ...., consisting of the linear and quadratic interactions, Eqs. (2.5-2.7), and

possibly higher-order interactions if needed.
The coupled equations (3.2) are solved with the usual scattering boundary con-

ditions at large distances

φLM
n (r) → δn,0 exp(−ik0r) + RLM

n exp(iknr), for r →∞, (3.4)

where ~kn are the asymptotic momenta. In-going-wave boundary conditions are
imposed inside the barrier,

φLM
n (r) → TLM

n exp(−iκnr), for r = RF , (3.5)
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where ~κn are the local channel-dependent momenta at r = RF . The conditions
(3.5) are imposed, for example, at the radial separation where the Coulomb plus
nuclear potential has a local minimum.

The fusion cross section is determined by the ingoing flux at RF . One can also
simulate the fusion by the absorption from a short-ranged imaginary potential. In
either case, one should solve the coupled equations (3.2) for all values of the initial
spin projection, M = −I, ..., I, where I is the initial intrinsic spin and determine
the fusion cross section σfM in each case. The total fusion cross section is then the
average value,

σf =
1

2I + 1

∑

M

σfM . (3.6)

§4. Diagnostic tools

There are several tools available when comparing coupled-channels calculations
to data. The simplest is the χ2 value but that does not reveal where the discrepancies
occur. A way to emphasize the energy dependence of fusion cross sections near the
Coulomb barrier is to calculate the barrier distribution, which is defined as17)

B(E) =
d2

dE2
(Eσf ). (4.1)

It ts calculated by the finite difference method with appropriate energy steps (as
discussed in Ref. 18). This distribution reflects the effect of couplings to different
channels. This connection is most clearly seen in the work of Dasso et al.,3) where
the fusion cross section is obtained from diagonalizing the interaction Hamiltonian
at the Coulomb barrier.

The barrier distribution vanishes at extreme subbarrier energies but here another
useful tool is available, namely, the logarithmic derivative5)

L(E) =
d

dE
ln(Eσf ) =

1
Eσf

d

dE
(Eσf ). (4.2)

Finally one can also use the S factor which is defined as

S(E) = Eσf exp(2πη), where η =
Z1Z2e

2

~v
(4.3)

is the Sommerfeld parameter. The S factor is a good representation of light-ion fusion
and capture reactions but it is also a useful representation for heavy-ion fusion at
extreme subbarrier energies.4),19)

From the two definitions, Eqs. (4.2,4.3), one can derive the following expression
for the logarithmic derivative when the S factor is assumed to be a constant,

LCS(E) =
πη

E
. (4.4)

This is a useful extreme limit to consider when analyzing the logarithmic derivatives
extracted from measurements.
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§5. Application to the fusion of 27Al + 74Ge.

I have recently performed coupled-channels calculations20) of the fusion of 27Al
with a series of germanium isotopes and compared the results to measurements.21)

The purpose was to see whether the fusion data can put constraints on the quadrupole
moments of the germanium isotopes. It appears that the measurements of the
quadrupole moment of the 2+ state have two solutions,22) namely, one associated
with a near spherical shape and one with a significant prolate deformation. The
largest deformation is expected in 74Ge. The analysis of the fusion data showed,
however, that the near spherical shape is preferred for 74Ge.

The 5/2+ ground state of 27Al has a quadrupole moment of Q = 15 e fm2. This
implies that the radial Hamiltonian (3.3) for the elastic scattering channel must be
supplemented by the M -dependent quadrupole interaction,

δV
(1)
2M = 〈5/2,M |α20|5/2,M〉

√
5
4π

(
−RN

dU(r)
dr

+
3Z1Z2e

2

5r3
R2

C

)
. (5.1)

The nuclear part is equivalent (to lowest order) to an M -dependent radius of 27Al,

R(M) = RN

(
1 + 〈5/2,M |α20|5/2,M〉

√
5
4π

)
. (5.2)

The effect on fusion is shown in Fig. 1. The dashed curves show in increasing order
the calculated fusion cross sections for M = 1/2, 3/2, and 5/2. The solid curve
shows the average fusion cross section. It is in good agreement with the data.21)

The reduced χ2 based on the statistical uncertainty is 5.5, but this value is reduced
to 2.8 if one includes an estimated systematic error of 3%. The associated barrier
distributions are shown in Fig. 2.
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Fig. 1. Fusion cross sections for 27Al+74Ge.
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§6. Fusion at extreme barrier energies.

The fusion cross sections of several heavy-ion systems have shown an unexpected
steep falloff with decreasing energy at energies far below the Coulomb barrier.5) It
has so far not been possible to reproduce this behavior with conventional coupled-
channels calculations.4) Here I illustrate the low energy behavior of calculated fusion
cross sections for 64Ni + 64Ni. The calculations are based on the 2+ state at 1.35
MeV with βC

2 = 0.165 and βN
2 = 0.185, and the 3− state at 3.56 MeV with βN

3 = βC
3

= 0.193. The calculations also include the two-phonon quadrupole excitation and
the mutual excitation of the 2+ and 3− states. By slightly adjusting the ion-ion
potential (2.12) one can obtain an excellent fit to the data23) as shown in Fig. 3.
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Fig. 3. Fusion cross sections for 64Ni+64Ni.
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and dotted-dashed curves) are compared to

data.23) The dashed curve shows the no-

coupling limit.
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One issue of interest is the sensitivity to the ion-ion potential at short distances.
The Coulomb plus nuclear potential is shown in Fig. 4 for a conventional Woods-
Saxon parametrization with diffuseness a = 0.676 fm (dashed curve). The solid curve
shows a modified interaction, which has the diffuseness ai = 10 fm inside the barrier
and has been joined smoothly to the conventional interaction at r = R1 + R2. The
modified interaction produces a fusion cross section (the solid curve in Fig. 3) which
is almost identical to the conventional result (dotted-dashed curve).

The logarithmic derivatives of the fusion cross sections shown in Fig. 3 are shown
in Fig. 5. The result for the one-dimensional barrier penetration rises steeply near the
Coulomb barrier (at 96.3 MeV) and levels off at lower energies. The results of the two
coupled-channels calculations show a similar behavior, but the steep rise is shifted
to lower energies and oscillations occur at even lower energies. The oscillations are a
coupled-channels effect caused by the limited number of channels. By choosing the
larger diffuseness inside the Coulomb barrier (solid curves in Figs. 3-6) it is possible
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to make some improvement in the fit to the logarithmic derivatives extracted from
the measurements. A similar result was recently obtained24) for 58Ni + 58Ni by using
a large diffuseness of 1.3 fm, both inside and outside the Coulomb barrier.

The logarithmic derivative extracted from the measurements does not show a
clear maximum at low energy but seems to keep increasing with decreasing energy.
This feature has been seen for several heavy-ion systems.4),5) The logarithmic deriva-
tive has even exceeded in some cases the value obtained for a constant S factor, Eq.
(4.4). When this occurs the S factors obtained from the measured heavy-ion fusion
cross sections will actually exhibit a maximum.4),19)
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Fig. 6. Average spin of the compound nucleus,

extracted from the measured γ-ray multi-

plicity in 64Ni+64Ni fusion reactions.23)

As a final example of a probe of the 64Ni+64Ni fusion reaction I show in Fig. 6
the average spin of the compound nucleus as function of energy. The calculations are
the same as those shown in Figs. 3 and 5. The results of the two coupled-channels
calculations (solid and dotted-dashed curves) are enhanced compared to the result
of the one-dimensional barrier penetration calculation (dashed curve), and they are
both in good agreement with the measurements.23) It is seen that the calculated
average spin is roughly a constant below 90 MeV but there are some oscillations,
which are related to those seen in the logarithmic derivatives in Fig. 5.

§7. Summary

I have reviewed the approximations that are commonly made in coupled-channels
calculations of heavy-ion fusion reactions. The main reason was to point out theo-
retical uncertainties in such calculations, and to see what could be the reason why
we sometimes have problems in reproducing high precision fusion data.

One problem is that we do not always know the nuclear coupling strengths to
low-lying states. To proceed we then assume that they can be obtained from the
electromagnetic couplings, but that may not always be a good approximation. It
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would therefore be very useful if elastic and inelastic scattering data were available
for the same heavy-ion system, so that we could analyze these data within the same
coupled-channels calculation that is used to analyze the fusion data.

One of the uncertainties is the determination of the ion-ion potential. I tried to
argue that this interaction is rather well established at large radial separations, and
that fusion is a very good probe of it in the vicinity of the Coulomb barrier.3) I also
showed that the fusion at energies far below the Coulomb barrier is sensitive to the
interaction at even shorter distances.

The coupled-channels calculations we have made so far are not able to reproduce
some of the measurements that have been performed at extreme subbarrier energies.
There is evidently some kind of hindrance which has not yet been identified. It
is possible that the in-going-wave boundary condition, which simulates the fusion
process, is too primitive. This is certainly true for heavier systems, where there is
competition with deep inelastic reactions and quasi-fission.
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