
Challenges in Energy-Efficient Deep Neural Network Training with FPGA

Yudong Tao1, Rui Ma1, Mei-Ling Shyu1, Shu-Ching Chen2

1Department of Electrical and Computer Engineering

University of Miami, Coral Gables, FL, USA
2School of Computing and Information Sciences

Florida International University, Miami, FL, USA

{yxt128, rxm1351, shyu}@miami.edu, chens@cs.fiu.edu

Abstract

In recent years, it is highly demanding to deploy Deep

Neural Networks (DNNs) on edge devices, such as mobile

phones, drones, robotics, and wearable devices, to process

visual data collected by the cameras embedded in these sys-

tems. In addition to the model inference, training DNNs

locally can benefit model customization and data privacy

protection. Since many edge systems are powered by bat-

teries or have limited energy budgets, Field-Programmable

Gate Array (FPGA) is commonly used as the primary pro-

cessing engine to satisfy both demands in performance and

energy-efficiency. Although many recent research papers

have been published on the topic of DNN inference with

FPGAs, training a DNN with FPGAs has not been well ex-

ploited by the community. This paper summarizes the cur-

rent status of adopting FPGA for DNN computation and

identifies the main challenges in deploying DNN training

on FPGAs. Moreover, a performance metric and evaluation

workflow are proposed to compare the FPGA-based systems

for DNN training in terms of (1) usage of on-chip resources,

(2) training efficiency, (3) energy efficiency, and (4) model

performance for specific computer vision tasks.

1. Introduction

As an emerging technique in the field of computer vi-

sion, the deep neural network (DNN) has achieved superior

performance in various applications. For example, the con-

volutional neural network (CNN) has proven to be an ef-

fective approach to recognize abstract and high-level con-

cepts from unstructured visual data, such as images and

videos. ImageNet Large Scale Visual Recognition Chal-

lenge (ILSVRC) [9] has witnessed the emergence of numer-

ous milestone image classification models, including VG-

GNet [39], ResNet [18], etc. Apart from image classifi-

cation, CNN can also achieve state-of-the-art performance

on many other computer vision tasks, such as object detec-

tion [36], segmentation [17], and action recognition [30].

Furthermore, other DNN architectures, such as the gener-

ative adversarial network (GAN) [13] and graph convolu-

tional neural network (GCNN) [48], have been recently pro-

posed and applied to a broader range of critical computer

vision applications, including image generation, image de-

noising, cloud point segmentation, etc.

Besides the achievements obtained by DNN, it can also

be observed that as the model performance improves, the

model size also becomes larger and larger. Given suffi-

cient amounts of training samples, deeper and wider DNN

models usually perform better than shallower and thin-

ner ones [32]. However, the performance of DNN does

not scale linearly with the model size. For example,

AmoebaNet-A [34], an extremely-large-scale CNN model

with 469 million parameters, is roughly 275 times the size

of ResNet-101 [18]. Compared with the explosive model

size, the performance improvement of AmoebaNet-A is not

that significant: it is only 19.0% better than ResNet-101 in

terms of the top-1 error rate on the ImageNet dataset (i.e.,

reduced the error rate from 19.87% to 16.1%). More im-

portantly, such a large model cannot be deployed on edge

devices due to limited resources.

Low power electronics, such as mobile devices, un-

manned aerial vehicles (UAVs), and Internet of Things

(IoT) sensors, are electronic devices that are designed to

operate under a limited power capacity. Recently, smart-

phones have become the primary platforms of modern com-

puter vision technologies, including face unlock, text recog-

nition, and many others. However, the “most desired” fea-

ture of a computer vision application on smartphones is not

the performance of the corresponding computer vision al-

gorithms, but how many computational resources it con-

sumes [1]. Therefore, it is demanding to build energy-

efficient DNNs that can satisfy the energy budget of edge

devices. Moreover, due to the benefits in preserving data

privacy, learning in the local environment, such as federated

1



learning [24], has been proposed and attracted much atten-

tion in recent years. It is also desired to provide flexibility

to users to customize their local recognition applications.

To enable such technology at edge, it is necessary to allow

the edge devices to train DNNs in an energy-efficient man-

ner. Moreover, the global market size of computer vision

is estimated to increase from USD 11.9 billion in 2019 to

USD 17.4 billion by 2024, with a compound annual growth

rate (CAGR) of 7.8%; whereas the market share of com-

puter vision technology in edge devices is growing expo-

nentially [29]. As a result, training DNNs on edge devices

can have a significant impact on the development of low

power computer vision technology.

Furthermore, the process of developing a new deep

learning model is always energy-intensive. A recent study

conducted by Strubell et al. [41] reveals that the estimated

carbon emission from training a transformer model [45]

with the neural architecture search using GPU can be five

times as much as the carbon emission of a car in its whole

lifetime. Even though the amount of CO2 produced from

deep learning is still negligible compared with the total car-

bon emissions from the whole planet, low power solutions

are still in urgent need in order to slow down the increasing

energy consumption in deep learning.

To improve the efficiency of DNN computation, efficient

neural network architectures such as SqueezeNet [21] and

ShuffleNet [54] were proposed. These designs could re-

duce the amounts of parameters and operations without sig-

nificantly degrading the model performance. Meanwhile,

model compression and quantization are introduced to ef-

fectively reduce the model size and improve efficiency.

Model compression methods [2, 19] aim to prune the re-

dundant structures in the neural networks that have no or

minimal impact on the model performance to avoid wastes

of memory and computing power. On the other hand, model

quantization [15] could reduce the number of bits used in

parameters and results of the DNNs so that the computa-

tion can become more efficient. DNNs optimized by the

aforementioned techniques can achieve comparable perfor-

mance with significantly smaller memory usage and better

computing efficiency. However, many model compression

and quantization methods cannot be directly applied during

the DNN training stage. Otherwise, the model performance

will significantly degrade. Modified optimization methods

including stochastic weight averaging [50], low-precision

stochastic variance-reduced gradient [37], etc. were re-

cently proposed to train DNNs with low-precision floating

numbers.

Despite the efficient algorithms and methods of model

compression and quantization, hardware platforms, such as

GPUs, might not be flexible enough to support all sorts of

optimizations. For example, most of the commercial GPUs

support only full-precision floating-point operations. Us-

ing fixed-point or even mixed-precision numbers for cal-

culation is not fully supported in most of GPUs. Mean-

while, random network compression might not benefit the

computation efficiency on GPUs since the computation is

highly parallelized, and the overhead of memory alignment

is higher than the gains obtained from model compression.

Hence, a hardware-software co-design is required to accel-

erate the DNN computation at the edge, and the flexibility

of hardware platforms thus becomes a key feature. Field-

Programmable Gate Arrays (FPGAs) thus become a good

candidate, providing good energy efficiency and flexibility

to configure the hardware. The advantages and disadvan-

tages of FPGA compared to GPUs will be further discussed

in details in Section 2.

The rest of the paper is organized as follows. Section 2

compares various hardware platforms for DNN computa-

tion and introduces several existing techniques to acceler-

ate DNN computation on FPGAs. After that, the key chal-

lenges in enabling energy-efficient DNN training on FPGAs

are discussed in Section 3. Section 4 then proposes a perfor-

mance metric to evaluate DNN training on the FPGA-based

system and a corresponding workflow to benchmark the so-

lutions. In the end, Section 5 concludes the contribution of

this paper.

2. Hardware Platforms for DNN Computation

In this section, various hardware platforms for DNN

computations are introduced and compared to illustrate the

advantages and disadvantages of various platforms. Mean-

while, specific techniques to accelerate DNN computation

with FPGAs are briefly discussed and summarized. The en-

ergy efficiency of FPGAs for DNN training and inference is

also demonstrated.

2.1. Comparing CPU, GPU, and FPGA for DNN
Computations

As the accuracy of deep neural networks becomes higher

and higher, the model size grows larger to achieve a better

representation capability. Thus, both model training and in-

ference of DNNs require the computation accelerators to

provide sufficient computation power.

Graphics Processing Units (GPUs) are the most com-

monly used accelerators for DNN computations. Com-

pared to Central Processing Units (CPUs) that employ a

few high-performance floating-point computing cores and

optimize the latency of executing instructions, GPUs dis-

tribute the tasks among a large number of floating-point

computing cores and allow massive parallelism to maxi-

mize the throughput. Since the intra-layer and inter-data

computations for DNNs are independent, DNN computa-

tions can be easily parallelized, and thus GPUs are suit-

able for accelerating its computations. Moreover, GPUs are

well-suited in performing dense floating-point matrix mul-



tiplication (GEMM) operations, which are widely used in

mainstream DNNs [31].

GPUs processing can achieve the highest throughput for

DNN computations. However, it is not energy-efficient

since GPUs implement complex control modules to enable

the computation pipeline for a general purpose and only

have a limited flexibility to handle network sparsity and data

types (i.e., most GPUs support only full-precision floating-

point operations and some support half-precision floating-

point and 8-bit fixed-point operations) [31]. Meanwhile,

the latency of GPUs is longer, which is critical to streaming

data processing and algorithms with inter-data dependency.

Field-Programmable Gate Arrays (FPGAs), on the other

hand, have the potential to address these issues. FPGAs al-

low the integrated circuit reconfiguration and provide the

flexibility to implement wide ranges of operations and in-

structions. Modern FPGAs contain many different compo-

nents and on-chip resources, including flip-flops, look-up

tables, arithmetic-logic units, communication cores, block

RAMs, etc. [26]. In addition, FPGAs do not rely on the

Von-Neumann architecture, which can potentially allevi-

ate the bottlenecks in external memory access. Therefore,

DNNs on FPGAs can achieve a much better energy effi-

ciency (GOPs/Watts) than GPUs [6].

Moreover, FPGAs can be configured to directly access

peripheral hardware components such as sensors or input

data sources, which can offer very high bandwidth and

much lower latency. On the other hand, the communica-

tion between GPUs and hardware components is less effi-

cient. That is, standard buses (USB or PCIe) need to be

employed in order to access the hardware, and a host sys-

tem (e.g., CPU) is also required. As a result, the latency of

GPUs is much higher than that of FPGAs. The flexibility of

FPGAs also enables an easy deployment of various model

compression and quantization methods. For example, Bi-

narized Neural Network (BNN) [20], a recently proposed

neural network that achieved nearly state-of-the-art results

on multiple benchmark datasets, uses only a 1-bit data type

for all weights and activations at run time. Therefore, BNN

is well suited to be deployed on FPGAs.

Although FPGAs can offer better energy efficiency, con-

nectivity, and flexibility, one major challenge of using FP-

GAs is the engineering effort in development. Unlike GPU

development that requires only software engineering skills,

the development of FPGAs requires hardware configura-

tion skills as well. Moreover, FPGAs do not have as many

pre-built packages or libraries as GPUs for DNN compu-

tations. Though several existing libraries, such as PYNQ1,

were released to facilitate the high-level implementation of

DNN inference on FPGAs, training DNNs on FPGAs still

remains a major challenge. Consequently, using FPGAs for

DNN computations can be much harder than using GPUs

1https://github.com/Xilinx/PYNQ

Table 1. Performance comparison between CPU, GPU, and FPGA

for DNN computations

CPU GPU FPGA

Throughput Lowest Highest High

Latency Highest Medium Lowest

Power Medium Highest Lowest

Energy Efficiency Worst Medium Best

Device Size Small Large Small

Development Easiest Easy Hard

Library Support Sufficient Sufficient Limited

Flexibility Limited Limited Flexible

for many deep learning researchers and engineers.

Table 1 summarizes the differences among CPU, GPU

and FPGA for DNN computations [6, 26, 31]. In short,

GPU remains the superior hardware for high-throughput

implementations of DNNs; while FPGAs have a great po-

tential in applications where power consumption, power ef-

ficiency, and/or latency are of concern. However, in or-

der to make FPGAs more broadly used for DNN accelera-

tion, open-source libraries that provide a high-level abstrac-

tion of the hardware programming and alleviate the require-

ments in hardware configuration skills and knowledge for

DNN inference and training. In addition to the homoge-

neous computing environment (i.e., processing DNNs using

a single type of devices), the heterogeneous computing en-

vironment can potentially further improve the performance

and provide additional flexibility to balance the throughput

and power-efficiency [44]. FPGA, GPU, and CPU can in-

corporate with each other to achieve a better system perfor-

mance. However, implementing DNN inference and train-

ing on such a heterogeneous environment brings additional

levels of complexity. To maximize the utility of various

hardware platforms, building a simplified and efficient de-

sign flow that enables an easier use of FPGAs for DNNs is

thus the most important problem to solve.

2.2. DNN Acceleration on FPGAs

Both software and hardware acceleration techniques

have been studied for FPGAs-based deep learning. For soft-

ware acceleration, the main idea is to reduce the compu-

tation or bandwidth requirements of deep learning models

as much as possible while keeping the accuracy. Current

methods toward software acceleration include network op-

timization, data quantization, and weight reduction [14].

Network optimization aims at simplifying the calcula-

tions in deep learning models without losing too much per-

formance, thus reducing the bandwidth requirements of FP-

GAs. For example, a CNN accelerator design with uni-

form loop unroll factors across different convolutional lay-

ers was proposed, which achieves a performance of 61.62

GFLOPS [51]. In [42], a systematic design space explo-



ration methodology was proposed to maximize the through-

put of an OpenCL-based FPGA accelerator of two large-

scale CNNs: AlexNet and VGG, achieving a peak perfor-

mance of 136.5 GOPS for the convolution operation and

117.8 GOPS for the entire VGG network. Another frame-

work that employs a fusion architecture and heterogeneous

algorithms to accelerate CNNs on FPGAs was proposed

[49]. Zhang et al. proposed a two-step optimization strat-

egy, namely reverse-pruning and peak-pruning, which suc-

cessfully reduced the size of AlexNet by a factor of 13x

without the accuracy loss on a Xilinx Zynq ZCU104 FPGA

accelerator [53].

Data quantization is another commonly used model com-

pression approach for deep learning on FPGAs, where the

weights and activations in a typical neural network repre-

sented by floating-point numbers are replaced by the fixed-

point representations with fewer bits. By doing so, the stor-

age space of the deep learning model will be greatly re-

duced, thereby reducing the computational cost as well as

energy consumption. For example, Qiu et al. compared the

results from multiple data quantization approaches with dif-

ferent data types, including 48-bit fixed-point, 16-bit fixed-

point, and 32-bit floating-point, and presented that the pro-

posed 8/4-bit dynamic-precision quantization only exhib-

ited a 0.4% accuracy loss on the VGG16 model [33]. In

[55], the low precision binarized neural network was imple-

mented on a low-cost FPGA development board, ZedBoard,

and it outperformed all existing CPU, GPU, and FPGA-

based baseline accelerators.

The fundamental idea of weight reduction approaches is

to apply low-rank approximation on the model weight in or-

der to reduce the sizes of the weight matrix, thereby reduc-

ing the total number of operations. For example, Faraone

et al. proposed the reconfigurable constant coefficient mul-

tipliers (RCCMs) circuits that multiply the input values by

a restricted choice of coefficients using only adders, sub-

tractors, bit shifts, and multiplexers (MUXes) [11]. The

proposed design on Xilinx KU115 FPGA achieved 50% re-

source savings over traditional 8-bit quantized networks.

However, many of the aforementioned techniques cannot

be adopted during model training since they might signifi-

cantly reduce the final model performance. Efficiently train-

ing DNNs on FPGAs needs to incorporate low-precision

optimization techniques and advanced data structures for

the weight representation to achieve state-of-the-art perfor-

mance without violating the constraint of energy efficiency.

To mitigate the loss in accuracy, a low-precision stochas-

tic variance-reduced gradient optimization method that can

train the DNN with low-precision weights was proposed

recently [37]. The stochastic weight averaging optimiza-

tion method was proposed afterward to further improve the

performance of DNN training with low-precision weights,

and it achieved comparable performance compared to us-

ing full-precision floating-point numbers [50]. Orthogo-

nal to the optimization methods, dynamic fixed-point was

proposed to avoid performance degradation, as well as pre-

serving the small model size [8]. Such dynamic fixed-point

numbers are not directly supported by any GPUs or general-

purpose processors. However, FPGAs are the most suitable

hardware platforms to incorporate such kind of techniques

and train DNNs in an energy-efficient manner.

3. Challenges in DNN Training with FPGAs

Current DNN models focus on a static and offline train-

ing mechanism, where the training data is prepared in ad-

vance. However, it is demanding to train DNNs dynam-

ically and to adapt the models to the local environment.

Also, when data privacy is of concern, i.e., the users do

not want to share their personal and sensitive information

with the AI companies, distributed model training, such as

federated learning [24], is more desirable. In both scenar-

ios, training DNN models locally on edge devices is nec-

essary, and thus efficient DNN training is an important re-

search problem to be delivered. Since the low power nature

of the edge devices, FPGAs become a good candidate for

the primary processor for DNN training.

Although many researchers have focused on DNN infer-

ence on FPGAs, very few research papers have explored

DNN training on FPGAs, or how to optimize the architec-

ture design on FPGAs for DNN training. Moreover, to find

the optimal solution to a specific application on the FPGA

platform, both DNN architecture and its FPGA implemen-

tation need to be determined with the constraints of limited

on-chip resources. Significant research efforts should be in-

vested to achieve the convenient deployment of DNNs on

FPGAs for training. The main challenges of implementing

DNN training on FPGAs are as follows.

1. When DNNs are trained, computing the gradients of

network parameters depends on both the inputs of the

current layer and the gradients of its following layer(s).

The length and heterogeneity of the data dependency

paths of different layers make it difficult to design a

FPGA system that could effectively pipeline the pro-

cesses and avoid external memory accesses.

2. The knowledge required for the DNN design and

FPGA design is different. While designing an op-

timized CNN training framework requires in-depth

knowledge in computer vision, deep learning, and

optimization, deploying DNNs on FPGAs requires

knowledge about logic circuit design and HDL lan-

guages.

As shown in Figure 1, the data dependency of an L-layer

linear DNN becomes more complicated when the Backward

Propagation (BP) is involved. BP requires the intermediate



Figure 1. Data dependency of an L-layer linear DNN including

both Forward Propagation (FP) and Backward Propagation (BP).

Paths of FP are annotated as red dashed arrows, and paths of BP

are annotated as black solid arrows. Yellow boxes (at the top-

left of each layer) denote the computations in FP, green boxes (at

the bottom-left of each layer) denote the computations in BP, blue

boxes (on the right of each layer) denote data, and the orange box

(on the right of the figure) denotes the loss computation. I is the

input data, pi is the set of parameters of each layer, Fi is the set

of output features of each layer, and Ei and δpi are the partial

derivatives of the loss with respect to Fi and pi, respectively.

outputs of each layer Fi, i = 1, 2, . . . , L to be reused to

compute the gradients of the parameters, δpi, which are de-

pendent on the partial derivatives of loss with respect to the

intermediate outputs of the following layers, i.e., Ej , j > i.

Such data dependency raises a great challenge in the mem-

ory management and data reusing, which are critical to the

computing efficiency and power efficiency of DNN train-

ing. While reusing the data locally can optimize the per-

formance, more on-chip resources will be consumed. The

optimal solution to avoid external memory access varies for

different network architectures and computing platforms,

i.e., the performance of training DNNs on FPGAs deeply

depends on the architecture designs of both the neural net-

works and hardware.

To address this challenge, several FPGA-based DNN

training accelerators have been proposed recently. FPDeep

architecture [12] employs the layer partition and mapping

strategies and incorporates fine-grained operation pipelin-

ing to maximize resource sharing. CNN training with

FPDeep can achieve at most 6.36 times gain in energy

efficiency. However, such a architecture limits the DNN

to be linear, i.e., each layer has at most one preceding

layer and one succeeding layer. Therefore, many net-

works with skipped connections (e.g., ResNet [18], etc.)

and other complex structures cannot be trained with the

FPDeep architecture. In [46], the data router architecture

was proposed to feed data and weights to a multiply-and-

accumulate (MAC) array to enable more flexible compu-

tation acceleration for CNN training. The proposed archi-

tecture can achieve up to 479 GOPS throughput but worse

power efficiency for a large batch size. The limited mem-

ory bandwidth on the FPGA limits the utilization rate of the

FPGA and thus degrades its power-efficiency. Based on the

aforementioned state-of-the-art FPGA architecture designs

for DNN training, it can be observed that the flexibility of

FPGAs cannot be well utilized, and the energy efficiency

of CNN training on FPGAs might not be achieved using an

inappropriate architecture design.

Furthermore, to the best of our knowledge, all the exist-

ing frameworks mainly consider CNNs while other network

structures like recurrent neural networks (RNN), graph neu-

ral networks (GNN), etc. are not supported. However, a

mixed-use of CNNs, RNNs, and GNNs is critical to applica-

tions such as video analysis, which increases the complexity

of hardware design for network training. Therefore, devel-

oping toolkits that can facilitate the design workflow and

shorten the design cycle of network training becomes the

most important problem to be addressed. Given the wide

variety of factors to be considered during design, including

network architectures, hardware constraints, performance

requirements, etc., it is impossible to have an one-for-all

design to train various DNNs on FPGAs. The complex-

ity of this problem makes the manual design process very

time-consuming, even for a seasoned FPGA engineer. Con-

sequently, an automated design workflow from the DNN ar-

chitecture to the hardware design is necessary to enable effi-

cient and effective DNN training for FPGAs. Furthermore,

such an automated FPGA design workflow can decouple the

needs in the knowledge of the DNN training framework de-

sign and hardware design. If an effective automated design

workflow is available, researches and engineers can develop

DNNs for specific applications without the need to possess

deep knowledge about the hardware design.

An automated design for FPGAs is not a new concept.

Both Xilinx and Altera, two largest FPGA manufactur-

ers, provide a series of tools to facilitate the design pro-

cess, including automated place and route, automated de-

sign optimization, etc., along with the high-level synthe-

sis (HLS), i.e., converting a high-level programming lan-

guage, such as C and C++, to a hardware description lan-

guage (Verilog or VHDL) [7]. However, such a high-

level synthesis can barely work for deploying DNNs, es-

pecially for training DNNs, since a straightforward conver-

sion from high-level instructions to logic circuit design con-

sumes too many on-chip resources, which is beyond the

capability of current commercial FPGA devices. Mean-

while, the general HLS cannot apply model compression

and other DNN-specific optimization techniques, which in-

creases the needs in on-chip resources. There exist some

HLS software designed for DNN inference, and the model

compression and quantization are incorporated to reduce the

resource usage. The solutions can mainly be divided into

two types, namely processing-engine architecture [38, 52]

and grouped-operation architecture [16]. The processing-

engine architecture builds an array of general-purpose pro-



cessors, such as MAC, which optimizes the resource usage

and thus can deploy larger models with a larger batch size.

The grouped-operation architecture, on the other hand, im-

plements the operations in DNNs at a higher-level, such as

a convolution operation processor, which optimizes energy

efficiency. However, for training DNNs, the processing-

engine architecture which can easily reach the memory ac-

cess bottleneck due to less memory reuse has been imple-

mented and hit the limits of memory bandwidth [46]; while

the grouped-operation architecture uses too many on-chip

resources [12]. Therefore, further optimizations are re-

quired to realize an effective automated design for efficient

DNN training.

It has been witnessed in recent years that Neural Archi-

tecture Search (NAS) becomes an effective approach for

automated architecture design of DNNs [4, 5, 35, 43, 56].

Furthermore, the hardware efficiency has been considered

in some NAS frameworks which optimize the DNN archi-

tecture with the consideration of computation efficiency [4,

47]. Feedback from hardware is taken into account for

searching the optimal architecture, where the efficiency is

considered as a constraint. Following the same strategy,

FPGA resources can be used as a constraint in the NAS

framework, so the hardware design and the DNN architec-

ture can be optimized simultaneously [16, 22]. Therefore,

it is viable to use NAS to optimize the hardware design for

DNN training as well. When the hardware design is consid-

ered, the type of processors in the array and the operation

groups to form become the hyper-parameters of the overall

design and thus enlarge the search space. Therefore, how to

effectively retrieve the solution should be addressed in the

future research.

4. Energy-Efficient DNN Training Benchmark

To address the problem of energy-efficient DNN train-

ing with FPGAs, a hardware-software co-design is required.

The DNN architectures should be designed with the aware-

ness of the hardware constraints of FPGAs and target per-

formance, and the hardware design needs to be optimized

based on the DNN architecture. To evaluate the co-design

solution, both DNN-related and hardware-related perfor-

mance metrics, including on-chip resource usage, training

efficiency, energy efficiency, and task-specific model per-

formance, need to be considered for a comprehensive eval-

uation that reflects the overall design quality. In this section,

a performance metric and the evaluation workflow are dis-

cussed based on three identified computer vision tasks for

the energy-efficient DNN training benchmark.

4.1. Identified Computer Vision Tasks

With the rapid development of computer vision, vari-

ous computer vision tasks were proposed and solved ev-

ery year. In this energy-efficient DNN training benchmark,

three common computer vision tasks are selected to re-

flect different potential scenarios that require DNNs and

model training. Table 2 summarizes the identified tasks: im-

age classification, video classification, and object detection,

as well as their pre-training datasets, fine-tuning and test

datasets, the task-specific performance metrics, and the ex-

ample state-of-the-art DNN architectures for the tasks. The

pre-training dataset is used to train the DNN models before

deploying to the local device, the fine-tuning dataset is used

to train the models on the local FPGA, and the test dataset

is used for evaluating the performance after fine-tuning.

Among these tasks, image classification whose objective

is to classify an image into a specific category based on its

visual content is regarded as the most basic one. There are

a large number of datasets for image classification, such as

MNIST [27], CIFAR [25], ImageNet [9], and Food-101 [3].

In this benchmark, ImageNet is used to pre-train the model,

while the data in the Food-101 datset will be used to fine-

tune the model. Top-k accuracy is usually chosen as the

evaluation metric for most image classification tasks, which

can be defined as follows. Given an image, the image classi-

fication model produces a probability of the image belong-

ing to each category. The image is regarded as correctly

classified if the true label is among the categories with top-

k highest probabilities. The top-k accuracy can thus be de-

fined as the portion of correctly classified images among all

test images, and we use k = 5 for the energy-efficient DNN

training benchmark. Since DNNs for image classification

are usually a CNN model with limited types of operations

and relatively simple network structures, training the image

classification models on FPGAs should be the easiest task

to achieve.

Figure 2. The object detection result of an example image from the

COCO dataset [28]

Object detection is a more complex computer vision task

than image classification. As is shown in Figure 2, the ob-

jective of object detection is to find the locations of the se-

mantic objects in images using bounding boxes. Two of

the most widely used object detection datasets are the Pas-

cal Visual Object Classes (VOC) dataset (with 27,450 an-

notated objects from 11,530 images) [10] and the Common

Objects in COntext (COCO) dataset [28] which is a larger

dataset with 1.5 million annotated objects from 330K im-

ages. The Intersection over Union (IoU) is often used to



Table 2. Summary of the identified computer visions tasks for the energy-efficient DNN training benchmark

Tasks
Pre-Training

Dataset

Fine-Tuning and

Test Dataset

Task-Specific

Performance Metric
Example Solution

Image Classification ImageNet Food101 Top-5 Accuracy ResNet [18]

Object Detection COCO Pascal VOC mAP Faster R-CNN [36]

Video Classification Moments in Time UCF-101 Top-5 Accuracy Slow Fusion [23]

measure how well an algorithm performs on detecting an

object (as defined below).

IoU =
A ∩B

A ∪B
(1)

where A is the predicted bounding box of an object in the

image and B is the ground truth bounding box. A ∩ B

represents the intersected area between these two bounding

boxes, whereas A ∪ B is their combined area. The IoU is

then obtained by dividing these two areas.

Mean average precision (mAP) is the most commonly

used metric to evaluate the overall performance of an object

detection algorithm and is defined as follow.

mAP =
1

N

N∑

i

APi (2)

where mAP is the average AP among all classes and APi

stands for the average precision of all objects in the ith
class. The value of AP can be derived by calculating the

area under the precision-recall curve (described in [10]).

An IoU threshold is used to determine whether an object

is correctly detected or not. For example, AP 0.5 means the

detected objects with IoU scores of above 0.5 would be con-

sidered as correct. The DNN architectures for object detec-

tion may contain more types of operations and generate the

outputs of different sizes, which need to be handled accord-

ingly in the hardware design. The COCO dataset will be

used to pre-train the object detection model, and the data in

the Pascal VOC dataset are used for fine-tuning and testing.

Similar to image classification, video classification aims

at assigning a class label to a video clip with a stack of

images. In this benchmark, we mainly focus on a sub-

category of video classification, namely action recognition,

where the class labels are related to actions. The two most

commonly used datasets of action recognition are UCF-

101 [40] dataset (with 13,320 videos from 101 categories)

and Moments-In-Time [30] which a large dataset with 1

million videos. For video classification, the DNN might

include RNN or GNN structures that have not been imple-

mented on FPGAs with CNNs. Such tasks bring in more

challenges to manage the on-chip resources and hardware

design, which is beyond the limit of current techniques. In

this benchmark, Moments-In-Time dataset will be used for

pre-train the model while the data in UCF-101 that share

the same categories as the Moments-In-Time dataset will

be used for fine-tuning and testing.

4.2. Evaluation Workflow and Performance Metric

Figure 3. The proposed evaluation workflow

In addition to task-specific performance metrics, the sys-

tem performance should be measured, including power con-

sumption, processing time, and resource usage. Figure 3

depicts the diagram of how the system evaluation is con-

ducted, which includes three stages, namely the design

stage, fine-tuning stage, and testing stage. In the design

stage, for a specific task, the DNN architecture and its hard-

ware design for a target device should be conducted. The

design might go through several cycles, i.e., the DNN archi-

tecture needs to be updated based on the results of the hard-

ware design. Once the design stage is completed, a DNN ar-

chitecture, the corresponding FPGA-based hardware design

for model training, and the pre-trained weights of the DNN

model can be obtained. After that, the DNN training frame-

work will be deployed on the FPGA-based system, where

the fine-tuned dataset will be fed to the embedded system

to fine-tune the model. Once the model is being trained, the

power meter connected to the system will start to measure

the real-time power consumption of the system. A com-

plete signal will be sent to the tested system when a max-

imum training time Tmax is reached. Alternatively, if the

fine-tuning process is completed within the time limit, the

system will send a complete signal to the evaluation server

upon completion. In this case, the total training time will be

recorded. On the other hand, once the training is completed,

the evaluation server will send a stop signal to the power

meter to terminate the power measurement. The amount

of power consumed during the fine-tuning process will be

accumulated and used as the metric for energy-efficiency.

After the fine-tuning step, the evaluation server will send

the test dataset to evaluate the fine-tuned model. The sys-



tem will be switched into the inference mode and then make

predictions on this dataset. Finally, the predicted results will

be sent back to the evaluation server for task-specific perfor-

mance evaluation. The evaluation system, including both

fine-tuning and testing stages, can be deployed on Amazon

EC2 F1 instances2. Deploying the evaluation system on the

cloud can allow for flexible accesses to the system and im-

prove the scalablility.

To evaluate the overall quality of the design, a compre-

hensive metric should be adopted. Such a performance met-

ric should consider all aspects of the design, including on-

chip resource usage, training efficiency, energy efficiency,

and task-specific model performance. Among various re-

sources available on FPGAs, the most important ones for

DNN training include the look-up table (LUT), digital sig-

nal processor (DSP), block RAM (BRAM), and flip-flop

(FF). The average utilization rate of these resources (de-

noted by Mu) can be used for evaluating the on-chip re-

source usage. If the same FPGA is used for evaluation, the

lower the utilization rate, the better the design quality.

Since the total training time is recorded during the eval-

uation, the training efficiency can be represented by

Mt =
T

Tmax

(3)

where T is the time taken to train the model.

Regarding energy efficiency, it is common in the hard-

ware design to specify an energy budget Pmax. For various

application scenarios, Pmax can have different values, and

10W can be a suitable candidate for the mobile computing.

Given the energy budget, if a solution exceeds the budget,

it fails automatically. Otherwise, the score for energy effi-

ciency can be computed by

Mp =
Wtotal

Pmax × T
(4)

where Wtotal is the total power consumption during the

fine-tuning stage, which is measured by the power meter.

The task-specific metric Ms can be the top-k accuracy

value for the image and video classification tasks and the

mAP value for the object detection task. Hence, the overall

system performance can be scored as

S = 1− [wuMu + wtMt + wpMp + ws(1−Ms)] (5)

where wu, wt, wp, and ws are the weighting factors of each

individual metric respectively and wu+wt+wp+ws = 1.

The overall system performance S ranges from 0 to 1, and

the design quality is better when S is closer to 1. Since the

resource usage will be implicitly reflected in energy effi-

ciency Mp and training efficiency can be partially reflected

in model performance Ms, it is desired to assign lower val-

ues to wu and wt.

2https://aws.amazon.com/ec2/instance-types/f1/

5. Conclusion

In this paper, the advantages and disadvantages of de-

ploying DNNs on FPGAs compared to CPUs and GPUs

are summarized. FPGA is an alternative platform to train

DNNs at the edge with the constraints of energy efficiency.

However, the solutions to train DNNs on the edge devices

using FPGAs have not been well exploited. The challenges

of implementing DNN training on FPGAs mainly lie in the

complexity of resource management and the requirements

of both software and hardware design knowledge to obtain

a valid solution. Therefore, we propose to leverage the au-

tomated hardware design based on HLS to accelerate the

development cycle and to achieve a better system perfor-

mance. To evaluate the performance of the FPGA-based

DNN training systems and motivate the research in this

domain, a comprehensive performance metric is proposed

with the consideration of on-chip resource usage, training

efficiency, energy efficiency, and model accuracy. We have

identified three critical computer vision tasks, namely im-

age classification, object detection, and video classification,

and design an evaluation workflow to measure the design

quality of the solutions for these three tasks.

References

[1] Sergei Alyamkin, Matthew Ardi, Alexander C Berg, Achille

Brighton, Bo Chen, Yiran Chen, Hsin-Pai Cheng, Zichen

Fan, Chen Feng, Bo Fu, et al. Low-power computer vi-

sion: Status, challenges, and opportunities. IEEE Journal

on Emerging and Selected Topics in Circuits and Systems,

9(2):411–421, 2019.

[2] Sajid Anwar and Wonyong Sung. Compact deep con-

volutional neural networks with coarse pruning. CoRR,

abs/1610.09639, 2016.

[3] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.

Food-101 - mining discriminative components with random

forests. In David J. Fleet, Tomás Pajdla, Bernt Schiele, and

Tinne Tuytelaars, editors, European Conference on Com-

puter Vision, volume 8694 of Lecture Notes in Computer Sci-

ence, pages 446–461, 2014.

[4] Han Cai, Chuang Gan, and Song Han. Once for all: Train one

network and specialize it for efficient deployment. CoRR,

abs/1908.09791, 2020.

[5] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In In-

ternational Conference on Learning Representations, 2019.

[6] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang,

Jingxian Xu, and Shaochong Zhang. Understanding per-

formance differences of FPGAs and GPUs. In IEEE An-

nual International Symposium on Field-Programmable Cus-

tom Computing Machines, pages 93–96, 2018.

[7] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo

Noguera, Kees A. Vissers, and Zhiru Zhang. High-

level synthesis for fpgas: From prototyping to deployment.

IEEE Trans. on CAD of Integrated Circuits and Systems,

30(4):473–491, 2011.



[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Training deep neural networks with low precision

multiplications. CoRR, abs/1412.7024, 2014.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Fei-Fei Li. Imagenet: A large-scale hierarchical image

database. In IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, pages 248–255, 2009.

[10] Mark Everingham, Luc Van Gool, Christopher K. I.

Williams, John M. Winn, and Andrew Zisserman. The pas-

cal visual object classes (VOC) challenge. Int. J. Comput.

Vis., 88(2):303–338, 2010.

[11] Julian Faraone, Martin Kumm, Martin Hardieck, Peter Zipf,

Xueyuan Liu, David Boland, and Philip H. W. Leong.

Addnet: Deep neural networks using fpga-optimized multi-

pliers. IEEE Trans. Very Large Scale Integr. Syst., 28(1):115–

128, 2020.

[12] Tong Geng, Tianqi Wang, Ahmed Sanaullah, Chen Yang,

Rui Xu, Rushi Patel, and Martin C. Herbordt. Fpdeep: Ac-

celeration and load balancing of CNN training on FPGA

clusters. In IEEE Annual International Symposium on Field-

Programmable Custom Computing Machines, pages 81–84,

2018.

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,

and Yoshua Bengio. Generative adversarial nets. In

Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D.

Lawrence, and Kilian Q. Weinberger, editors, Advances in

Neural Information Processing Systems, pages 2672–2680,

2014.

[14] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and

Huazhong Yang. A survey of FPGA based neural network

accelerator. CoRR, abs/1712.08934, 2017.

[15] Song Han, Huizi Mao, and William J. Dally. Deep com-

pression: Compressing deep neural network with pruning,

trained quantization and huffman coding. In Yoshua Ben-

gio and Yann LeCun, editors, International Conference on

Learning Representations, 2016.

[16] Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jin-

jun Xiong, Kyle Rupnow, Wen-Mei Hwu, and Deming Chen.

FPGA/DNN co-design: An efficient design methodology for

iot intelligence on the edge. In Proceedings of the 56th An-

nual Design Automation Conference, page 206, 2019.

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In IEEE International Conference on

Computer Vision, pages 2980–2988, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

770–778, 2016.

[19] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. AMC: automl for model compression and ac-

celeration on mobile devices. In Vittorio Ferrari, Mar-

tial Hebert, Cristian Sminchisescu, and Yair Weiss, editors,

European Conference on Computer Vision, volume 11211,

pages 815–832, 2018.

[20] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. In

Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,

Isabelle Guyon, and Roman Garnett, editors, Advances in

Neural Information Processing Systems, pages 4107–4115,

2016.

[21] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,

Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and

<1mb model size. CoRR, abs/1602.07360, 2016.

[22] Weiwen Jiang, Xinyi Zhang, Edwin Hsing-Mean Sha, Lei

Yang, Qingfeng Zhuge, Yiyu Shi, and Jingtong Hu. Ac-

curacy vs. efficiency: Achieving both through FPGA-

implementation aware neural architecture search. In Annual

Design Automation Conference, page 5, 2019.

[23] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In IEEE

conference on Computer Vision and Pattern Recognition,

pages 1725–1732, 2014.

[24] Jakub Konecný, H. Brendan McMahan, Felix X. Yu, Peter

Richtárik, Ananda Theertha Suresh, and Dave Bacon. Fed-

erated learning: Strategies for improving communication ef-

ficiency. CoRR, abs/1610.05492, 2016.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images, 2009.

[26] Griffin Lacey, Graham W. Taylor, and Shawki Areibi. Deep

learning on FPGAs: Past, present, and future. CoRR,

abs/1602.04283, 2016.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European Conference on Computer Vision, pages 740–755,

2014.

[29] Markets and Markets. Computer vision market by com-

ponent (hardware and software, product, application,

vertical) - global forecasts to 2023. https://www.

marketsandmarkets.com/Market-Reports/

computer-vision-market-186494767.html.

Accessed: 2020.04.16.

[30] Mathew Monfort, Carl Vondrick, Aude Oliva, Alex Ando-

nian, Bolei Zhou, Kandan Ramakrishnan, Sarah Adel Bar-

gal, Tom Yan, Lisa M. Brown, Quanfu Fan, and Dan Gut-

freund. Moments in time dataset: One million videos for

event understanding. IEEE Trans. Pattern Anal. Mach. In-

tell., 42(2):502–508, 2020.

[31] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie

Marr, Randy Huang, Jason Ong Gee Hock, Yeong Tat Liew,

Krishnan Srivatsan, Duncan Moss, Suchit Subhaschandra,

et al. Can fpgas beat gpus in accelerating next-generation

deep neural networks? In ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays, pages 5–14,

2017.

[32] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian,

Yudong Tao, Maria E. Presa Reyes, Mei-Ling Shyu, Shu-

Ching Chen, and S. S. Iyengar. A survey on deep learn-



ing: Algorithms, techniques, and applications. ACM Com-

put. Surv., 51(5):92:1–92:36, 2019.

[33] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li,

Erjin Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song,

et al. Going deeper with embedded fpga platform for convo-

lutional neural network. In ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays, pages 26–35,

2016.

[34] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.

Le. Regularized evolution for image classifier architecture

search. In AAAI Conference on Artificial Intelligence, pages

4780–4789, 2019.

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.

Le. Regularized evolution for image classifier architecture

search. In AAAI Conference on Artificial Intelligence, pages

4780–4789. AAAI Press, 2019.

[36] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: towards real-time object detection with re-

gion proposal networks. In Advances in Neural Information

Processing Systems, pages 91–99, 2015.

[37] Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana

Marzoev, Christopher R. Aberger, Kunle Olukotun, and

Christopher Ré. High-accuracy low-precision training.

CoRR, abs/1803.03383, 2018.

[38] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel

Amaro, Joon Kyung Kim, Chenkai Shao, Asit Mishra, and

Hadi Esmaeilzadeh. From high-level deep neural models to

fpgas. In Annual IEEE/ACM International Symposium on

Microarchitecture, pages 17:1–17:12, 2016.

[39] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In Inter-

national Conference on Learning Representations, 2015.

[40] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

UCF101: A dataset of 101 human actions classes from

videos in the wild. CoRR, abs/1212.0402, 2012.

[41] Emma Strubell, Ananya Ganesh, and Andrew McCallum.

Energy and policy considerations for deep learning in NLP.

In Anna Korhonen, David R. Traum, and Lluı́s Màrquez, ed-

itors, Conference of the Association for Computational Lin-

guistics, pages 3645–3650, 2019.

[42] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mo-

hanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao.

Throughput-optimized opencl-based fpga accelerator for

large-scale convolutional neural networks. In ACM/SIGDA

International Symposium on Field-Programmable Gate Ar-

rays, pages 16–25, 2016.

[43] Haiman Tian, Shu-Ching Chen, and Mei-Ling Shyu. Genetic

algorithm based deep learning model selection for visual data

classification. In IEEE International Conference on Informa-

tion Reuse and Integration for Data Science, pages 127–134.

IEEE, 2019.

[44] Yuexuan Tu, Saad Sadiq, Yudong Tao, Mei-Ling Shyu, and

Shu-Ching Chen. A power efficient neural network imple-

mentation on heterogeneous FPGA and GPU devices. In

IEEE International Conference on Information Reuse and

Integration for Data Science, pages 193–199. IEEE, 2019.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008, 2017.

[46] Shreyas Kolala Venkataramanaiah, Yufei Ma, Shihui Yin,

Eriko Nurvitadhi, Aravind Dasu, Yu Cao, and Jae-sun Seo.

Automatic compiler based FPGA accelerator for CNN train-

ing. In Ioannis Sourdis, Christos-Savvas Bouganis, Carlos

Álvarez, Leonel Antonio Toledo Dı́az, Pedro Valero-Lara,

and Xavier Martorell, editors, International Conference on

Field Programmable Logic and Applications, pages 166–

172, 2019.

[47] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. FBNet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 10734–10742, 2019.

[48] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

Chengqi Zhang, and Philip S. Yu. A comprehensive survey

on graph neural networks. CoRR, abs/1901.00596, 2019.

[49] Qingcheng Xiao, Yun Liang, Liqiang Lu, Shengen Yan, and

Yu-Wing Tai. Exploring heterogeneous algorithms for ac-

celerating deep convolutional neural networks on fpgas. In

Proceedings of the 54th Annual Design Automation Confer-

ence 2017, pages 1–6, 2017.

[50] Guandao Yang, Tianyi Zhang, Polina Kirichenko, Jun-

wen Bai, Andrew Gordon Wilson, and Christopher De Sa.

SWALP : Stochastic weight averaging in low precision train-

ing. In Kamalika Chaudhuri and Ruslan Salakhutdinov, ed-

itors, International Conference on Machine Learning, vol-

ume 97, pages 7015–7024, 2019.

[51] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan,

Bingjun Xiao, and Jason Cong. Optimizing fpga-based

accelerator design for deep convolutional neural net-

works. In ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pages 161–170, 2015.

[52] Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou,

Peichen Pan, and Jason Cong. Caffeine: Toward uniformed

representation and acceleration for deep convolutional neural

networks. IEEE Trans. on CAD of Integrated Circuits and

Systems, 38(11):2072–2085, 2019.

[53] Min Zhang, Linpeng Li, Hai Wang, Yan Liu, Hongbo Qin,

and Wei Zhao. Optimized compression for implement-

ing convolutional neural networks on fpga. Electronics,

8(3):295, 2019.

[54] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 6848–6856. IEEE

Computer Society, 2018.

[55] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing,

Jeng-Hau Lin, Mani Srivastava, Rajesh Gupta, and Zhiru

Zhang. Accelerating binarized convolutional neural net-

works with software-programmable fpgas. In ACM/SIGDA

International Symposium on Field-Programmable Gate Ar-

rays, pages 15–24, 2017.

[56] Barret Zoph and Quoc V. Le. Neural architecture search

with reinforcement learning. In International Conference on

Learning Representations, 2017.


