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Abstract

Experimental studies of protein folding processes are frequently hampered by the fact that only
low resolution structural data can be obtained with sufficient temporal resolution. Molecular
dynamics simulations offer a complementary approach, providing extremely high resolution
spatial and temporal data on folding processes. The effectiveness of such simulations is currently
hampered by continuing questions regarding the ability of molecular dynamics force fields to
reproduce the true potential energy surfaces of proteins, and ongoing difficulties with obtaining
sufficient sampling to meaningfully comment on folding mechanisms. We review recent progress
in the simulation of three common model systems for protein folding, and discuss how recent
advances in technology and theory are allowing protein folding simulations to address their
current shortcomings.

Introduction

In recent years molecular dynamics (MD) simulations, originally developed for numerical
simulation of simple model systems in statistical mechanics (1), have developed into a
powerful tool for studying the structural and dynamic properties of complex biomolecules
(see, e.g., (2)) thanks to advances in computing power and refinements of the underlying
models. MD simulations of biomolecules typically treat the molecule of interest and
surrounding solvent as classical particles interacting through an empirically derived
potential energy function (the “force field”). The system’s dynamics propagate through time
via numerical integration of Hamilton’s equations of motion, typically discretized into steps
on the order of femtoseconds in length. The information offered by such simulations is no
less than an atomic-resolution model of conformational equilibria and structural transitions
in the system of interest, providing a wealth of information to interpret, complement, and
design experiments.

One of the most challenging applications of molecular dynamics is the simulation of protein
folding processes. Such simulations generally must be very long (on the order of many
microseconds) to stand a good chance of observing a single folding event, and the force field
being used must correctly describe the relative energies of a wide array of unfolded or
misfolded conformations that occur during the folding process. The benefits of such
simulations are considerable, as they provide detailed information on the nature and
relationships of structures that occur during protein folding processes, and identify key
intermediates and barriers to folding. It should be noted that using molecular dynamics
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simulations to observe entire folding events from unfolded conformations is only one of a
wide variety of ways in which molecular modeling calculations are applied to identify native
states of proteins and mechanisms through which they fold. Other examples include
predicting the folded structure of a given peptide from its primary sequence (e.g., (3,4)) or
using Monte Carlo simulations to follow an approximation of a dynamically realistic folding
pathway (e.g., (5,6)). While other methods offer more computationally efficient ways to
identify the native state of a protein, or even likely intermediate states, only atomistic MD
simulations of the folding process provide detailed information about transitions between
structures that is key to understanding how the folding of a protein actually proceeds. In the
present article we use the phrase “folding simulations” to refer exclusively to atomistic
molecular dynamics simulations of all or part of the folding process of a protein, in the
absence of biasing potentials targeting the folded state. We begin by providing the reader
with a brief overview of the recent progress of folding simulations, focusing on a few well-
studied model systems. We then discuss the two linked challenges faced by folding
simulations, namely continuing to improve the accuracy of representation of proteins in all-
atom MD simulations while at the same time improving sampling, and review recent efforts
to overcome them.

Long-timescale molecular dynamics simulations of protein folding

Folding simulations pose harsh challenges for molecular dynamics, due to the computational
effort involved and the demands for accuracy placed on the force field. Despite these
challenges, folding simulations have an established, and growing, track record not only of
successfully folding proteins, but of providing quantitative agreement with experimental
data and detailed predictions which can be used to test simulated folding behaviors. In this
section we review three frequently targeted model systems which, taken together, illustrate
the current state of successes and failures encountered in folding simulations: the artificial
Trpcage peptide, the chicken villin headpiece subdomain, and the human Pin1 WW domain.

The Trpcage miniprotein (7) (see Fig. 1a) folds in approximately 4 µs, and contains a total
of 20 residues. Several early implicit solvent simulations of Trpcage succeeded in folding
the protein from a denatured state, and provided realistic estimates of the time required for
folding (8–11). Extensive simulations over the following years provided free energy
landscapes for folding (using simple order parameters) (12) and even a stability diagram
under a variety of thermodynamic conditions (13). Replica exchange simulations revealed
an important role for buried water molecules in stabilizing the folded structure (14).
Juraszek and Bolhuis employed transition path sampling to study the mechanism of folding/
unfolding transitions in Trpcage, finding that the dominant folding pathway involves
formation of secondary structure elements only after tertiary contacts are anchored. Their
results showed that this pathway coexists with one in which helix formation occurs first
(15). Thus, simulations of Trpcage have shown that it is possible to fold a protein from a
fully denatured state using unbiased MD simulations. Trpcage simulations highlighted also
the importance of water in obtaining a realistic description of Trpcage folding, and provided
detailed information on the type of heterogeneous folding mechanism followed by a protein.
At the same time, a few challenges still remain: predictions such as the folding pathway
partitioning of Juraszek and Bolhuis have not, to our knowledge, been experimentally
verified; meanwhile, it has been observed that several thermodynamic inadequacies occur in
modern force fields’ descriptions of Trpcage. OPLS/AA, for example, incorrectly stabilizes
non-native states relative to the native state (16), and AMBER variants have consistently
yielded melting temperatures more than 100 K above the experimentally determined value
(13).
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Computational studies of protein folding often target small portions of natural proteins
which have been found to fold rapidly. One example of such a system is the villin headpiece
subdomain, a 35-residue three-helix bundle (17) (see Fig. 1b). Wild type villin folds at a rate
between (4.3 µs)−1 (18) and (7.4 µs)−1 (19). The replacement of two lysine residues with
norleucine was shown to yield a mutant folding (on average) in less than one microsecond
(20). The folding of villin has been subjected to a wide variety of experiments providing
data on the kinetics and thermodynamics of folding (18,21,22), and contributions from
specific contacts to the stability of the transition state (19). Due to its small size and rapid
folding, villin was targeted in what was, to our knowledge, the first serious effort to
completely fold a protein through atomistic molecular dynamics simulations in explicit
solvent (23). While that initial attempt produced only a one microsecond trajectory, and did
not reach the native state, a number of subsequent efforts succeeded in reaching the native
state from an initially unfolded structure for either or both of the wild type and norleucine
mutant proteins, over timescales consistent with experiment (e.g., (6,24–30)). An early
generation of hypotheses regarding villin folding from molecular dynamics simulations were
tested through measurement of folding rates of proposed mutants and found to be incorrect
(18). More recently, simulations from different groups have lead to several distinct
proposals regarding villin folding, (6,28–30) which now await further testing. One example
(from (30)) is shown in Fig. 2: from an initially disordered structure, the protein undergoes
hydrophobic collapse and forms a pre-folded conformation with correct secondary structure
but incorrect positioning of helix I. The rate limiting step (corresponding to a single long
relaxation time observed in experiments) is the partial dissociation of the secondary
structure elements from each other, which then re-associate to form the folded structure.
Consistently, recent solid state NMR experiments have shown the existance of a long-lived
intermediate state with native secondary structure but disordered tertiary structure (31).
Validation of the predictions of any of the currently proposed models would provide an
atomistically-detailed view of exemplary villin folding pathways (although such a picture
would certainly not be complete due to the vast structural heterogeneity expected during
folding (29,32)). At the same time, careful examination of any folding models which do not
withstand experimental scrutiny should provide data which can be used to refine protein
force fields to aid in future folding attempts.

Where the villin headpiece subdomain serves as an excellent model system for the folding of
small α-helical proteins, the WW domain of human Pin1 (henceforth WW domain) has
recently become a similar system for simulations of small β-sheet proteins. The WW domain
consists of a three-stranded antiparallel β-sheet with the strands connected by tight
hydrogen-bonded loops (33) (see Fig. 1c). Analysis of the folding properties of a wide
variety of mutants (particularly in the loops) has shown that formation of the first turn
(between strands I and II) is the rate limiting step in folding (33,34), and that stabilizing
mutations can shift the WW domain from two-state folding to incipient down-hill (i.e., very
low barrier) folding. The present experimental evidence provides information on the specific
structural change occurring during the rate limiting step, but does not currently reveal other
aspects of the pathways followed during WW domain folding. Most crucially, the order of
hydrophobic collapse, formation of turn two, and generation of the native β-sheet hydrogen
bonding network relative to formation of loop one remains unknown. Initial attempts to
study these aspects of WW domain folding generally used coarse grained models due to the
slow (>50 µs) folding of the wild type protein, and provided a variety of mutually exclusive
predictions regarding the order of formation of different structural elements during folding
(35–37).

Recently, the discovery of WW domain mutants that fold in less than 15 µs prompted
attempts to fold the WW domain through all-atom explicit solvent folding simulations (38).
The initial simulations failed to reach the native state and instead became trapped in helical
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intermediates, which were shown through subsequent free energy calculations to be, in fact,
lower in free energy than the native state in the applied force field (39). More recently, a
large array of distributed implicit-solvent folding simulations using a different force field
provided a small number of folding trajectories; these trajectories suggested the presence of
a large amount of kinetic and mechanistic heterogeneity, showing that the questions
regarding WW domain folding noted above may in fact be unanswerable (40). On the other
hand, the general structural heterogeneity of even the “folded” conformations from that
study, and relatively poor agreement with the experimental structure, may indicate the
presence of similar (albeit less severe) force field inaccuracies to those noted in (39).

Challenges in protein folding simulations

As a group, folding simulations (and indeed, MD simulations in general) have throughout
their history been faced with two mutually antagonistic challenges. Simulations must be as
long as possible in order to obtain reasonable statistics, due to the long correlation times
inherent in MD trajectories and the fact that even a single protein folding trajectory requires
immense amounts of computing effort. Furthermore, as many such trajectories as possible
must be obtained to provide a complete picture of the folding process (40). At the same
time, as illustrated by the various points of disagreement still present between simulation
and experiment, the accuracy of modern MD force fields in describing long term structural
dynamics of proteins remains imperfect, and thus either additional refinements of
parameters for force fields, or the use of new developments such as computationally
tractable polarizable force fields (e.g., (41,42)) will be required in many cases for accurate
folding simulations.

Timescales and data analysis

In order to address the sampling problem, a number of innovative approaches have been
applied to produce recent folding simulations, with varying degrees of generality. At the
simplest level, both advances in the processing power available in a given computing node,
and the continuing expansion of the availability of supercomputing time to researchers, have
enabled folding simulations through general purpose computing resources (e.g., (30)). The
expansion of such resources is particularly powerful in tandem with recent efforts to
improve the performance of MD programs (38,43,44), and should continue to provide
increasing sampling capabilities to a broad base of researchers.

Several of the most notable simulations of protein folding have instead involved the
Folding@Home network (45), a unique distributed computing resource consisting of over
300,000 CPUs donated by users around the world. The Folding@Home architecture, with its
massive parallelism, but low density, is particularly well suited to the simultaneous
evaluation of large numbers of trajectories, and typical Folding@Home simulations consist
of hundreds or thousands of relatively short trajectories (a small fraction of which fold)
rather than 1–10 full length trajectories (9,25,40).

Another solution to the sampling problem in molecular dynamics folding simulations is the
use of special-purpose hardware designed specifically for MD simulations. The most
prominant recent example is the Anton platform, a complete special-purpose supercomputer
containing sets of application-specific integrated circuits (ASICs) which perform the various
tasks required in an MD simulation (46).

While the performance of special-purpose hardware can vastly exceed that provided by
general-purpose clusters, such hardware requires substantial resources to develop, and does
not benefit from the constant, consumer driven advances that occur with ordinary clusters.
The recent development of general-purpose graphics processing units (GPGPUs) offers the
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possibility of per-node performance orders of magnitude better than that of general purpose
computers (47), while at the same time using consumer hardware that will be improved due
to market demands for better workstation and gaming graphics. Because GPUs rely on
parallel processing of a large array of data using identical procedures to obtain optimal
performance, molecular dynamics simulations (involving identical floating-point
calculations on a large array of atoms) can be mapped well to the GPU architecture (47).
While GPU computing was previously employed in a limited manner for molecular
modeling applications (48), the recent advent of a general purpose programming interface
for GPUs that does not require extensive low-level effort on the part of the programmer has
lead to an explosion of GPU implementations of molecular dynamics simulations (e.g., (49–
52)). Such implementations quote accelerations between 10- and 1000-fold over CPU-only
implementations, depending on the exact algorithm and target application under
consideration, and definition of an “equivalent” CPU-only competitor.

The performance offered by GPGPU-accelerated molecular dynamics simulations does not
at present match that of the Anton platform, but as noted previously the performance of
GPGPUs is expected to improve over time simply as a function of consumer-driven demand,
and thus they may become an increasingly attractive option for long timescale molecular
dynamics simulations in the near future. One of the principal challenges associated with
applying GPGPUs to molecular dynamics simulations is that network latency between
multiple nodes becomes increasingly problematic as the individual nodes become faster
(53); these challenges are less relevant in the case of protein folding simulations, where one
would be best served by running dozens of simulations of small systems in parallel, each on
a single GPU-equipped node.

Whether one obtains a few long folding trajectories or a large array of short folding
simulations, eventually it becomes necessary to synthesize the data into as reliable as
possible a picture of the folding process of the protein of interest. This, in turn, means that
one wishes to understand what general features are present and how they evolve as the
protein forms more and more of its native contacts, identify frequently occupied
conformations or misfolded traps, and characterize transitions between those conformations.
Such analysis is nontrivial given the large amounts of data present in folding trajectories,
and requires specialized methods. One of the most common tools for visualization and
analysis of protein folding pathways is the projection of the trajectory onto a low (frequently
2) dimensional surface, both to track the progress of trajectories and allow free energy
calculations (the latter generally via replica exchange simulations (54)). Such analysis was
applied successfully, for example, to S. aureus protein A using the Cα root mean squared
deviation (Cα-RMSD) and Q (the fraction of native contacts formed) as reaction coordinates
(55), and to villin headpiece using the RMSDs of two fragments to the native state as
reaction coordinates (26,27). Inspection of the projected villin free energy landscape (in
implicit solvent) revealed a single main pathway to folding with a clearly defined barrier
separating the folded and unfolded states, as well as an off-pathway trap conformation with
no reasonably accessible direct path to the native state (27). Compatible results were
observed by tracking the progress of several folding trajectories through the same projected
coordinate space (26).

The utility of the reduced coordinate approach is completely reliant upon the ability of the
chosen coordinates to separate the relevant occupied conformations (and their transition
states). An example of the failure of such an approach is shown in Fig. 3a. The “opening”
transition presumed in (30) to be the rate-limiting step in villin folding (see above) involves
backtracking over completely unrelated portions of conformational space in the 2-D
projection; furthermore, conformations on either side of the transition state are
superimposed on each other. Such difficulties may be circumvented by using trajectory-
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driven methods to identify the projection space, such as principal component analysis
(56,57) or non-metric data scaling (58). Application of the latter to villin headpiece folding
is shown in Fig. 3b, providing improved separation of the transition state ensemble and
structures to either side of it.

Another frequently used method in the analysis of protein folding trajectories is
conformational clustering (e.g., (59,60)), in which configurations occurring during a folding
trajectory (or set of trajectories) are binned into related groups (clusters) based on a metric
such as pairwise RMSDs between them, or the rate of interconversion between
conformations (for comparison see (61)). Clustering analysis immediately highlights
frequently occupied conformations, and tracking the cluster identity of the protein
throughout a trajectory can provide a useful birds-eye view of the path followed during the
simulation. Clustering can also be applied in several types of quantitative analysis which aid
in the understanding of protein folding trajectories, particularly when information from a
large array of simulations must be combined. In such cases it has proven useful to cluster the
conformations present and then use the statistics obtained on their interconversion to
develop a Markov state model, allowing evaluation of a variety of properties such as mean
folding times dependent upon events far longer than the simulations used in constructing the
model (25,62,63). The primary weakness of such models is, of course, that they are still
vulnerable to undersampling in that any transitions or conformations which were not
observed in the parameterization simulations, but are actually present, will not be accounted
for.

The number of transitions observed between clustered conformations can also be used in the
construction of a cut-based free energy profile (64,65), in which clusters are partitioned into
two disjoint sets in a way that minimizes the partition function of the barrier between the
sets; such partitions are calculated along a reaction coordinate such as the fraction of the
overall sampling weight that is in the same set as some arbitrary node (for example, the
native state of a protein). Applied to folding simulations, such a profile allows the
identification of the transition state ensemble (66,67) for transitions of interest noted during
the folding process. Crucially, the cut-based approach does not require a priori assignment
of reaction coordinate(s), but equilibrium sampling of the conformational transitions of
interest (which is currently difficult to obtain for most folding model systems) is needed.
Once key conformations have been identified (e.g., through clustering analysis), the
transitions between them may also be investigated in more detail through application of
methods such as transition path sampling (15) and subsequent analysis to optimize the
definition of a reaction coordinate and transition state ensemble for a given transition (68).

Force field development

Molecular dynamics simulations utilize force fields to describe the potential energy of
atomic systems as a function of their spatial arrangement. The functional form of classical
force fields is divided into two sets of terms: bonded, also called internal, and nonbonded
contributions. Bonded contributions include bond, angle and dihedral terms that represent
interactions between covalently bonded atoms using harmonic potentials. The harmonic
potentials are a coarse but rapidly computed approximation of Morse potentials describing
bonded interactions. Perhaps the greatest disadvantage of the harmonic approximation is its
inability to permit bonds between atoms to change, allowing descriptions of chemical
reactions; however, the harmonic potential does permit all-atom simulations three to four
orders of magnitude faster than methods allowing changes in electronic structure.
Nonbonded terms include pair-wise Coulombic potentials describing electrostatics, and the
Lennard-Jones (LJ) 6–12 potential that represents attractive van der Waals dispersion
interactions and core-core repulsion between atom pairs.
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Of the classical force fields, the most frequently used in all-atom MD simulations of protein
folding are AMBER (69) and CHARMM (70). The bonded terms of AMBER and
CHARMM are relatively similar (as are the equivalent terms in most other classical force
fields); both utilize harmonic approximations for bonded interactions, parameterized through
a combination of high-level quantum mechanical calculations and spectroscopic data on
model compounds. However, fundamental differences exist in how their nonbonded terms,
and particularly their atomic charges, are empirically parameterized. In the CHARMM
family of force fields, an atom’s charge is determined by fitting the effective interaction of
polar groups with a TIP3P water molecule to quantum mechanical data, whereas atomic
charges in recent AMBER force fields are determined by optimizing the reproduction of the
electrostatic potential around the molecule of interest, subject to restraints to remove the
possibility of physically absurd charge distributions (71). Both force fields suffer from a
lack of polarizability, relying upon static atomic charges to model electrostatic contributions
to protein dynamics which are often intrinsically coupled to a protein’s internal and external
electrostatic field.

Molecular modeling force fields have been under development for decades, and modern
force fields consistently yield values for properties such as free energies of hydration for
model compounds within 1–2 kcal/mol of experimental values (72,73), and provide sub-Å
Cα-RMSDs to known structures in simulations of folded proteins (74). Despite the generally
excellent agreement between experimental and calculated properties for small model
systems and folded proteins, some shortcomings are known to remain, such as the tendency
of modern pairwise additive force fields to overestimate the strength of solute-solute
interactions (75). In addition, several recent studies have shown inaccuracies related to the
thermodynamic equilibria between different protein secondary structures, including both
direct attempts to fold proteins through MD simulations (39) and more general studies of the
accuracy with which MD force fields represent proteins (76,77). As simulations long enough
to allow large scale structural transitions such as secondary structure rearrangements only
recently became commonplace, for most of their history molecular dynamics force fields
have only needed to provide a realistic description of a protein within the neighborhood of a
known starting state. With modern computing capabilities, however, another round of
modifications and improvements to molecular modeling force fields is clearly required to
maintain an accurate description of the simulated systems.

Currently existing classical force fields have undergone many rounds of iterative
improvement in which parameters were tuned to provide better agreement with experimental
or quantum mechanical data. Over the past few years new sets of corrections for backbone
parameters have been applied both to the AMBER (78) and CHARMM (79) families of
force fields in order to bring the potential energy surface around protein backbone torsions
into better agreement with quantum mechanical data. The changes made to CHARMM were
particularly far-reaching: a new cross term (CMAP) was added to the force field, involving
addition of a correction based on the ϕ and ψ angles of a given amino acid to bring their
energetic contribution into direct agreement with two-dimensional maps of the potential
energy surface obtained from high-level quantum mechanical calculations. While the recent
backbone corrections would be expected to substantially improve the secondary structure
propensities of force fields, problems with the treatment of both small model systems (77)
and folding proteins (39) were observed (using AMBER and CHARMM force fields,
respectively) even with the corrections in place. In addition, even where further corrections
were applied to the backbone dihedrals of AMBER family force fields in order to correct
their α helical propensity, both the entropy and enthalpy of helix formation were found to be
underestimated (such that the errors canceled out at the temperature at which
parameterization was performed) (77).
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While a number of recent efforts to improve protein force fields have focused on the
parameters for bonded terms, secondary structure elements (particularly β sheets) are
inherently non-local, relying in large part on the behavior of hydrogen bonding. The most
commonly used force fields in modern molecular dynamics simulations treat hydrogen
bonding simply as an interaction between point charges, but hydrogen bonding in fact has a
strong directional dependence that is apparent both from quantum mechanical calculations
on model compounds and in crystal structures of proteins (80,81). Molecular modeling force
fields incorporating directional hydrogen bonding have frequently shown improved accuracy
(80,82,83). Analysis of the hydrogen bonding geometries present in recent folding
simulations of the WW domain using CHARMM22/CMAP (see Fig. 4) showed that while
the (erroneously favored) α helical structures possessed a distribution of hydrogen bonding
geometries matching those from quantum mechanical calculations, the simulated crystal-like
β sheet structure overpopulated linear hydrogen bonding geometries, reflecting an artificial
energetic frustration introduced by the simplistic representation of hydrogen bonding.
Likewise, the errors in ΔU and ΔS observed by Best and Hummer during α helix formation
are consistent with a lack of proper hydrogen bonding treatment: directional hydrogen bonds
would be stronger but lead to a more negative ΔS during helix formation due to the imposed
orientation (77). Atomic polarizability, which is neglected in classical force fields, has also
been shown to play a significant role in the energetics of α helix formation (84).

Thus, while tuning of bonded parameters continues to be a valuable tool in refining
molecular dynamics force fields, more dramatic changes are likely necessary to correct
problems currently hampering molecular dynamics simulations of folding. Hydrogen
bonding orientation may be included through the addition of explicit hydrogen bonding
terms (82) or “lone pair” charge sites maintained at a specific geometry relative to atomic
centers (85). Treatment of atomic polarizability is more challenging; several solutions exist
in recently developed force fields, including the replacement of point charges with partially
polarizable multipole expansions (86), models allowing charge to flow between atoms in
response to the electric field (87,88), and Drude oscillator models in which the charge of
specific heavy atoms is partially placed on a very light independent particle coupled to the
parent atom by a strong spring (89,90). In light of the recent simulation results discussed
above, it appears likely that the use of some polarizable force field also incorporating
explicit hydrogen bonding or off-site lone pairs is essential for protein folding in MD
simulations.

While it is easy to become focused on refinements to solute parameters, the protein-protein
interactions in folding simulations occur neither in a metaphorical nor a literal vacuum, but
instead exist in competition with protein-water and water-water interactions. The treatment
of water, either implicit or explicit, and the interactions of the protein with water are thus
extremely important to obtaining proper conformational equilibria during such simulations.
Despite the added computational expense, we strongly advocate the use of explicit solvent
models in protein folding simulations, as implicit solvent models have been shown to be
unable to reproduce the relative free energies for folding intermediates obtained using
explicit solvent (12,91), and by their nature cannot capture details such as buried waters
which are known to be important even in the case of such simple proteins as Trpcage (14). A
recent survey of the thermodynamics of hydration for model compounds related to amino
acids suggested that the properties considered (ΔG, ΔH, TΔS, and ΔCp) are much more
dependent on the choice of water force field than on the protein force field (92). Molecular
dynamics water models are generally parameterized primarily to reproduce bulk water
properties; unfortunately, the accuracy of representation of water properties in such a model
is not well correlated with its accuracy in combination with even simple solutes (92). The
issue of water model choice is complicated by the fact that protein force fields are generally
parameterized and tested using a specific model (most commonly, for the current generation
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of classical force fields, TIP3P (93)), and thus one cannot simply switch to a new water
model even if it has been shown to have superior properties. At present a new generation of
water models is under active development for use with polarizable force fields (e.g.,
(90,94,95)); optimal performance of the associated polarizable protein force fields may also
require simultaneous refinement of solvent and solute parameters.

Outlook

Molecular dynamics simulations of protein folding can be a tremendously useful tool,
providing otherwise inaccessible data that aid the interpretation and testing of protein
folding mechanisms. Such simulations face serious challenges, both from the sheer amount
of sampling required to adequately model protein folding and the fidelity with which
empirical force fields must represent the true free energy surface on which a protein folds.
Both challenges can be met, the former through new technologies to improve sampling and
improved analysis methods to make more constructive use of the obtained data, and the
latter through the use of new force fields explicitly incorporating hydrogen bonding and
atomic polarizability. Even for the simple systems reviewed in the present article, much
work remains to be done in terms of experimental validation of recent predictions made by
MD simulations. In addition, even as new force fields are being developed, it may be
possible to expand to the study of slightly larger and more complicated proteins such as the
λ-repressor (Fig. 1d), a five-helix bundle with variants folding in 2–15 µs (96), so long as
judicious choices are made to target well-studied proteins with secondary structure elements
that are expected to be treated as accurately as possible by existing force fields.
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Figure 1.

Cartoon representations of proteins discussed in this review. Secondary structures are
assigned using STRIDE (97): α helix (purple), β sheet (yellow), turn (cyan), coil (white), or
310 helix (blue). a) Trpcage (PDB code 1L2Y). b) Villin (PDB code 1YRI). c) WW domain
(PDB code 2F21). d) λ repressor (PDB code 1LMB). Secondary structure elements for villin
and the WW domain are labeled matching discussion in the text.
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Figure 2.

Representative snapshots of the trajectory followed by villin headpiece from the pre-folded
intermediate to the native state, with labels corresponding to the discussion in the text.
Protein coloring runs blue to red from N terminus to C terminus; the crystal structure is
shown as a transparent gray cartoon for comparison. Reprinted from Biophysical Journal 97;
Peter L. Freddolino and Klaus Schulten; Common structural transitions in explicit-solvent
simulations of villin headpiece folding; 2338–2347; Copyright 2009, with permission from
Elsevier.
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Figure 3.

Projections of a villin folding trajectory (corresponding to WT-FOLD1 in Fig. 2) onto two-
dimensional surfaces. a) Projection onto Q/Cα-RMSD space; Q represents the fraction of
native contacts formed, and is defined as in (98). b) Embedding of the trajectory into a two-
dimensional space chosen via nMDS (58) based on the dihedral angles of the protein. In
both cases frames prior to the intial hydrophobic collapse are omitted for clarity; the earlier
frames are very low Q, high Cα-RMSD, and are scattered randomly in nMDS space. Two
arrows are drawn showing the path taken between the 5315 ns, 5384 ns, and 5458 ns time
points (c.f. Fig. 2); this path corresponds to the crossing of the putative free energy barrier
identified in (30).
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Figure 4.

Directionality of hydrogen bonding in folding simulations. a) Illustration of the hydrogen-
acceptor-acceptor antecedent angle Ψ in a protein backbone hydrogen bond. b) Normalized
histogram of Ψ angles present in MD simulations of a misfolded helical state (Helix) or the
native state (Sheet) of the WW domain (39). A survey of the PDB indicated that both should
peak between 155 and 160 degrees (80). Part (b) reprinted from supplementary material of
Biophysical Journal 96; Peter L. Freddolino, Sanghyun Park, Benoît Roux, and Klaus
Schulten; Force field bias in protein folding simulations; 3772–3780; Copyright 2009, with
permission from Elsevier.
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