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Challenges in using probabilistic climate
change information for impact assessments:

an example from the water sector
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Climate change impacts and adaptation assessments have traditionally adopted a
scenario-based approach, which precludes an assessment of the relative risks of particular
adaptation options. Probabilistic impact assessments, especially if based on a thorough
analysis of the uncertainty in an impact forecast system, enable adoption of a risk-based
assessment framework. However, probabilistic impacts information is conditional and
will change over time. We explore the implications of a probabilistic end-to-end risk-
based framework for climate impacts assessment, using the example of water resources in
the Thames River, UK. We show that a probabilistic approach provides more
informative results that enable the potential risk of impacts to be quantified, but that
details of the risks are dependent on the approach used in the analysis.

Keywords: climate change; impacts; uncertainties; probabilities; water resources;

ensembles

1. Introduction

Climate change impact assessments have to date relied predominantly on the
scenario-based approach (Carter et al. 2001; Mearns et al. 2001). It has long been
recognized that any one scenario represents a single trajectory through the cascade of
uncertainty: emissions/concentrations/regional climate response/local climate
response/impact (with or without feedbacks between each component of the
cascade, e.g.New&Hulme 2000; IPCC2001). The use of one ormore scenarios, while
useful for exploring potential climate change impacts, presents difficulties when
adaptation decisions have to be made. Scenarios typically have no associated
likelihood, so decision-makers faced with alternative scenarios cannot assess the
relative risk of particular adaptations; the tendencymay then be to choose a response
to amiddle of the road scenario ormore conservatively, a strategy that is robust in the
face of all available scenario-based information. Even a robust strategy may be
difficult to implement if the decision-maker is concerned about impacts that fall
outside the range suggested by the scenarios at hand.
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Probability distributions of climate change impacts allow us to move to a risk-
based impact and adaptation decision-making framework (Pittock et al. 2001).
However, even for global-scale metrics such as climate sensitivity or the
likelihood of exceeding a given ‘dangerous’ global temperature threshold, a
unique probability distribution is impossible to derive due to the imprecise
information available, scientific and modelling uncertainties, and different
statistical estimation approaches (Hall 2007; Hall et al. 2007; Rougier 2007).

Although there have been previous attempts to assess local impacts within a
probabilistic framework, these studies have typically scaled one or a few GCM
responses by probabilities derived from a simple climate model (e.g. Jones 2000;
New & Hulme 2000; Prudhomme et al. 2003), or have involved an assessment
of the relative size of climate model and impacts model uncertainties (e.g.
Aggarwal & Mall 2002; Wilby & Harris 2006; Graham et al. 2007), rather than a
full end-to-end uncertainty analysis. Methods for addressing uncertainty in
simulation models are well developed in many natural science fields, most
notably hydrology (Freer et al. 1996; Beven 2000; Beven & Freer 2001), but
relatively few climate change impact studies have drawn on these approaches
(Araújo & New 2007). There have also been a number of assessments of regional
scale uncertainty in climate change scenarios arising from both GCMs and
regional climate models (RCMs) and/or statistical downscaling techniques (e.g.
Tebaldi et al. 2005; Feng & Fu 2006; Frei et al. 2006; Haylock et al. 2006;
Goodess et al. in press) and some attempts to link multiple GCM-downscaling
combinations (Benestad 2004; Jasper et al. 2004; Pryor et al. 2005, 2006; Salathe
2005; Chen et al. 2006; Graham et al. 2007). But linking all these aspects of
uncertainty together to address combined climate model and impacts model
uncertainty in an end-to-end probabilistic framework has been fundamentally
limited by a lack of sufficiently comprehensive uncertainty analyses of GCMs,
which ultimately drive the impacts assessment process (Fowler et al. in press).

The large-ensemble GCM-modelling efforts described in this issue (Murphy
et al. 2007) and elsewhere (Murphy et al. 2004; Stainforth et al. 2005) offer the
opportunity for a ‘probabilistic’ approach to assess regional and local climate
change impacts. Large ensemble GCM simulations, using hundreds to many tens
of thousands of GCMs, potentially provide richer regional detail than multiple
sampling of a few GCM patterns, as different climate forcings and initial
conditions (IC) are propagated through alternative physics to a larger number of
model-specific regional responses (e.g. Harris et al. 2006); the range in both
global and regional responses from large perturbed-physics ensembles have
been wider than those produced through analysis of model runs available from
the global climate modelling community, the so-called ‘ensembles of opportu-
nity’. However, probabilistic climate prediction is a double-edged sword. While
undoubtedly providing more information, the regional information arising from
large ensemble GCM modelling remains conditional and will suffer from the same
lack of uniqueness as distributions for global metrics.

In this paper, we explore the implications of this new generation of
probabilistic climate information for end-to-end uncertainty analysis in impacts
modelling and assessment. Our focus is at the regional to local scale, where local
authorities, environmental agencies, business and other players may need to
make decisions on climate change adaptation. We present the first example of
how climate data from the climateprediction.net project can be used to generate
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probabilistic information that incorporates both climate model and impact
model uncertainty, focusing on the Thames River in the UK. We first describe
the experimental set-up, including the climateprediction.net data, the hydro-
logical model (CATCHMOD) that we use and the approach to downscale the
climate model outputs to the spatial scale required by CATCHMOD. We then
describe the resultant probabilistic projections of future flow statistics in the
Thames. We conclude the paper with a discussion of the main points arising from
this research.

2. Methods and data

We use the initial results from the climateprediction.net experiment described
in detail by Stainforth et al. (2005). The data from the experiment represent
2700 individual simulations with the HadSM3 climate model; each simulation
comprises three 15-year periods: a calibration phase, followed by a 15 year
1!CO2 ‘control’ simulation, and a 2!CO2 simulation, in which the model
moves towards an equilibrium response to 2!CO2. Within this subset of the full
first experiment, seven physics parameter values are perturbed and there are 449
unique combinations of perturbations. For most perturbations, there is more
than one simulation, with each simulation differing only in IC. The total number
of simulations in the 449 IC ensembles adds up to 2700 simulations in the ‘grand
ensemble’. The ensemble is therefore large, but limited in a number of ways: it
comprises a sampling of only some of the uncertain physics parameters in the
Hadley Centre climate model; it only samples from a single ‘parent’ model
structure, ignoring uncertainties arising from alternative GCM model structures;
it is a 2!CO2 sensitivity experiment, without a full ocean model, rather than a
transient experiment with a comprehensive atmosphere–ocean model such as
those contributing to the last IPCC report.

Seasonal means from the last 8 years of the control and 2!CO2 runs, and only
for a limited number of variables, have been returned by client machines for
archival in climateprediction.net data servers; we use precipitation, temperature
and cloud fraction data to calculate future daily precipitation and potential
evaporation to input into our hydrological model.

Many ensemble members have not reached equilibrium at the end of the 2!CO2

phase. We therefore scale the 2!CO2 8-year mean responses for each variable by
the ratio of global mean temperature for this period to the global mean equilibrium
temperature change, estimated using the approach of Stainforth et al. (2005).

We use CATCHMOD to simulate daily discharge in the Thames at
Teddington, London. CATCHMOD is a rainfall-runoff model used by the
Environment Agency (EA) of England and Wales for water resource planning
and abstraction licence allocation, and is described in detail by Wilby et al.
(1994). It uses daily rainfall (PPT) and potential evapotranspiration (PET) data
for input at sub-catchments represented in the model. This requires downscaling
of the coarser resolution seasonal mean GCM data. As the archived GCM data
do not support either dynamical or statistical downscaling, we use a simple
change factor (CF) downscaling approach to produce input for CATCHMOD.
For both PPT and PET, we compute a factor by which the variable will change
in the future (2!CO2) compared to the present day (1!CO2) for each model
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run; these CFs are then used to perturb the observed daily climate data used to
run CATCHMOD for present day simulations. For precipitation, the CF is the
per cent change in seasonal precipitation between 1!CO2 and 2!CO2 periods
for the GCM grid box that covers the Thames catchment. The seasonal CFs are
linearly interpolated to monthly CFs and applied to the daily observed
precipitation data.

The procedure for PET is more complicated as this variable is not available as
direct climateprediction.net output; available model outputs of relevance to PET
are temperature and cloud cover. We first estimate mean monthly PET for the
present day using observed data (temperature, vapour pressure, net radiation
and wind speed) with the Penman (1948) formulation. We next calculate CFs for
temperature and cloud from the GCM data, which are then used to perturb the
observed temperature, vapour pressure and radiation inputs to the PET
calculation; the ratio of present day to perturbed Penman PET is then used as
a CF to perturb the observed PET daily time series.

Wenote that ouruse ofCFs forces the future time series to have the same temporal
structure as the present day, and that any changes in variance simply reflect a scaling
of the observed series (Diaz-Nieto & Wilby 2005). In addition, use of an 8-year
average to characterize both 1!CO2 and 2!CO2mean climate implies that natural
variability will contribute more to the resulting CFs than in many previous impacts
assessments, where usually differences of 30-year averages are considered. The
influence of natural variability is reduced somewhat by averaging across
IC-members, but the number of members in each IC ensemble varies from one to
eight, and thus natural variability is a varying unknown for each CF.

CATCHMOD was set up with three ‘subcatchments’, each representing the
area of the catchment with a similar hydrological runoff response: urban areas,
clay geology and chalk geology (Wilby & Harris 2006). For each subcatchment,
five parameters for CATCHMOD are determined through calibration against
observed discharge. For our research, we explore the effects of uncertainty in
these parameters by running CATCHMOD with 100 different combinations of
parameter values, all of which produce calibration results within predefined
goodness of fit limits (Wilby & Harris 2006). The underlying rationale to
exploration of parameter uncertainty is similar to the climateprediction.net
project; however, unlike climateprediction.net, the set of parameters values used
for CATCHMOD is preselected by evaluation against observed discharge.

3. Results

(a ) Climate change information

The simulated 1!CO2 and 2!CO2 precipitation and temperature at the GCMgrid
box covering the Thames basin are shown in figure 1. Temperature shows a similar
range anddistribution to the global equilibrium temperature results (Stainforth et al.
2005), as might be expected from amid-latitude location. Rainfall changes in winter
are almost all positive, and range up to a 50% increase compared to the control
simulations.For autumnandspring, both increases anddecreases inprecipitationare
simulated,while in summer nearly allmodels simulate reducedprecipitation; in some
instances, the reduction is as much as 80%. Cloud cover changes correlate closely to
changes in precipitation (not shown).
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In addition to the wide ranges of predicted mean changes in climate,
precipitation change shows a bimodal distribution in spring, summer and
autumn; this bimodality occurs over all UK and Ireland and adjacent ocean grid
boxes, so appears to be a regional characteristic. The bimodality is particularly
strong in summer and is not related to any individual parameter perturbation. A
clearer understanding of reasons for this is difficult to come by, due to the limited
set of model diagnostics that are archived. There is evidence that HadSM3 can
become locked into different climate regimes over SW France, due to soil-
moisture feedbacks (Clark et al. 2006); in some simulations, soil moisture reduces
sufficiently to produce persistent surface heating. This would then affect regional
circulation patterns, which may in turn affect precipitation. There also appears
to be a relationship with the mean pressure gradient over the North Atlantic,
since models with a high gradient under 2!CO2 have lower autumn rainfall.
This is consistent with an observed link between UK summer rainfall and the
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Figure 1. Simulated 1!CO2 and 2!CO2 climate data (precipitation change on the left and
temperature change on the right) over the Thames from the climateprediction.net experiment.
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North Atlantic Oscillation in the preceding winter (Wilby 2001). The available
model diagnostics do not allow us to ascertain whether the pressure gradient-
rainfall relationship is linked in any way to soil-moisture feedbacks.

(b ) Simulated flow

We first describe how the downscaled climateprediction.net data described above
propagate through the ‘standard’CATCHMODversion (i.e. theversionwitha single
set of parameter values, as used by the EA). For each of the 449 simulations with
CATCHMOD, we calculate 1!CO2 and 2!CO2 flow percentiles as follows:

—Q05, the daily flow exceeded 5% of the time, which represents high flows,
—Q50, the median daily flow, and
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Figure 2. Changes in CATCHMOD simulated low (Q95), average (Q50) and high (Q05) flow
statistics due to changes in precipitation and PET downscaled from the climateprediction.net
ensemble. Q95 is the daily flow exceeded 95% of the time (low flows); Q50 is the median daily flow;
Q05 is the daily flow exceeded 5% of the time (high flows). The red star shows the results when
CATCHMOD is run with unperturbed present day climate data (1961–1990); blue symbol shows
results for the standard version of HadSM3 climate model used in climateprediction.net.
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—Q95, a low-flow index corresponding to the daily flow exceeded on 95% of days,
commonly used for resources assessment in catchment abstraction management
plans by the EA.

The distribution of these percentiles across the 449 climateprediction.net ICs are
shown in figure 2. For low andmedian flows, most realizations produce a decrease in
the future. Of particular note is that most simulations result in reduced flows when
compared with the standard atmospheric model (blue cross in figure 2), which was
used, albeit coupled to a full ocean model, to generate the current set of UK climate
change scenarios (Hulme et al. 2002). This illustrates a potential limitation of a
scenario-based approach to impacts assessment; in this case, a single projection using
the standard model provides a rather high estimate of future water resource
availability when compared with other parameter combinations.

The bimodal distribution in precipitation produces either a second mode
(Q95 and Q50) or negative skew (Q05) in the flow statistics. For high flows, while
the proportion of simulations showing increases and decreases are roughly equal,
the skewed distribution means that there are a relatively large number of cases
where high flows are reduced by more than 40%, but all increases (bar one) are less
than C40%.

We next consider the changes in simulated flow arising from both climatepre-
diction.net and CATCHMOD parameter uncertainty. Here, we calculate flow
statistics for 44 900 simulations with CATCHMOD, each simulation a unique
combination of one of the 449 climateprediction.net IC outputs and one of the 100
CATCHMOD parameterizations (figure 3). If the standard HadSM3 model
projections are run through all versions of CATCHMOD (light blue curve in
figure 3), the range of responses in Q50 is K15 to C20%; similar ranges, with a
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Figure 3. Changes in CATCHMOD simulated Q50 when uncertainties in CATCHMOD
parameters are combined with the climateprediction.net ensemble. Each black curve is a smoothed
frequency histogram obtained by combining one climateprediction.net IC ensemble with 100
CATCHMOD model versions. Green curves show the response of each CATCHMOD version
combined with all climateprediction.net results. The red curve is the frequency distribution from
all possible climateprediction.net–CATCHMOD combinations. For reference, the results from (i)
the standard HadSM3 model with all CATCHMOD versions (light blue) and (ii) EA CATCHMOD
with all climateprediction.net ICs (dark blue) are also shown. The red cross shows the result of the
singular combination of the standard HadSM3 and EA CATCHMOD.
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different central value, arise from combining any one climateprediction.net IC with
the 100 CATCHMOD versions (black curves in figure 3). A similar result arises for
Q05 and Q95 (not shown). Thus, the wide spread of climateprediction.net outputs
dominate the spread in simulated changes, with different versions of CATCHMOD
modulating the climateprediction.net signal. Nonetheless, if one compares the range
of changes inQ05,Q50 andQ95whenusing only the standardCATCHMODto those
using the full ensemble, CATCHMOD parameter uncertainty adds an additional
23% to the range for Q50, 16% for Q05 and 35% for Q95; thus low flows are most
sensitive to hydrological model uncertainty.

(c ) Implications for water resource planning

The simulated flows described above provide important information on the
spread of plausible future natural flow levels in the Thames, and therefore an
indication of possible future change in raw water availability. To illustrate this, we
identify the lowest mean monthly flow (LMMF) and the 10th percentile for mean
monthly flow (MMF10) in the 1961–1990 period; we then calculate the frequency
with which monthly flow in the 2!CO2 in the full climateprediction.net–
CATCHMOD ensemble does not reach these levels (table 1). For reference, flows
lower than LMMF would have a present-day frequency no higher than 0.033
(return period of 30 years); flows lower than MMF10 have a present-day frequency
of 0.10 (10-year return period).

The lowest monthly flows in 1961–1990 occur in 1976 (January–August) and
1974 (September–December); 1976 is well known as a year with the most extensive
drought conditions over southern England in recent years, and severe water
shortages over most areas of the UK (Jones et al. 2006). It is used by some water
utilities as a worst-case scenario for future resource planning, especially in
southern England. In the Thames, summer 1976 flows are thought to be the lowest
since 1865, at just 20% of the 1961–1990 average discharge (Jones et al. 2006). In
the 2!CO2 ensemble, the frequency of flows lower than LLMF ranges between 3%
(similar to today) and 30%, depending on the month, with the highest frequencies
occurring in late summer and autumn (a reflection of the reduced summer rainfall
across most of the climateprediction.net ensemble). For MMF10, the frequency
ranges from 13% in March (similar to present day) to over 30% for late summer
and autumn, more than a threefold increase.

While these results provide information about the change in frequency of
stressful water resource situations, the use of probabilistic climate data in a
planning context requires more than consideration of GCM and hydrological
model uncertainties addressed here. Future demand is also subject to considerable

Table 1. Frequency of future monthly flows in climateprediction.net–CATCHMOD ensemble below
low-flow thresholds identified in the present-day (1961–1990) simulations: (i) the lowest flows
between 1961–1990 (LMMF 61–90) and (ii) the 10th percentile of monthly mean flow (MMF10).

month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

LMMF 61–90 0.039 0.067 0.033 0.034 0.039 0.056 0.071 0.075 0.311 0.195 0.039 0.065
MMF10 61–90 0.231 0.153 0.130 0.139 0.151 0.217 0.310 0.330 0.380 0.283 0.203 0.306
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ambiguity, mainly because of uncertainty about changes in regional population,
housing stock and industrial demands, but also due to changed (probably
increased) per capita water use in a warmer climate. For example, current
projections indicate that about 200 000 new households will form each year out to
2026, of which 60% will be in the south of England (EA 2007). This implies a
10–15% increase in reservoir capacity to meet rising water demand, at a cost of
£3 billion. It is also envisaged that measures will be taken to improve water
efficiency of new homes as well as the current housing stock. From April 2007, all
publicly funded housing will have to be built to the Level 3 standard of the Code
for Sustainable Homes, which means no more than 105 l per person per day,
compared with the current UK average of 150 l (EA 2007). Making existing homes
more water efficient could help meet approximately 40% of the future demand
arising from new communities in the region, but considerable uncertainty exists as
to the extent to which this can be achieved.

A thorough assessment of the implications of the probabilistic climate data for
the Thames would therefore require simulations with a model representing the full
water-resource system for the river, with the flexibility to include uncertainty in
future demand and possible new abstraction and storage schemes.

We illustrate the type of information that can potentially be provided in such a
water resource assessment using the trigger storage levels for reservoirs and flows set
by the Environment Agency for the discharge in the River Thames at Teddington.
These operating rules set out the demand management measurements that follow
fromprogressively lower reservoir storage levels and river flows in the lowerThames.
Under critical water storage conditions that vary through the year, the four trigger
levels in the Thames are 800, 600, 400 and 300 Ml dK1. Thus in January, when there
remains a good chance of further rainfall to replenish reservoirs before demand peaks
in late summer, reservoir storage must drop below 63 000 Ml for the Level 4
threshold of 300 Ml to be reached; in August, when there is little likelihood of
replenishment, Level 4 is reached at amuch higher storage level of 125 000 Ml. These
thresholds invoke water saving publicity campaigns (Level 1), sprinkler bans and
voluntary restrictions of inessential water use (Level 2), banning inessential water
use and reduced pressure in the distribution system (Level 3) and finally major cuts
of supply on a rota basis and use of standpipes (Level 4), respectively.

We first consider the changes in frequency of these thresholds being reached
when the outputs from the simulations are used in their ‘unprocessed’ frequency
distribution (i.e. without any post-processing to account, for example, for the
uneven sampling of climateprediction.net parameter space). For July, the flow
thresholds were not met in the 1961–1990 simulations some 1.5% of the time for
the Level 4 trigger and 3.8% of the time for the more lenient Level 1 threshold
(table 2; figure 4). When the frequency output from the 2!CO2 ensemble is
analysed the Level 1 and Level 4 targets are not met 6 and 16% of the time,
respectively; this represents a quadrupling of the likelihood of triggering demand
management measures relative to 1961–1990. The highest frequency of future
failure is in August, at the end of the summer dry period, where the Level 1 target
is not met 22% of the time, or an average of once every 4 years, and the Level 4
target is not met 8.5% of the time, once every 12 years. In January, the frequency
of any of the thresholds being met is very low in both 1961–1990 and 2!CO2

simulations owing to the generally higher flows in winter. Note that these will not
correspond directly to the frequency of implementation of demand management
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measures, which are only triggered if the flow reaches a given threshold and the
reservoir storage also below a critical threshold; our hydrological model does not
simulate reservoir storage, so these joint probabilities cannot be calculated.

(d ) Alternative sampling strategies

The examples presented above represent an illustrative sensitivity study, where
the outcomes are conditional on a number of factors arising from the experimental
strategy, including: the choice of climate model, hydrological model, climate and
hydrological model parameters to be perturbed, sampling across these parameters,
climate variables available, and downscaling methodology. A different experi-
mental set-up would produce different results (Rougier 2007), though we cannot
say how different they would be. For example, the bimodal distribution in rainfall
change may contain real information about the behaviour of the climate system or
it may be an artefact of the GCM structure, the limited number of GCM
parameters assessed or of GCM parameter combinations that, with more extensive
evaluation, are considered to produce unrealistic climate system behaviour.
Various post-processing methods to account for some of the artefacts of the
experimental set-up are possible. An emulator can be used to estimate the full
response surface across the parameter space, as will be done for the 2008 UK
climate change scenarios (Murphy et al. 2007); similarly, evaluation of the
climateprediction.net ensemble against observations may down weight or exclude
particular areas of parameter space (Murphy et al. 2004).

Given that the distribution of climate impacts will depend on experimental set-up
and post-processing, we explore the effect of two simple alternatives to the direct use
of climateprediction.net–CATCHMOD data to estimate frequency of low-flow

Table 2. Frequency with which EA water-demand management flow thresholds at Teddington are
reached under present-day and 2!CO2 climates (figure 4). ((i) 1961–1990, present-day simulated
flows; (ii) unprocessed: using the 2!CO2 climateprediction.net–CATCHMOD outputs directly;
(iii) uniform, equal likelihood across the range of the 2!CO2 climateprediction.net–CATCHMOD
outputs; (iv) normal, assuming a Gaussian distribution across the range of the 2!CO2

climateprediction.net–CATCHMOD outputs.)

flow target (Ml dK1)

300 (Level 4) 400 (Level 3) 600 (Level 2) 800 (Level 1)

January 1961–1990 0.0002 0.0002 0.0005 0.0005
unprocessed 0.0003 0.0008 0.0034 0.0100
uniform 0.0090 0.0120 0.0170 0.0230
Gaussian 0.0016 0.0017 0.0019 0.0021

July 1961–1990 0.0153 0.0278 0.0346 0.0381
unprocessed 0.0612 0.0821 0.1198 0.1613
uniform 0.0310 0.0420 0.0640 0.0850
Gaussian 0.0025 0.0030 0.0045 0.0064

August 1961–1990 0.0274 0.0371 0.0533 0.0688
unprocessed 0.0850 0.1102 0.1607 0.2237
uniform 0.0310 0.0420 0.0630 0.0850
Gaussian 0.0025 0.0030 0.0044 0.0064
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thresholds. These illustrate the point that different likelihoods of impacts will arise
dependent on the methodology chosen. The first approach uses uniform sampling
across the range of the ensemble, making no assumptions about the distribution
within the range; all outcomeswithin the range of predicted flow statistics are equally
probable. The second analysis assumes that the distribution is Gaussian across the
rangeof theunprocesseddata;herewe set themiddleof the rangeto themean, and the
range is assumed to correspond to 6 standard deviations of the Gaussian.

Results (table 2; figure 4) show that with uniform sampling the likelihood of any
demandmanagement threshold being reached is lower in the key summer months of
July andAugust when compared with using unprocessed output. This is because the
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Figure 4. Cumulative frequencies of (a) January and (b) July monthly discharge for the Thames at
Teddington, in the context of environmental flow targets (300, 400, 600 and 800 Ml dK1) set by the
Environment Agency for different reservoir capacities. Red shows the frequency for the present day
flows (1961–1990). The remaining curves show the frequency from the climateprediction.net–
CATCHMOD under different sampling strategies: black, sampling of unprocessed output; blue,
assuming a uniform distribution over the range of outputs; green, assuming a Gaussian distribution
centred on the middle of the range.

2127Probabilistic climate change impact assessment

Phil. Trans. R. Soc. A (2007)

 on 13 July 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


distribution of the unprocessed 2!CO2 ensemble flows is strongly skewed towards
reduced flows (figure 2); uniform sampling reduces the likelihood in this more-
populated negative part of the range. For the same reason, Gaussian sampling also
reduces the likelihoods of the thresholds in summer. These likelihoods are similar or
smaller than the present day (1961–1990) ones, whereas the unprocessed data yield
up to a quadrupled likelihood; for example, unprocessed data suggest a Level 3
likelihood in August of 0.11, while the Gaussian or uniform sampling data suggest a
likelihood not much greater than today. A water utility may make quite different
infrastructure decisionswhen facedwith aLevel 3 situationoccurringmore thanonce
in every 10 years compared to only once every 25 years.

Clearly, if the flow thresholds of interest were nearer the middle of the range (or
closer to the end of the range) of simulated flows, the relative frequencies would
change; however, they would remain different, in some cases markedly different, in
a way that is dependent on the post-processing strategy. For the January flow
targets, uniform sampling does, in fact, produce a higher frequency of failure than
the unprocessed distribution (albeit a low 0.9 and 2% for 300 and 800 Ml dK1). The
few very low flows in January produce a long tail to the distribution of the 2!CO2

ensemble flows; in such a situation, uniform sampling results in a cumulative
frequency in the tails of the distribution that is greater than the raw data.

4. Discussion

Our analysis has illustrated the potentially rich information that can be obtained
by using large perturbed-physics ensemble outputs in a climate change impact
assessment. The approach can clearly provide more information than a scenario-
based impact assessment. This is illustrated in figure 2, where a scenario approach
might produce one or several points on the horizontal axis, whereas with
probabilistic information, a frequency distribution or probability distribution can
be estimated, and the risks of an adverse impact can be calculated and used to
make a risk-based judgement. But figure 4 also shows that different approaches to
analysing probabilistic information may lead to a different risk-based decision.

Moving from such an illustrative example to a more complete analysis would
require a number of additional elements in the methodology we have used. These
include, but are not limited to: (i) use of the transient climateprediction.net ensemble
which assesses a wider range of physics perturbations and simulates the transient
response to past and future GHG forcing with a coupled ocean–atmosphere model,
(ii) incorporation of more sophisticated downscaling methodologies, (iii) consider-
ation of GCM, downscaling and hydrological model structural uncertainties, (iv)
estimation of the true response surface(s) for impacts across the parameter ranges in
the hierarchy of models used in the end-to-end impacts forecast system, (v) a more
sophisticated approach to assessing (and weighting) the skill of individual model
combinations in the forecast system, (vi) use of a water resource systems model that
enables the assessment of the interplay of demand and supply under different
socioeconomic and water infrastructure scenarios, and finally (vii) the development
of a methodology that links all these components.

The development of an approach that comprehensively addresses these issues in
an end-to-end probabilistic assessment is non-trivial and may be beyond the
resources of many organizations. The next set of UK Climate Change Scenarios
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will provide an ‘off-the-shelf’ set of probabilistic climate information for many
users, but with the proviso the information is dependent on a specific methodology.
Further, a full probabilistic impact assessment will require considerable work to
estimate probabilities across the entire ‘uncertainty cascade’. Organizations
without sufficient resources to undertake a full assessment may still be interested
in information arising from perturbed-parameter modelling. For example, simply
looking at the ranges of predicted outputs, even though their reliability may be
questioned, enables an analysis of exposure to them and the risk of not taking
the right decisions (Stainforth et al. 2007). If potential exposure is deemed
serious—and this raises socio-political considerations as individual judgements will
need to be made in relation to the accepted level of risk—then a more
comprehensive probabilistic assessment might be justified.

However, even with a more comprehensive methodology, the resulting outputs
remain conditional: they are the research team’s current impacts likelihoods, given
the available data and resources (Dessai & Hulme 2004; Rougier 2007). With more
data, more resources or an alternative experimental design, the likelihoods will not
be the same, though they may or may not be similar.

The challenge therefore is to make use of the richer information that large-
ensemble impacts forecasts provide, but to avoid the temptation to consider the
results to be fixed, that is, to be ‘the probability’ of a particular impact. The
impacts assessment and, if required, assessment of adaptation options need to be
robust in the face of wide uncertainties and the inevitability of estimates of the
uncertainty changing over time (Popper et al. 2005; Lempert et al. 2006). Blind
use of a single generation of probabilistic impact information raises the possibility
of maladaptation.

The design of methodologies for using large-ensemble climate modelling data in
impacts assessment is a developing field, in terms of (i) post-processing of global
climate model data and downscaling (Murphy et al. 2007; Fowler et al. in press),
(ii) linking the climate data through impacts to create an end-to-end ‘probabilistic
forecast system’, and (iii) development of approaches for making decisions with
probabilistic impacts information. We have shown what an end-to-end impacts
assessment might look like, but considerable further work is required to ensure
that uncertainty at all steps of the assessment are quantified (such as in the
downscaling). Future work is aimed at improving the end-to-end methodology,
exploring the relative advantages of simple and sophisticated approaches to
probabilistic impacts modelling, and, through the use of real-water resource
planning models, developing methodologies for assessing adaptation options and
making adaptation decisions.

This study was supported by Environment Agency Science Project SC050045 and by the Tyndall
Centre. The views expressed in the paper reflect those of the authors and are not necessarily
indicative of the position held by the Environment Agency.
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