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Abstract

The skin is the exterior interface of the human body with the environment. Despite its harsh physical landscape, the skin is
colonized by diverse commensal microbes. In this review, we discuss recent insights into skin microbial populations,
including their composition and role in health and disease and their modulation by intrinsic and extrinsic factors, with a
focus on the pathobiological basis of skin aging. We also describe the most recent tools for investigating the skin microbiota
composition and microbe-skin relationships and perspectives regarding the challenges of skin microbiome manipulation.
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Introduction
The skin is the largest organ and the outermost interface

between the human body and its environment. For de-

cades, the skin surface was estimated to have an area as

high as 2 m2, but recently, by taking into account the ap-

pendages, the estimate has increased to as high as 25 m2

[1]. Many regional differences overlap in the skin topog-

raphy. For instance, temperature and humidity are

higher at vaulted sites, such as the groin or armpit (ap-

proaching 37°C, the body’s core temperature) and lower

at the body’s extremities (fingers and toes, approximately

30°C). Sebaceous gland density is an important variable

factor involved in the secretion of many lipidic com-

pounds, including fatty acids, that contribute to the acid-

ification of the skin pH, which varies between 4.2 and

7.9 depending on the site of measurement [2].

These characteristics induce many possibilities for creat-

ing different ecological niches housing numerous com-

mensal bacteria as well as fungi, viruses, archaea, and

mites [3] in a network that varies in terms of its density

and composition. Altogether, these microorganisms define

the skin microbiota. According to Grice et al. [4], skin

microbiota diversity may be higher than gut microbiota

diversity. The vulnerability of this microbe network lies in

the many intrinsic and extrinsic factors that affect it. The

implications for wound healing and protection against po-

tential pathogens or environmental conditions highlight a

crucial role of skin homeostasis. Indeed, recent studies

have identified associations between shifts in these com-

mensal populations and physiological changes, such as

aging and diverse dermatological diseases, not only in

humans but in all vertebrates [5, 6].

With the recent advent of molecular biology and next-

generation sequencing (NGS) as tools for microbiological

identification, knowledge about the skin microbiota has

grown exponentially. However, culture methods remain

an essential tool for studying the characteristics of micro-

organisms in vivo. The manipulation of the skin micro-

biota represents a considerable challenge in clinical and

cosmetic practice. This review discusses recent findings

regarding the skin microbiome and its role in human

health, aging, and disease.

Skin microbiota composition
Bacteria

Byrd et al. [3] reported the top ten bacterial species

found on the skin through site area surveys in healthy

volunteers based on high-throughput gene sequencing
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analysis. Human skin samples were found to be domi-

nated by gram-positive bacteria belonging to the genera

Staphylococcus spp., Corynebacterium spp., Enhydrobac-

ter spp., Micrococcus spp., Cutibacterium spp., and Veil-

lonella spp. A culture-based study by Myles et al. [7]

that focused on the culturable fraction of gram-negative

bacteria (GNB) from the human skin identified Roseomo-

nas mucosa, Pseudomonas spp., Acinetobacter spp., Pan-

toea septica, and Moraxella osloensis as commensal

residents. Other studies have verified that gram-negative

bacteria (GNB), including Enterobacteriaceae, nonfer-

menting GNB, and anaerobes, are underestimated skin

commensal organisms but are also part of the transient

fraction of the skin microbiota [8, 9].

Candidate phyla

To date, few studies have reported the existence of

TM7x (Saccharibacteria spp.) [10, 11] and TM6 se-

quences from skin samples [12]. These “candidate phyla”

are considered to be not-yet-culturable bacteria and con-

stitute a field of growing interest because such organ-

isms are expected to be linked to pathologies such as

periodontitis [13].

Archaea

As part of the Human Microbiome Project, Moissl-

Eichinger et al. [14] focused their research on the detec-

tion of overlooked Archaea on human skin by analyzing

13 samples collected from healthy torso skin. Thau-

marchaeota and Euryarchaeota were shown to be car-

ried by all the human subjects analyzed [14, 15].

Phylogenetic analysis of Thaumarchaeota placed them

close to ammonia-oxidizing archaea from the soil. More-

over, although it remains to be proven, the role of these

archaea could be explained by chemolithotroph ammo-

nia turnover, which could influence the pH regulation of

the human skin and therefore the natural protective bar-

rier of the body [15, 16].

Viruses

Within the viral fraction found on the skin, bacterio-

phages are predominant. The lytic activity of bacterio-

phages has been linked to the modulation of bacterial

populations, and thus, bacteriophages participate in the

homeostasis of the skin microbiota. Through culture-

based approaches and genomic analysis of skin samples,

Liu et al. [17] revealed an increased frequency of C.

acnes phages isolated from healthy individuals compared

to patients with Acne vulgaris and suggested that phages

may play a role in modulating skin bacterial populations.

Metagenomic shotgun sequencing analysis suggests that

Cutibacterium and Staphylococcus phages are the most

abundant skin phages, while other phages, such as

Streptococcus and Corynebacterium phages, are also

present but at lower relative abundances [18]. Byrd et al.

[3] reported the top ten viruses found on the skin.

Phages were identified as well as Acheta domestica; Den-

sovirus; Alphapapillomavirus; Human papillomavirus

(β), (γ) and (μ); Merkel cell polyomavirus; Molluscum

contagiosum virus; Polyomavirus HPyV7; Polyomavirus;

HpyV6 RD114 retrovirus; and Simian virus. Papillomavi-

ruses and Molluscum contagiosum are known to cause

dermatological lesions, such as warts. Merkel cell poly-

omavirus is implicated in the development of carcinoma.

The question of the underappreciated abundance of

phages was discussed recently by Hannigan et al. [19].

Whether the presence of these phages plays a role in

skin microbiota dysbiosis or the expression of virulence

or antibacterial genes needs to be further studied.

Eukaryota: fungi and demodex

To date, fungi, including Malassezia, Cryptococcus, Rho-

dotorula, and Candida species, have been identified as

human skin commensal organisms. Culture-based stud-

ies have identified Malassezia spp. as the main genus of

commensal skin fungi. The fungal community compos-

ition, unlike the bacterial fraction, was previously con-

sidered to be similar over all body areas [3]. However,

recent studies showed that Malassezia spp. predomi-

nated at the central sites of the body and arms, while

foot sites were colonized by a more diverse combination

of fungi. Demodex are mites of the family Demodicidae

and live in seborrheic areas of the skin, such as the face

and hair [3, 18, 20]. Demodex are also widely found on

the eyelids and the nasal ala. Two species have been

identified from human samples: Demodex folliculorum

and Demodex brevis [21], but such organisms remain

difficult to breed. Notably, the microbiota of these or-

ganisms has been studied to increase our knowledge

about how they are linked with cutaneous diseases, such

as papulopustular rosacea [22].

Role of the skin microbiome
The maintenance of skin homeostasis plays a protective

role against potential pathogens and environmental

issues

The skin microbiome contributes to the barrier function

of the skin and ensures skin homeostasis. The secretion of

protease enzymes by skin microbes is involved in the des-

quamation process and stratum corneum renewal. Sebum

and free fatty acid production are involved in pH regula-

tion [23]. The secretion of lipase enzymes is involved in li-

pidic film surface breakdown. In addition, urease enzymes

are implicated in urea degradation. Other roles of the

microbiota include the production of biofilms, bacterio-

cins, and quorum sensing [24, 25]. Moreover, the skin

microbiota plays an important role in protecting against

potential pathogenic microorganisms by competition [26,
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27] and antimicrobial peptide (AMP) production by com-

mensal bacteria [28, 29] or Malassezia fungi, which pro-

duce a range of indoles that inhibit many other yeasts and

molds [30].

Training and communication with the immune system (Fig. 1)

Skin commensal bacteria have a close relationship with

host immune cells from the beginning of their life, and

skin resident T cells are thus trained to respond to po-

tential transitory pathogenic bacteria [20, 31]. Meisel

et al. [23] showed that the expression of 2820 genes was

modulated in mice in response to microbial colonization.

A notable proportion of these genes was related to the

host immune response and showed roles in processes

such as cytokine production, the complement cascade,

and the signaling and homing of T cells. A specific strain

of Staphylococcus epidermidis was shown to be able to

produce 6-N-hydroxyaminopurine, which may confer

protection against skin cancer [32].

Wound repair

As described above, skin commensal organisms are in

constant crosstalk with the immune system and are thus

also involved in wound healing. Leonel et al. [33] synthe-

tized the current knowledge of this topic, which appears

to be conflicting. For example, the absence of com-

mensal skin microorganisms has been shown to have a

positive effect on wound closure during healing [34]. On

the other hand, in another study, the presence of

Staphylococcus epidermidis was noted to be a positive

factor related to unconventional repair mechanisms spe-

cific to commensal bacteria via the recruitment of regu-

latory CD8 T cells [35]. This finding is consistent with

the beneficial skin microbiota effect noted by Lai et al.

[36] and the negative effect of skin microbiota dysbiosis

[37, 38]. Future investigations are needed to elucidate

the influence of the skin microbiota in this process,

given the complexity of its definition and its

heterogeneity.

The skin microbiota composition depends on
many factors (Fig. 2)
Intrinsic factors

Skin site, “biogeography” factor

Grice et al. [4] analyzed 20 different skin sites in 10

healthy humans. They found that Propionibacteria spe-

cies and Staphylococci species predominated at seba-

ceous sites, and Corynebacteria species predominated at

moist sites, although Staphylococci species were also rep-

resented. A mixed population of bacteria resided at dry

Fig. 1 Skin microbiota, its roles, and its relationship with the immune system. The skin microbiota is composed of bacteria, fungi, archaea, viruses, and
mites (Demodex) that are related to the immune system through dialog with resident dendritic cells resulting from complement activation. a The
immune system is enhanced by the quorum-sensing process between bacterial populations, which can limit the overgrowth of potential pathogens,
or by the production of certain antibiotics, such as lugdunin (c). Microbiotic homeostasis is dependent on the production of antimicrobial peptides
(AMPs) both by bacteria themselves and by host cells, such as keratinocytes and sebocytes (b and d).

Boxberger et al. Microbiome           (2021) 9:125 Page 3 of 14



sites, with a greater prevalence of β-Proteobacteria and

Flavobacteriales.

Intra- and interpersonal variability

Costello et al. showed that the phylogenetic diversity of

different skin sites was greater than that of communities

in the gut, the external auditory canal, or the oral cavity

[39]. Interpersonal variation was found to be greater

than intrapersonal variation over time. More recently,

these observations have been supported by Perez et al.

[40], who showed that the arms present significantly less

intragroup variation than the axilla or the scalp, and the

axilla exhibits the greatest intragroup variation.

Ethnicity

Ethnicity has been shown to contribute to skin micro-

biome variation and is partly linked to lifestyle. Indeed,

Harker et al. [41] reported the differences in the axillary

microbiota, such as significantly lower abundances of

Staphylococcus species and greater abundances of Cor-

ynebacterium species, linked to different genotypes of

the gene ABCC11. Between A/A and A/G or G/G indi-

viduals, dimorphism was observed between East Asian

people and European or African people. Leung et al. [42]

indicated that the microbial composition of Chinese

people was different from that of other ethnic groups

through analysis of metagenomics data from different

studies analyzing the palms of hands. Perez et al. [40]

showed that the arm microbiota of African American

men was relatively homogenous and significantly differ-

ent from those of all other groups, including the

African-continental group. Similarly, the axillary micro-

biota of East Asian men was highly homogenous and

significantly differed from that of other groups. Li et al.

[43] found that a unique microbial composition was as-

sociated with East Asians compared to Caucasians and

Hispanics. East Asians presented higher levels of total

bacteria and proteobacteria than the other groups. The

Corynebacterium species distribution was analyzed, and

Corynebacterium variabile was found to be present ex-

clusively in Hispanics, while Corynebacterium kroppen-

stedtii was only detected in the East Asian group.

Fig. 2 Factors influencing the composition and function of the human skin microbiota and its function. The skin microbiota is shaped by numerous
factors: extrinsic (such as lifestyle that embodies occupation, hygiene routine, use of drugs and cosmetics) and intrinsic (genetics, aging, sex, site of the
body, etc.) These factors influence the roles of the skin microbiota, implying protection against potential pathogens or climate perturbation as well as
the maintenance of skin integrity.
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However, the definition of ethnicity in the era of

globalization with permanent migratory crossings re-

mains elusive.

Gender

Physiological differences between male and female skin

environments, such as differences in hormone metabol-

ism, the perspiration rate, and skin surface pH, have been

described. Fierer et al. [44] found significant differences

between men and women in terms of alpha diversity, but

these differences seemed to be related to specific sites and

to affect specific age groups. The hand microbiota of

women was characterized by greater alpha diversity than

that of men, but no specific taxa were found. In terms of

relative abundance, they showed that Cutibacterium and

Corynebacterium were more abundant in men than in

women. In women, Enterobacteriales, Moraxellaceae, Lac-

tobacillaceae, and Pseudomonadaceae were more abun-

dant than in men. Oh et al. [45] observed no sex-

associated differences through the study of males and fe-

males between the ages of 2 and 40 years regardless of

their age based on swabs of the antecubital and popliteal

fossae, the volar forearm, and the nares. By studying the

axillary vault, Callewaert et al. [46] found that two main

groups could be distinguished by characterizing whether

the predominantly colonizing genus was Staphylococcus

or Corynebacterium. Females predominantly clustered

within the Staphylococcus cluster, whereas males clustered

more frequently with the Corynebacterium cluster. Prohic

et al. [47] did not find a significant influence of sex by

studying the distribution of Malassezia species, whereas a

significant impact on archaeal diversity and the archaeal

community composition was observed [14]. Leung et al.

[48] showed that males were characterized by higher

abundances of Cutibacterium, Staphylococcus, and Enhy-

drobacter, whereas Streptococcus was more abundant in

the female population. Jo et al. [49] suggested that sex

may affect the mycobiome structure during sexual matur-

ation. The Epicoccum and Cryptococcus genera were

found at sebaceous sites in males, whereas Malassezia was

enriched in females. Zhai et al. [50] showed that males

presented greater species richness than females, but the

sex differences in the community structure were only

present in certain age groups and at particular skin sites.

These differences could be found on the upper back of ad-

olescents and elderly people and the cheeks of young

adults. Li et al. [43] observed that males presented greater

amounts of Corynebacteria than females, though this dif-

ference was not significant. Moreover, males exclusively

hosted Corynebacterium amycolatum and Corynebacter-

ium kroppenstedtii, in contrast to females, who hosted

only Corynebacterium urealyticum and Corynebacterium

variabile. By conducting a study based on cultured bac-

teria, Shami et al. [51] found no significant effect of sex on

the number of bacteria isolated from four groups (young

people, elderly people, males, and females).

Aging

Although it is known that the skin microbiome is rela-

tively stable over time in the medium term [18], aging is

known to be one of the main factors influencing the skin

microbiota composition. In 2019, Dimitriu et al. [52]

sampled 495 people of various origins at four skin sites

and the mouth and considered aging to be the fourth

most important factor affecting skin microbiome vari-

ation following lifestyle, physiology, demographic propri-

eties, and pigmentation.

Indeed, aging is associated with many shifts in skin fea-

tures, such as spot and wrinkle appearance, modified seba-

ceous gland activity, and dermal compound production

[53] (Fig. 3), which impact the previously established eco-

logical conditions for cutaneous microorganisms.

Several studies have described higher bacterial alpha

diversity in skin samples in elderly people. Somboonna

et al. [54] studied the skin bacterial composition of 30

healthy Thai females aged 19 to 57 years at the same

sites and found that Planctomycetes and Nitrospirae

were more prevalent in the teenage group. A Japanese

cohort was analyzed in 2017 by Shibagaki et al. [55],

who revealed 38 different bacterial species, including

many oral bacteria, which significantly differed between

the two age groups with skin site dependency. They

showed a reduction in the relative abundance of the

dominant skin genus Cutibacterium in the cheek, fore-

arm, and forehead microbiota of older adults; an in-

creased proportion of Corynebacterium in the older

group on the cheek and forehead; and an increased pro-

portion of Acinetobacter on the scalp in the older group.

In another study, Jugé et al. [56] analyzed the forehead

skin microbiota of 34 healthy Western European

women. They observed an increase in Proteobacteria

and a decrease in Actinobacteria populations on older

skin. Within the latter phylum, there was a significant

Fig. 3 Skin features associated with aging
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increase in the relative abundance of Corynebacterium

and a decrease in the relative abundance of Cutibacter-

ium. These data are consistent with Shibagaki et al. [55],

who described the previously identified phenomenon of

decreased production of sebum associated with aging,

which could induce a loss of nutrients available for such

bacteria and induce a spread of opportunists. Dimitriu

et al. [52] also demonstrated that two mutually exclusive

Corynebacterium OTUs could be correlated with skin

aging. Indeed, a Corynebacterium OTU with a similar

trend to Corynebacterium kroppenstedti displaced an-

other Corynebacterium OTU. In 2014, Prohic et al. [47]

collected samples from the trunk and scalp of 100

people by scraping and observed variation in Malassezia

species with age. Malassezia furfur was characteristic of

the trunk skin of children, whereas Malassezia restricta

was predominant on the scalp of 21- to 35-year-old indi-

viduals. The Malasseiza population was more prominent

in the 36- to 50-year-old group, and M. sympodialis was

the predominant species on the trunk skin in older

subjects.

Among less-studied skin commensal microorganisms,

such as Demodex, Jacob et al. [21] showed that the

prevalence of Demodex mites on the skin was positively

correlated with aging and reached up to 95% in people

over 71 years old. For Archaea, Moissl-Eichinger et al.

[14] showed a greater abundance in human subjects

older than 60 years compared to middle-aged human

subjects.

Extrinsic factors

Mode of delivery

In newborns, bacterial skin colonization has been shown

to be influenced by the mode of delivery, the postpartum

environment, and the influence of medical staff [57–59].

This primary microbiota is transitory and largely influ-

enced by environmental factors and subsequently

evolves towards a microbiota that is close to that of

adult skin, particularly to the microbiota of hydrated

zones. From the age of 3 months, regionalization of the

skin microbiota of the child is observed.

Lifestyle, hygiene routine, and cosmetics

Differences are observed in the skin microbiome of people

living in different environments (rural or urban) [60–62],

which are also correlated with the presence of domestic ani-

mals [63]. In contrast, the microbiota of people who live to-

gether tends to converge, even if they are not genetically

related or intimate with each other [64]. Staudinger et al.

[65] showed that the use of makeup, including foundation

and powder, significantly increased community diversity on

the forehead skin. The beneficial effects of some cosmetic

compounds, such as preservatives, against the growth and

biofilm formation of cutaneous S. aureus or pathogenic C.

acnes have been described [66]. These chemical compounds

are also involved in the inhibition of commensal bacteria sur-

vival [67]. Emulsifiers have been shown to favor the growth

of potential pathogens, such as S. aureus [68]. Other studies

have revealed the modulation of the diversity of archaeal and

bacterial populations, and chemical skin compounds are cor-

related with changes in the hygiene/cosmetic routine (use of

deodorant, moisturizer, or “historical” soap formulated with

potash). Such shifts could result in an increased nutrient sup-

ply from these products [69–72]. These results led to the fil-

ing of numerous patents aimed at stabilizing or enriching the

skin microbiota with beneficial bacteria (e.g., Jessica Wilson,

“Personal cleansing compositions and methods of stabilizing

the microbiome” 2016 Patent US20190053993A1; Greg

Hillebrand, “Method and topical composition for modifica-

tion of a skin microbiome” 2013 Patent EP3049533A1).

Antibiotics

Zhang et al. [37] demonstrated that the oral intake of

vancomycin decreases the bacterial density and alters

the bacterial composition in skin wounds, which may

contribute to delayed wound repair in mice. In accord-

ance with these data, SanMiguel et al. [73] showed that

topical antibiotics can alter the resident skin bacteria for

several days and implicated a decrease in the commensal

Staphylococcus spp. population, which is known to com-

pete for colonization with pathogenic Staphylococcus

aureus. Recently, Park and Lee [74] found that oral ad-

ministration of doxycycline was linked to a decrease in

Cutibacterium acnes relative abundance, an increase in

Cutibacterium granulosum, and thus an improvement in

the clinical signs in 20 acneic patients, highlighting the

implications of antibiotic use for the modulation of the

skin microbiota.

Geographical location, climate, and seasonality

A recent study showed a greater benefit of an alpine cli-

mate compared to a maritime climate, which differ in

pollution and UV radiation levels, for the treatment of

atopic dermatitis in children [75]. This observation

needs to be confirmed in subjects with healthy skin [76].

Other authors showed that after seawater exposure, ex-

ogenous bacteria were present on the skin for at least 24

h after swimming and that ocean water exposure re-

moved normal resident bacteria from the human skin.

Likewise, elevation, which is related to extreme environ-

mental conditions, has been shown to disturb skin

microbiome stability [77]. Moreover, airborne pollution

[78] has been shown to degrade skin microbial popula-

tion diversity.

Diseases
Table 1 synthetizes the identified associations with com-

mensal community dysregulation related to dermatological

Boxberger et al. Microbiome           (2021) 9:125 Page 6 of 14



pathologies, which encompass widespread conditions, such

as acne vulgaris and seborrheic or atopic dermatitis, and less

common conditions, such as vitiligo or lupus erythematosus.

How to investigate the skin microbiota
Sampling method

The uniqueness of skin characteristics makes it neces-

sary to standardize and validate the methods used in

microbiome research, which would allow comparisons

between different studies [27]. The first parameter to

keep in mind is the study design, which comprises the

strict screening of the subjects involved in the study and

the collection of all information that could influence the

microbiome variation. The second parameter is sample

processing. Samples obtained from swabbing, scraping,

and tape strips provide information on the superficial

microbiota composition, whereas biopsies offer the op-

portunity to study microorganisms that could inhabit

the deepest layers of the skin [95]. Recently, Ogai et al.

[96] completed a comparison between these sampling

methods and showed no difference in the results of

studying the microbiota by using swabs or tape strips for

NGS analysis, but tape strip sampling was shown to be

superior when the results were obtained by culture.

Verbanic et al. [97] noted the necessity of improving the

preparation of samples obtained via the swabbing

Table 1 Dermatological pathologies associated with the modification of the skin microbiota

Pathology Microorganism correlated with pathology References

Acne vulgaris Shifted microbial composition implying Cutibacterium acnes. Platsidaki et al. [79]; O’Neil and
Gallo [80]

Atopic dermatitis Malassezia. Hiruma et al. [81]

Increased Staphylococcus aureus and reduced quantities of Cutibacterium acnes and
Lawsonella clevelandensis.

Francuzik et al. [82]

Seborrheic dermatitis Acinetobacter, Staphylococcus, and Streptococcus predominated at lesioned sites. Tanaka et al. [83]

Pityriasis versicolor Malassezia spp. Prohic et al. [47]; Moallaei et al.
[84]

Blepharitis Chalazion
Pterygium

Demodex. Tarkowski et al. [85]

Papulopustular
rosacea

Increasing population of Demodex mites. Murillo et al. [22]

Demodex microbiota.

Proteobacteria and Firmicutes population increased and Actinobacteria population
decreased.

Psoriasis Depending on sampling method and sites. Visser et al. [86]; Chang et al.
[87]; Stehlikova et al. [88]

Swabs and biopsy samples from psoriatic lesions were enriched in Firmicutes.

Increased abundance of the genus Streptococcus and a low representation of
Cutibacterium, while presenting discordant results on the representation of Staphylococcus.

Swabs from psoriatic lesions on the back and the elbow show increased abundance of
Brevibacterium spp. and Kocuria palustris and Gordonia spp.

Significantly higher abundance of the fungus Malassezia restricta on the back and
sympodialis on the elbow.

Occurrence of Kocuria, Lactobacillus, and Streptococcus with Saccharomyces.

Staphylococcus aureus found to be more abundant in both psoriatic nonlesional and
lesional skin while Staphylococcus epidermidis, Cutibacterium acnes, and Cutibacterium
granulosum were more abundant in healthy skin. Incidence on the polarization of the
Th17.

Vitiligo Decreasing diversity and lower association between microbial communities in affected
sites.

Ganju et al. [89]

Skin cancers Production of AhR ligand by Malassezia spp. Gaitanis et al. [90]

Skin bacterial load and AMP expression. Natsuga et al. [91]

Actinic keratosis
Cutaneous squamous
cell carcinoma

Propionibacterium and Malassezia at higher relative abundances in healthy tissues.
Staphylococcus aureus in relatively more abundant in lesional tissues.

Wood et al. [92]

Diabetic foot ulcer Decreasing population of Staphylococcus species, increased population of S. aureus,
increased bacterial population

Redel et al. [93]

Lupus erythematosus Decreased abundance and uniformity of the microbial populations. Staphylococcus
epidermidis through the Staphylococcus aureus infection pathway.

Huang et al. [94]
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method so that a sufficient DNA yield is obtained for

100% of samples (the percentage is 25% with traditional

preparation). Pedrosa et al. [98] noted that direct plate

contact with the skin for the recovery of Malassezia spe-

cies was more convenient than the tape stripping

method.

Transport and storage conditions

Kong et al. [27] noted that immediate freezing at −80°C

after sampling was generally preferred and that freeze-

thaw cycles must be avoided. The optimization of sam-

ple collection and processing through the use of a pro-

tectant medium (transport medium that conserves

viability and prevents the growth of microorganisms)

and the control of storage temperature and time have a

considerable effect on the results obtained by analyzing

stool samples [99, 100]. Such conclusions remain to be

assessed specifically in relation to the improvement of

skin microbiota analysis.

Microorganism identification methods: culture vs.
nonculture tools
The culture of microorganisms is a historical method for

studying their characteristics and properties. With recent

advances in molecular biology, this fundamental tool has

been shelved in favor of next-generation sequencing

methods, which are more sensitive and faster than cul-

ture. However, next-generation sequencing does not

provide all the information needed to understand the

habits of microorganisms in vivo; for example, it pro-

vides no information about the viability of the detected

organisms [98]. A goal that is as important as the im-

provement of sampling and storage methods is the im-

provement of culture parameters in efforts aimed at

isolating the viable and culturable fraction of the skin

microbiome, which presents its own particularities and

shows certain consistent traits [64]. For example, Myles

et al. [7] showed that when using a low-nutrient culture

medium (R2A), inhibition of the gram-positive fraction

by treating the sample with vancomycin and a reduced

incubation temperature led to the isolation of the gram-

negative fraction of the skin microbiota. Moreover, other

parameters of the protocol could be adjusted to obtain

more efficient culture media for the growth of diverse

skin microorganisms and to improve the methods of col-

ony identification [101, 102]. In these efforts, the cul-

turomics method was improved by Lagier et al. [103],

which allowed the discovery of multiple unknown bac-

teria. By using these methods (i.e., the combination of

multiple culture media and conditions), Timm et al.

[104] collected more than 800 strains, including more

than 30 bacterial genera and 14 fungal genera. However,

because this technique requires fastidious and time-

consuming work, an increasing number of scientific

teams have reinstated this method uniquely or with the

use of complementary metagenomic tools [30, 105, 106].

The democratization of metagenomic technologies has

induced a shift in interest related to human-associated mi-

croorganisms. The skin microbiota has been largely

underestimated in terms of diversity, which has persisted

because of culture techniques that induce bias due to the

growth of microbes in artificial settings [106]. To apply

this kind of method for skin microbiome analyses, particu-

lar attention is needed at each step of the protocol, includ-

ing the DNA extraction method, library construction,

sequencing step (e.g., primer selection, the chosen plat-

form [88], and the use of blanks and controls), and subse-

quent analysis (e.g., the selected database and software)

[27, 106–108]. Furthermore, advanced methods to isolate

and cultivate difficult strains by reverse genomics have

been recently proposed [109].

Future insights
Study of the microbe-skin relationship: the development

of 3D skin models

Many biological models have been produced in an at-

tempt to reconstitute the skin-microbiome interaction

with different complexity levels. The first studies con-

sisted of culturing human skin cells, mainly keratino-

cytes or sebocytes, with bacteria or their metabolites.

The main goal of these studies was to understand the

pathways involved in pathogen infections or commensal

benefits for the skin. Keratinocytes incubated with sterile

filtered Staphylococcus aureus medium showed increased

production of proteolytic enzymes, followed by the deg-

radation of skin barrier proteins, such as desmoglein-1

and filaggrin [110]. In contrast, some metabolites pro-

duced by S. epidermidis could increase the keratinocyte

production of antimicrobial peptides via Toll-like recep-

tor 2 activation [36].

Using living bacteria, several studies showed that im-

mediately after inoculation, different Staphylococcus

strains showed an increase in epidermal tight junctions

(TJs) [111, 112]. However, after several hours of

colonization, S. aureus decreased the number of TJs and,

subsequently, that of two other types of epidermal junc-

tions, adherent junctions (AJs) and desmosomes,

whereas under the same conditions, S. epidermidis

showed a minor effect. Other studies focused on cell via-

bility and inflammation revealed that pathogenic strains

such as S. aureus or C. acnes or their metabolites in-

duced cell cytotoxicity and increased the production of

pro-inflammatory cytokines in skin cells [113, 114].

Skin commensal organisms have also been incubated

with skin metabolites to mimic the crosstalk between

skin cells and the skin microbiota. As the largest neuro-

endocrine organ of the human body, the skin produces

neurotransmitters, especially stress mediators, including
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catecholamines or substance P. S. epidermidis, S. aureus,

and C. acnes can detect these molecules via specific re-

ceptors and respond with increased biofilm formation or

production of toxins, resulting in a more virulent pheno-

type that causes more skin cell damage [115, 116].

Polymicrobial biofilms formed by a mixture of com-

mensal strains (Staphylococcus epidermidis and Micro-

coccus luteus) and pathogens (Staphylococcus aureus and

Pseudomonas aeruginosa) were also used to study the in-

teractions among commensal organisms, pathogens, and

human keratinocytes. The authors observed that the

commensal organisms reduced the damage caused to

the keratinocyte monolayer by pathogens, reduced bio-

film thickness, and formed a layer between the keratino-

cytes and pathogens [117].

Due to the faster growth rate of bacteria than human

cells, 2D models cannot be maintained for more than 24

h. Moreover, cells cultivated in monolayers do not re-

flect the skin surface. These cells are more reflective of

the conditions in wounds or defective skin barriers.

These limitations have led to the development of more

complex models that better reproduce the skin barrier

with its dry environment to study long-term interactions

between the skin and its microbiota.

Thus, 3D skin models have been colonized with bac-

teria. These models are now widely used for dermato-

logical and cosmeceutical studies. The simplest model,

the reconstructed human epidermis (RHE), is composed

of primary human keratinocytes grown on a decellular-

ized dermis or a porous membrane. Air-liquid culture

allows the formation of a fully differentiated epidermis

and the formation of a functional barrier. When a living

dermis is also present, the model is referred to as full-

thickness skin (FT-skin).

Many studies have used these models to study the bac-

terial, fungal, or yeast infection process. Using an RHE

model, Lerebour et al. [118] described differential adhe-

sion properties between S. aureus, a hydrophilic strain,

and S. epidermidis, a relatively hydrophobic strain, sug-

gesting that rendering the skin surface more hydrophobic

would restrict microbial adhesion. When the epidermis is

locally removed, either by punching or thermal injury,

these models can reproduce a skin wound environment by

making the dermis accessible to bacteria. These models

have been widely used to study the infection process by

following microbial growth and tissue damage [119–126].

These infection models have mostly been used to identify

potential antibacterial treatments. For example, when a

biofilm-forming S. aureus was inoculated at high density

(i.e., >107 CFU) onto a 3-mm-punched FT-skin model,

plasma treatment reduced the number of adherent col-

onies after 24 h [119]. In another study, wound infection

with methicillin-resistant S. aureus (MRSA) after thermal

injury in an FT-skin model revealed significant growth of

MRSA after 24–48 h. Skin exposure to MRSA increased

the expression of inflammatory mediators, such as TLR2,

IL-6, and IL-8, and the antimicrobial proteins human β-

defensin-2, human β-defensin-3, and RNAse7. Moreover,

locally applied mupirocin effectively reduced MRSA

counts in a thermal wounded skin model by more than

99.9% within 24 h [120].

More recently, with the emerging role of the skin

microbiome in skin health, 3D models have been colo-

nized with commensal bacteria in the absence of any

stress or injury. Unique commensal bacterial strains,

among which S. epidermidis and C. acnes are the most

represented, have been inoculated and cultivated for up

to 4 days on the skin surface [127, 128]. The main end-

point in these studies is bacterial growth or bacterial

competition. For example, C. acnes seemed to better

colonize immature skin, under the differentiated epider-

mis. Competition was observed when S. epidermidis and

C. acnes were inoculated concomitantly, with S. epider-

midis decreasing C. acnes growth, while the inverse was

not true [128].

Most of the published research that has used 3D

models to investigate host-microbiota interactions has

thus focused on the impact of individual species.

Collecting bacteria from the skin, which is a very poor

environment, and culturing them in conventional cell

culture media probably affect their metabolism and may

not reflect the natural crosstalk occurring at the skin

surface.

There is a clear need to develop and improve experi-

mental strategies for the colonization of 3D skin models

with complete microbiota communities, including those

directly isolated from individual humans, to more closely

mimic the in vivo skin-microbiota interplay.

In 2019, Cenizo et al. [129] sampled the skin micro-

biota of the inner forearm of a woman and immediately

inoculated the sample onto the surface of a 3D skin

model. The model was followed for 7 days in culture

and showed the stabilization of the number of living

bacteria at a density similar to what was found on the

collected skin. The microbiota-colonized model showed

higher proliferation of the epidermis basal layer and in-

creases in epidermal junctions and desquamation. This

model also showed higher time stability than the same

model colonized with a unique strain in which the rapid

growth of S. epidermidis destroyed the tissue. These re-

sults suggested that the interactions occurring within di-

verse microbiota could prevent the outgrowth of single

strains. Such models offer ways to study the impact of

external factors on the composition of the skin micro-

biota as well as its implications for the skin response to

these factors.

Even more complex models may help to establish 3D

skin models as a replacement for animal models in the
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future. 3D skin models can include immune, nervous,

pigmentation, and endothelial cells [124, 130, 131].

These models can be bioprinted to reduce their produc-

tion time and improve reproducibility [132, 133] and

can be inoculated with swabs collected from pathological

skin lesions in which the microbiota is known to play a

role (e.g., atopic dermatitis, psoriasis, or acne) as well as

offer new drug evaluations.

Transplantation of skin microbiota

By analogy with fecal transplantation, which is a power-

ful therapeutic tool for digestive disorders [134, 135],

skin microbiota transplantation studies are moving for-

ward [136–138] and could provide a promising approach

for the treatment of diseases, such as atopic dermatitis.

Transplantation as a tool for correcting unsuitable arm-

pit odor is currently a possibility under consideration.

One process is focused on the removal of the malodor-

causing-microbiome by the means of antibiotics, which

is then replaced by a healthy nonodorous axillary micro-

biome. A second process consists of the application of

probiotics, such as lactic bacteria or skin bacilli, but their

incapacity to durably colonize the niches induced the

need to find other nonodor-causing commensals that

could inhibit unsuitable ones, notably Staphylococcus

hominis, Corynebacterium tuberculostearicum, and

Anaerococcus spp. [139]. This phenomenon is probably

governed by more subtle principles, and it is reasonable

to think that modifications may involve the microorgan-

isms at the subtype level. The transplantation method

depends on the triangle donor microbiome composition

(A), the recipient microbiome composition (B), and the

load of the transplant (C). Indeed, a recipient micro-

biome composed of C. acnes subtype H1 and Leifsonia

spp. allows a better engraftment of donor strains [137].

By assessing the viability of skin microbial communities

unidirectionally (from the forearm to the back of the

same volunteers), Perin et al. [138] described the partial

efficiency of unenriched skin microbial community

transfer, but more information is needed regarding the

viability of the microbes transplanted. Myles et al.

pointed to Roseomonas mucosa, a gram-negative com-

mensal bacterium associated with decreasing atopic

dermatitis severity [136]. Nakatsuji et al. [28] success-

fully tested the transfer of bacteria selected for their abil-

ity to inhibit S. aureus in atopic dermatitis patients,

which highlighted the protective effect of commensal

coagulase-negative Staphylococcus (CoNS).

Prebiotics and probiotics

At a time when microbiomes and their fluctuations are

known to be associated with several dysfunctions, the

skin microbiome is of growing interest in the field of

cosmetics, focusing on the exploitation of these

proprieties to improve human well-being through for-

mulations that contain prebiotics, probiotics, or skin

microbiome-friendly ingredients known as cosmeceutics.

Different firms have developed formulations contain-

ing a Hylocereus undatus fruit extract that can reduce

the perception of skin imperfections. This extract may

positively influence the skin microbiota balance, and sev-

eral patents highlight this finding (Liki Von Oppen-

Bezalel et al. patent n° WO2016147189A1; Korean pa-

tent n° KR20150118078A, etc.). Indeed, this plant was

shown by Som et al. to be a major source of antioxidant

substances, which are key in the skin aging mechanism

[140]. Similarly, Banerjee et al. [141] controlled the for-

mulation of an emulsion cream for topical application

and considered its impact on the commensal skin flora.

Bacterial extracts were also tested, such as an extract of

Shingomonas hydrophobicum [142] and lactobionic acid

from Pseudomonas taetrolens, for antiaging activity

[143]. Other formulations containing bacterial derivative

compounds (e.g., the Lactobacillus extract filtrate in Ski-

nolance®), prebiotic peptides (ACTIBIOME™, FENS

EBIOME™), or vitamins, such as niacinamide (Univerler

patent WO2019086327), are provided by raw material

sellers and are indicated to show prebiotic activity. Glo-

bally, this kind of information remains elusive, and firm

scientific conclusions are rarely available [144].

Lactobacillus and Bifidobacterium species, which are

implicated in health, were analyzed for their probiotic

properties related to skin homeostasis. The tested spe-

cies included Lactobacillus reuteri [145], Lactobacillus

acidophilus [146], Lactobacillus plantarum [147–149], a

formulation based on a patented Lactobacillus mixture

(CN110121353A), Lactobacillus helveticus [150], Lacto-

bacillus rhamnosus applied synergistically with the plant

Agastache rugosa [151], and Bifidobacterium breve [152].

Recently, Nitrosomonas eutropha, an ammonia-oxidiz-

ing agent, was targeted for its antiaging properties [153,

154] and included in the Mother Dirt AO+ Mist Skin

Probiotic Spray patent (JP2017519486A).

Many patents are being produced that focus on diverse

bacterial strains that could improve skin well-being and

the antiaging properties of cosmetics (Streptococcus

pneumoniae and Streptococcus thermophilus in patents

KR20180121269 and KR20180121268; the newly discov-

ered strain Epidermidibacterium keratini in patent

WO201804224; Pseudoalteromomonas antartica in pa-

tent JP2018500279A, etc.). Nevertheless, scientific data

supporting their efficacy are rarely available.

Key points and conclusions

� The skin microbiome is composed of a variety of

organisms, including bacteria, archaea, fungi, and

even small arthropods, which interact with each
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other and could be implicated in the host health

status.

� The skin microbiome composition depends on many

factors. These factors form an intricate network that

novel sequencing technologies allow us to better

understand. However, standardization of studies is

required to reach strong conclusions on which

innovation process could be best.

� Optimized evaluation tools, such as 3D skin models,

offer ways to study the impact of modulation factors

on the composition of the skin microbiota as well as

its implications for the skin response.

� Presently, understanding the skin microbiome is at a

turning point. The beneficial and protective role of

bacterial communities in close relationship with

their host is understood to be clinically manipulated

(illustrated by “transplantation-like” technology) or

to be an important industrial concern through the

investigation of microbial-derivated products with

bioactive activities.
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