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Abstract – Three-dimensional printing offers varied possibilities of design that can be bridged to optimisation tools.

In this review paper, a critical opinion on optimal design is delivered to show limits, benefits and ways of improve-

ment in additive manufacturing. This review emphasises on design constrains related to additive manufacturing and

differences that may appear between virtual and real design. These differences are explored based on 3D imaging

techniques that are intended to show defect related processing. Guidelines of safe use of the term ‘‘optimal design’’

are derived based on 3D structural information.
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1 Introduction

Additive Manufacturing (AM) is a collection of versatile

techniques of rapid prototyping that allow material design from

3D digital models [1–3]. The term AM comes also under dif-

ferent other nicknames such as direct digital manufacturing or

solid freeform fabrication [4, 5]. AM is rated as one of the

most promising technology for design [6], presented as a

new industrial revolution [7], and a vector for creativity [8],

impact [9] and interrogations [10]. The laying down of the

material in different states including liquid, powder and fused

material defines roughly categories of AM [2, 7, 11–13]. More

accurate classifications do exist such as the ASTM F42

reported in reference [14]. Wide varieties of materials can be

processed using additive manufacturing including metals

[15–18], alloys [19–22], ceramics [23–26], polymers [27–30],

composites [31–34], airy structures [35, 36] and multi-phase

materials [37–39].

The main characteristic of AM is the reduced number of

manufacturing steps that stands between the virtual design

and the ready-to-use part [40]. In addition, one major advan-

tage of AM reported in the literature is the ability to process

complex shapes that are not easy to design using traditional

ways such as extrusion and moulding [3, 41, 42]. AM poten-

tial, as a leading design technique, is enormous and the related

applications are huge [7, 43–47]. Different printing techniques

are used in the biomedical sector [41, 48] more particularly for

tissue engineering [5, 35, 49–51]. Preform design of compos-

ites is evidently an inspiring topic for AM [31] because of

the wide possibilities in structuring yarns and reinforcing com-

posite structures [34]. Aerospace applications of AM are the

most challenging because of the extreme performance that

need to be achieved under fine scale monitoring and in-service

validation [52, 53]. Recent contributions by NPU demonstrates

the central role of topology optimisation in additive manufac-

turing for aerospace applications [54, 55]. Micro-fabrication

technologies emerge also as an efficient way to produce func-

tional micro-components for microelectronics systems [42].

The scaling down of AM is now possible thanks to cutting

edge processes that allow material design at a very fine scale

like with different types of lithography [55, 56].

The idea behind AM is the direct import of CAD

(Computer-Aided-Design) object as machine instructions

(Figure 1). The preferred way to achieve this import is the

transformation of surface tessellation representing the geome-

try of the virtual part into a set of toolpaths. One starts from an*e-mail: sofiane.guessasma@nantes.inra.fr
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STL or Standard Tessellation Language or STereoLithography

file. All external boundaries and internal surfaces appear

smooth and continuous using STL format. Generation of the

toolpaths represents the first challenge and actually a limitation

for AM [57]. The reason is that the building process in most

3D printing technologies relies on a successive layer-by-layer

building process. So, starting from 3D space tessellation and

ending with 2D building strategy is a first drawback. It is even

worse when droplet based printing is considered because the

fused matter is no more connected in any direction. Disconti-

nuities may appear in all building directions (Figure 2) as a

result of the layer-by-layer laying down process (Figure 3)

[27]. The consequence of this appears to be the development

of dimensional inaccuracy, inacceptable finishing state, struc-

tural and mechanical anisotropies, which are continuously

addressed in many research contributions [12, 28, 58–64].

Anisotropy can be also inferred to the development of partic-

ular grain texture as revealed by laser melting deposition or

arc welding alloying of metals [61, 65–68]. Reduction of

anisotropy can be achieved by selecting the appropriate orien-

tation of the virtual design [69–71]. Numerous papers mention

strategies of common sense to build parts with acceptable per-

formance, which are nearly equivalent or even superior to other

design techniques. Scudino and others [67, 72] report that bet-

ter ductility of metallic materials can be achieved using selec-

tive laser melting compared to casting as a result of the fine

grain structure driven by AM. One particular feature high-

lighted in these contributions refers to avoid building the part

along its largest surface. In other words, if the successive layers

of the part exhibit a lack of cohesion, the large contact area

between layers drives worse performance under tension. Some

other strategies rely on reducing the lack of cohesion between

layers or filaments by further processing of the real design.

An example of radiation treatment is proposed in the work

of Shaffer et al. [28].

In addition to the role of anisotropy, differences between

the virtual and real design can be striking knowing that AM

resolution is finite due to available tooling [64]. If we consider

the example of fused deposition modelling, which is a popular

AM technique [12], the toolpath generation is referred as

collection of filament paths of finite dimensions (Figure 3).

This has three main consequences on the real design: internal

structural features may not be well captured depending on their

size; discontinuities may appear depending on local curvature;

and the surface finishing state may be limited due to rough pro-

files [62]. These limitations are illustrated in Figure 2, which

highlights simple and complex geometries and the correspond-

ing toolpath generation using two software, one is Repetier

from Hot-World GmbH & Co, Germany and the other is Catal-

ystEx from Stratasys Inc. Eden Prairie MN, USA.

All limitations mentioned earlier assume implicitly the

role of defects induced by AM. These need to be faced in

order to deliver a design representing, with much accuracy,

the result of an optimisation procedure. These defects are

related to the porosities that develop as a consequence of

the discontinuous process of printing and other issues related

to process errors [73]. A large number of contributions is ded-

icated to the evaluation of the effect of porosities in printed

parts. One particular consequence of the role of porosity is

that a large amount of them reduces the mechanical perfor-

mance. Such reduction is represented by a theoretical linear

decrease of stiffness with the increase porosity level (if limited

stress transfer between layers is neglected). Under tension,

porosities act as stress concentrators and may induce lower

mechanical strength by enhancing the development of damage

in the form of micro-cracks. Under compression, different

considerations can be pointed out. Even if the porosities are

closed during compressive loading, lateral expansion due to

Poisson’s effect may cause failure driven by opening mode

or shearing effects that are dramatically enhanced by the

anisotropy [27, 58].

Porosity should not be considered systematically as a neg-

ative issue in AM since it can be a positive driving factor for

permeability [74].

Another type of defects is the presence of support material

trapped between internal surfaces. The material is needed to

withstand the fragile printed structure during the printing pro-

cess. While this material is studied to provide limited adhesion

to the deposited materials, its residual amount contributes in

increasing the weight of the structure and modifies the load

bearing distributions. These two drawbacks alter the expected

performance of the optimal design. In addition, none-optimised

support deposition affects finishing state, material consump-

tion, fabrication time, etc. [75]. Strategies exist to reduce the

dependence of AM to the presence of a support material by

operating smart or slimming support generation [75, 76]. For

some strategies, the part orientation is continuously adapted

during the processing [57]. Curved regions can be processed

smoothly under continuous deposition mode and the presence

of support material is no more needed. For other strategies,

building complex shape without the support material relies

on the intrinsic properties of the deposited material itself.

These materials exhibit generally rapid cooling kinetics, which

allow them to support their own weight and prevent the struc-

ture collapsing. This kind of strategies obviously limits the

spectrum of materials that can be printed.

2 Optimisation in additive manufacturing

In this paper, our focus goes towards optimisation difficul-

ties that are inferred to AM. With regards to the large number

Figure 1. The process chain in typical AM.
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of disseminated works on the subject, common characteristics

of optimisation in AM are highlighted in this section and

described through selective literature work. In particular, sev-

eral aspects of additive manufacturing can be optimized. Some

of these aspects are related to design optimisation, more partic-

ularly topology optimisation. Some others like geometry accu-

racy, finishing state are tackled through process planning

optimisation.

For most contributions, optimisation in AM is classically

considered as a process parameter optimisation as it is the case

for many design techniques [77, 78]. Raster angle, building

direction, layer dimensions are some of the main parameters

that find some interest in the literature. For instance, Garg

et al. [79] present genetic programming approach as an intelli-

gence tool to relate the AM process parameters to physical and

structural outputs. While this is an important issue from the

Figure 2. Typical examples of CAD objects transformed into collection of toolpaths using (a) Repetier and (b) CatalystEX software.
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processing viewpoint, it is less attractive from a numerical

analysis perspective, where strong and robust optimisation

tools need to address more significant challenges. This does

not diminish the purpose of the earlier approach. Accurate

dimension, acceptable roughness and processing time are some

of the important outcomes that justify the continuity of the

research effort in this particular field. A typical example show-

ing the importance of the process optimisation is provided in

recent works [54, 55, 78]. The paper by Zhou et al. [78] intro-

duces the concept of pixel blending to define the effect of

neighbour pixels light intensity in solid freeform fabrication

using photopolymerisation medium. The optimisation in such

kind of studies is meaningful as the achievement of shape

accuracy relies on the precise control of light intensity over a

pixel-based image.

The paper by Yang and Zhao [3] report one of the most

recent review on AM-enabled design, which is the closest sub-

ject to topology optimisation. In their review, design guidelines

are exposed and the focus on structure optimisation methodol-

ogy is explored through different contributions. This kind of

methodologies needs to take care about the specificities of

the design in terms of material combination, shape complexity

and the targeted in-service performance. In the same review

[3], the authors bring to our attention the possibilities of pro-

cess combination involving more conventional or AM-based

techniques [80–82]. We consider that this research direction

associating various processes is out of the scope of this paper

from an angle view of topology optimisation. However, the

other considerations discussed there are central to the topology

optimisation such as those related to design simplicity, material

choice efficiency, improved multi-functionality, integrated

technical solutions [83], etc. The concepts of multiphase mate-

rial [37] and functionally graded materials [84, 85] emerge as a

direct consequence to point by point material control in AM

[86]. Also, designers are no more bonded by the tooling which

needs to be a factor in the design with traditional processing

[87]. This opens new chances for simplifying the design but

also for increasing the creativity [7]. This particular point helps

significantly the designers who need generally to reshape the

result of the topology procedure to fit processing constrains

like the development of particular tooling. A simple example

would be the conversion of a material deposition probability

into a graded material [4] instead of thresholding to solid or

air phase [88]. In addition, if the conditions of blending at

the microscale or nanoscale are met, the achievement of

multi-material design is not a threat for the design but mostly

an advantage because of the possibility to further improve per-

formance at a lower material consumption rate [4].

Considerations related to topology optimisation are numer-

ous [37, 88]. Some of them depend on the level of access to the

AM processing technology itself which is not systematically

provided by the commercial solutions. Here are some of these

considerations that are central to the development of robust

AM solutions:

– Geometry of the CAD model: this is direct target of the

topology optimisation, which needs to predict what would

be the exact geometry that satisfies all model constrains.

Successful examples of topology optimisation can be

found in the literature for cellular materials [88, 89], mul-

tiphase materials [37], implants [90].
– Path generation: this is an important parameter that affects

geometry accuracy, cohesion in the part, residual stresses,

and the finishing state [20, 63, 91]. Path generation

needs to handle as much the change in process speed

and the transition time at the borders [92]. A specific

Figure 3. Laying down process of fused ABS polymer in typical FDM equipment.
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branch of research is dedicated to the optimisation of tool

generation path including studies related to the improve-

ment of the scanning mode [93, 94], geometry slicing

strategies [95, 96], optimal material deposition [97, 98],

multi-directional AM [99], tool path anticipation proce-

dures [100].
– Process selection: different technologies are developed to

enhance the capabilities of AM like jet printing [26, 101],

friction stir AM [102], welding based AM [94], ultrasonic

AM [103], electrochemical AM [104], micro-plasma pow-

der deposition [105], Solid freeform fabrication [106] and

related variants such as selective laser sintering [107,

108], or directed light fabrication [20], selective infiltra-

tion manufacturing [109]). The outcomes of these technol-

ogies diverge. This reinforces specific aspects of AM like

the material type, printing size, accuracy, speed, cost, etc.

[110]. Figure 4 shows two examples of technologies

applied for the design of airy structures, one based on

FDM (uPrint� SE from Stratasys) and the other is a pho-

tolithography equipment (SPS350B from XJRP company).

The earlier one is restricted to printing ABS polymer

where the last one can process only photosensitive resins.

The ability to control the process parameters is crucial to

decide on the relevance of a particular AM process [111].

And perhaps, a badly performing design reflects only the

lack of knowledge of the process. Thus, the mastering of

the process parameters is a criterion for process selection.
– Process resolution: this is also an important aspect that

guarantees the accuracy of the AM process [14, 112]

and the development of appropriate scaling solutions for

nano-, micro- and macro-features [38, 64, 113–116].

Some studies focus on slicing techniques to increase accu-

racy such as adaptive slicing proposed by Siraskar et al.

[117] using volume decomposition by octants.
– Feed material properties: rheological and phase change

properties of the feed materials are essential to the success

of AM building capabilities especially for achieving stan-

dards in material selection [118]. This is a continuous

research direction aiming at increasing the spectrum of

printable materials and optimising the intrinsic material

properties for a better performance during fabrication step

[14, 19, 119–121].
– Support material: optimisation of the support material is

now fully integrated in numerous commercial solutions,

which require supporting of the part during processing.

This optimisation relies on different options such as the

Figure 4. Two examples of airy randomly structured polymers designed using (a) fused disposition modelling (uPrint equipment in GEPEA

lab., university of Nantes, France) and (b) photolithography (SPS350B equipment in ESAC lab, NPU, Xian, China).
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smart deposition for which only reduced amount of sup-

port material is needed [76]. Some research works still

contribute in this particular area to improve the spatial dis-

tribution of airy support material [75, 122].

The logic behind topology optimisation is illustrated in

Figure 5. The geometry of the CAD model can be something

to discover through the optimisation procedure or assisted by

imaging tools such as micro-CT scanning [123]. Since the opti-

misation combines physical and geometrical constrains,

numerical solutions need to be available to predict what would

be the result of the part performance [14, 112]. This is gener-

ally addressed using finite element computation [53]. The

numerical model needs to converge in all design situations

within a short time because the process is meant to be repeated

several times. Depending on the nature of the physical con-

strain, the numerical model can be more or less sophisticated.

For instance, residual stress analysis requires most of the time

solving a multi-physics problems [124, 125]. If numerical

models are able to handle technological, physical, and geomet-

rical constrains, design guidelines can be adopted by coupling

the optimisation tool to decision making paradigms.

Some studies show that AM process simulation is possible

[125, 126] but the ultimate goal would be to bridge such

realistic tools with the optimisation paradigm. Recent works

prove unfortunately that we are far from such ideal situation

[127].

Topology optimisation needs to cope with the specificities

of AM. As this process generates a complex network of 3D

defects, numerical models need to integrate the result of defect

in the analysis as an implicit performance perturbation or

explicit defect influence. This is the main difference between

the two schemes presented in Figure 5. The classical scheme

(Figure 5a) does not handle the defects induced by processing,

Figure 5. (a) Classical view of topological optimisation, (b) Modified scheme with defect sensitive topology optimisation of AM.
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which makes any deviation from the optimal virtual design a

cause of failure. Numerical sizing in aerospace applications

[128] is a typical example where such defects can be an issue

to validate the final design in airframe development. In the sec-

ond scheme (Figure 5b), the corrections introduced by the

monitoring of the defects helps in guiding the optimisation tool

towards the best realistic solution. This resolution is directly

related to the AM tooling constrains, for instance the choice

of the tip size. If the second scheme is used to consider appro-

priate selection for tooling options (like nozzle diameter), then

such process parameter can be considered as a discrete vari-

able. Optimal design can be searched in a larger space depend-

ing on the possibilities offered to select a certain number of

available nozzles. Real-time control of AM like the optical

tomography [129, 130], thermographic analysis [131] or ultra-

sonic monitoring [132, 133] helps in gaining valuable informa-

tion about the structural defects that develop during AM

processing and their direct consequence on failure of the

designed part [73]. This is still a challenging issue as it appears

that adequate non-destructive techniques are not yet fully avail-

able to evaluate properly AM part performance [52]. This sit-

uation can be improved through the development of standards

which is still an ongoing process for the validation of testing

techniques applicable to AM [134]. One of the most promising

techniques to analyse microstructural defects in AM parts is

X-ray micro-tomography [135]. This technique is able to pro-

vide precise information about the porous network induced by

processing, surface roughness, part volume, amount of support

material and any other microstructural defect [27]. As the tech-

nique relies on transformation of 2D projections into 3D image

[136, 137], structural anisotropy effects can be quantified.

Figure 6 shows two examples of defects revealed in ABS

polymer printed using fused deposition modelling. Cross-sec-

tion views refer to a dense block of ABS (30 · 30 · 30

mm3) analysed using X-ray micro-tomography. This block is

oriented at 0� in the printing plateau, but we notice clearly

the crossing of filaments at an angle of 45� and the presence

of bounding layer. In Figure 6a, the resolution of the image

is 1077 · 1062 · 1059 voxels, where a voxel is a graphical

unit in 3D. The physical size of the voxel determines the accu-

racy of the structural defect evaluation. In Figure 5a, the voxel

size is 30 lm. More information about the operating condi-

tions can be found in reference [27]. Figure 5a shows the lack

of cohesion between successive filaments and tendency to flat-

tening because the filament diameter is tripled during the lay-

ing down of the fused matter. The subsequent porosity forms as

a regular network of micro-sized defects, and appears to be

highly connected. Also, residual support material can be found

at the borders, which reveals difficulties of support material

removal. The automatic cleaning process is generally followed

by manual removal step to ensure that no residual support

material is left behind. The second example highlighted in

Figure 6b shows other imperfections that infiltrate the design

of a two phase material. These imperfections are related to dis-

continuities of matter in the cell walls, the change of geometry

due to design mismatch effects and the presence of support

material trapped in closed pores of small size.

In several contributions, the red links in Figure 5b are

ignored as if the approximate result of the optimisation is

unavoidably accepted. More recent contributions tackle such

links by suggesting corrections of the design based on manu-

facturability considerations [64]. This is performed, however,

Figure 6. Microstructural defects in ABS polymer printed using FDM. Analysis is performed using X-ray micro-tomography. Two examples

are shown one is (a) a dense ABS block and the other is (b) airy ABS materials exhibiting more than 60% of porosity.
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independently from the optimisation tool itself and does not

involve defects induced by processing.

3 Challenges for AM topology optimisation

One of the important issues that topology optimisation

needs to address is the pertinence of the constitutive laws rep-

resenting the behaviour of the printed materials. Unfortunately,

material law implementation is not yet fully revisited leaving

an open area for research in this direction [138]. A typical

research direction would be to explore interfacial effect in

terms of limited load transfer and damage kinetics at the light

of results achieved for composite materials [139, 140]. This

direction is fully justified by the fact that lack of performance

is more associated to the weak adhesion between filaments.

Thus, failure mechanisms are likely to be affected by the

arrangement of such weak regions [27].

Another concern is the embedding of the microstructural

details in the topology optimisation. During the past decades,

this opportunity to tune microstructurally the design was out

of reach because of computation resource limitations. Now,

this is accessible at the cost of using efficient paradigms that

avoid unrealistic configurations and constrain the search vol-

ume to design-effective solutions. Recent experimental

achievements show the potential of AM to tune locally the per-

formance of multi-material parts [39]. The next realistic step

would be to promote this kind of experimental attempts to fully

automated procedures. The role of microstructural details can

be even determinant in hierarchical structures. Indeed, previous

studies show large possibilities of airy arrangement using

hybrid optimisation strategies [141]. One can imagine the large

possibilities of pore connectivity tailoring driven by AM if

micro-porosity is considered.

Topology optimisation is not yet ready to provide sys-

tematic process error detection for AM. We know that AM

processes are exposed to inaccuracy in terms of geometry

imperfections, volume mismatch, and undesirable surface

texture. All these drawbacks can be properly addressed by

a tool that apprehends the limits of the AM processing. Real-

istic designs with acceptable defects are better than ideal

designs with unmeasurable bias. Figure 7 shows some clues

about how topology optimisation can achieve a higher sensi-

tivity to defects in AM. A better understanding of the AM

defects is a matter of scaling down the numerical model to

the size of heterogeneities that are the birth sites of the pro-

cess-induced defects. Explicit implementation of discontinu-

ities can be handled as well as lack of bonding between

layers or filaments. Also more elaborated constitutive laws

can be considered in order to take into account anisotropies

that are subsequent to the rapid cooling and stretching of the

matter.

A straight-A learning paradigm is not also accessible for

topology optimisation. The near future developments will meet

substantial use of in-situ or in-line monitoring procedures for

AM [16, 142]. Topology optimisation can integrate some of

these procedures to learn from the design. This requires the

combination with another class of algorithms that are derived

from artificial intelligence [143]. As an end, the optimal design

can be performed using optimal process parameters, which

saves a considerable amount of time.

A bigger tool for higher perspectives is what process man-

agers expect from optimisation tools. Topology optimisation

can be part of it if other considerations are handled carefully

like cost effectiveness with a large material catalogue, material

saving logics, automated process selection, scenarios of durabil-

ity, recyclability and projections of life time. Fully automated

decision making processes can be then launched starting from

the idea of design to the post-mortem step of the AM part.
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