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ABSTRACT
Cyber-physical approach to securing Body Area Networks
(BANs) provides solutions that are plug-n-play and trans-
parent to its users. These Cyber-Physical Security Solutions
(CPSS) actively involve characteristics from the physical en-
vironment. As a result they require a combination of signal
processing (to extract features from the physical environ-
ment) and security primitives to function. In this paper we
outline some of our experiences while implementing Plethys-
mogram based Key Agreement (PKA) - a CPSS - that uses
Photoplethysmogram (PPG) based features for key agree-
ment. Given the limited capabilities (computation, memory,
power) of individual sensor nodes in a BAN, implementing
CPSS for them is challenging. We therefore design Field
Programmable Gate Array (FPGA) based hardware add-on
for sensor nodes in a BAN, dedicated to execute PKA. The
main contributions of this work are: 1) description of our
experiences in implementation of PKA on FPGA platform;
2) identification of the design goals and trade-offs for vali-
dating implementation of CPSS; and 3) a discussion on the
feasibility of a software implementation of PKA based on
our experience gained from the FPGA prototyping.

1. INTRODUCTION
Recent technological advances in the fields of MEMS, inte-
grated circuits, and low power design have lead to the devel-
opment of health monitoring Body Area Networks (BAN)
[10] [14]. BAN (as shown in Figure 1) is a collection of med-
ical and ambient sensor nodes, deployed on a person (host),
to continuously monitor their health parameters. These sen-
sors collect data from their host and send it to a base station
for processing and storage, usually through a wireless multi-
hop network [21]. As BANs deal with sensitive and personal
information, providing security to the inter-sensor commu-
nication within a BAN is important. Indeed the Health In-
surance Portability and Accountability Act (HIPAA) man-
dates securing all electronically transferred health informa-
tion (http://www.hhs.gov/ocr/hipaa/).
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Further, BANs are often used in mission critical contexts -
necessitating them to operate unobtrusively by employing
usable security solutions that are plug-n-play in nature and
are largely transparent to the users (patients as well as care-
givers) of the BAN [24]. Recent years have seen emergence
of BAN security solutions with usability as the primary goal
[20] [24]. These solutions take a cyber-physical approach to
security, i.e. they make parameters derived from their phys-
ical environment - an integral part of their operation. This
new class of security solutions - Cyber Physical Secu-
rity Solutions (CPSS) - integrate signal processing with
cryptographic primitives in order to provide usable security
solutions in BANs. This dual requirement of cryptography
and signal processing however introduces several implemen-
tation challenges in the resource constrained BANs with sim-
ple node architecture, small storage and limited energy [16].

In this paper, we study the challenges faced and trade-offs
incurred in implementing a CPSS in a BAN environment. In
this regard, we implement Plethysmogram based Key Agree-
ment protocol (PKA) - a CPSS - first discussed in [24] in the
BAN of the Ayushman [21] pervasive health monitoring plat-
form being developed in the IMPACT Lab at Arizona State
University. Implementing the signal processing requirements
of PKA in the sensor nodes (Crossbow motes) is complex
given their limited capabilities. A popular technique to in-
crement the mote’s computing resources is to interface Field
Programmable Gate Array (FPGA) based custom boards to
it as suggested in [2] [7] [17]. In this work we design such
an FPGA based hardware add-on (using VHDL) for sensor
nodes in the Ayushman BAN that will execute PKA.

To validate our implementation we identified a set of de-
sign goals that PKA has to meet: 1) Accuracy: This
design goal ensures that the approximations made during
the implementation of CPSS in any platform do not lead to
loss of security. For example, in the case of PKA we have
to guarantee that it enables plug-n-play key agreement be-
tween sensor nodes in a BAN without allowing adversaries
to identify the key; 2) Low Latency: The implementation
should be efficient in terms of latency of operation. This is
an important aspect for CPSS as it is usually implemented
on systems which are time-critical in nature, such as BANs;
and 3) Minimal Resource Usage: This ensures the fea-
sibility of implementing CPSS in terms of the resources uti-
lized by the implementation. We believe that these goals
can be used for validating any CPSS.



Figure 1: Body Area Network with Environmental
and Physiological sensors

The main contribution of the paper is an enumeration of
our experiences - challenges, design goals and trade-offs -
in implementing a CPSS, based on an FPGA based im-
plementation of PKA. Based on our experiences from the
implementation we also discuss the feasibility of a software
implementation of PKA. The availability of a viable soft-
ware implementation of PKA is advantageous as it reduces
the overall cost of out-fitting every sensor in the BAN with
additional hardware. To the best of our knowledge this is
the first work which discusses implementation issues specific
to cyber-physical security primitives.

The rest of the paper is organized as follows: Section 2
presents the preliminaries: a description of PKA, and our
approach to implementing it. Section 3 discusses the chal-
lenges faced in VHDL implementation of PKA CPSS, fol-
lowed by Section 4 which evaluates the VHDL implementa-
tion of PKA in terms of the design goals and brings forth the
trade-offs incurred in the implementation process. Section
5 discusses the possible challenges of implementing a CPSS
on a software platform. Section 6 presents the related work,
followed by Section 7 which concludes the paper.

2. PRELIMINARIES
In this section we provide an overview of PKA [24], then
describe our approach to implementing PKA on FPGA and
finally provide details on the data collection methodology.

2.1 Plethysmogram based Key Agreement
Plethysmogram based Key Agreement protocol (PKA) takes
a cyber-physical approach to security. Figure 2 illustrates
the basic operation of PKA.

• Initially, both the sensor nodes measure the host’s PPG
signal. A set of frequency domain features are then
generated by performing a windowed FFT on the PPG
signals and then detecting the peaks in the FFT co-
efficients. Each of the peak-index and its correspond-
ing peak-value (magnitude) are recorded as tuples and
combined to form the features. Frequency domain fea-
tures are used in order to reduce the need for synchro-
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Figure 2: Key Agreement with PKA Protocol [24]

nizing the measurement of physiological signals at the
sensor nodes [20].

• These tuples (features) are then quantized and con-
catenated to form a feature vector. Once the feature
vectors have been generated, one of the two commu-
nicating sensor nodes (designated as the sender) gen-
erates a random symmetric key (128bits long, longer
keys can also be used) which it then hides using the
elements (features) of the feature vector obtained from
the PPG signal.

• For the purpose of hiding the key, a fuzzy vault [8]
cryptographic primitive is used. The hiding process
works as follows - 1) The sender generates a vth order
polynomial, the coefficients of which are populated by
the secret key which is to be hidden. 2) It then com-
putes the polynomial at each of the elements in the
feature vector. 3) Each element in the feature vector
and its projection on the polynomial forms a set of
legitimate coordinates of the form (x-value, y-value).
4) The legitimate points are then obscured by adding
a large number of bogus coordinates called the chaff
points. The chaff points are random in nature, their
x-values are not a part of the feature vector, nor are
their y-values an accurate projection of the x-values on
the polynomial. This set of legitimate points and chaff
points is called a fuzzy vault.

• The vault is then transmitted to the other sensor node
(designated as the receiver) via the wireless medium.
The receiver upon receiving the vault, identifies v + 1
elements from the vault whose x-values are identical
to its own features and tries to re-construct the poly-
nomial hiding the secret key using Lagrangian inter-
polation.

• Once the receiver has generated the correct polynomial
it can obtain the hidden key from the coefficients. It
then sends back an acknowledgment which is basically
a Message Authentication Code (MAC) computed on
a random number using the newly agreed upon key.



Any adversary eavesdropping on this conversation cannot
distinguish the legitimate points from the chaff and has to
potentially try all possible combinations of size v+1 from the
vault to arrive at the correct key, which can be prohibitively
expensive [24].

2.2 Approach
The original design of PKA was verified by extensive Mat-
lab simulations based on actual data, and the results were
presented in [24]. However, Matlab eases many of the chal-
lenges involved in implementing signal processing primitives
in the sensor nodes of a BAN. Limited capabilities of the
sensor nodes make the implementation of PKA in a BAN,
a non-trivial task. In this work, we therefore explore the
design of a specialized hardware that can be interfaced with
individual sensor nodes in a BAN, to which the computa-
tional requirements of PKA can be transfered. (We also talk
about direct implementation of PKA on motes in Section 5.)
We utilize Field Programmable Gate Array (FPGA) boards
for prototyping our design1. We used the XILINX Spartan
II XC18V02 FPGA platform for this purpose. The hardware
board has - a separate crystal clock that runs at 20 MHz (but
is capable of scaling to a maximum clock speed of 200 MHz),
and 56K block RAM where each block RAM is 4 Kb in size.
The VHDL programming platform was used to perform the
prototype implementation of PKA. We used ModelSim PE
as the simulation software for the VHDL implementation.

2.3 Physiological Data Collection
Before we go into the details of VHDL implementation, we
briefly review the physiological signal (PPG in our case)
collection process as described in [24]. The data forms the
basis of validating our VHDL implementation of PKA and
its comparison with our benchmark Matlab implementation.
We collected PPG data from a group of 10 volunteers in the
IMPACT lab. We used Smith Medical pulse oximeter boards
(specifications can be found at http://www.smithsoem.com/
applications/ oxiboards.htm) to collect the PPG data from
the volunteers. The volunteers were asked to sit upright with
their hand firmly placed on a desk; an oximeter sensor was
placed on the index finger of each hand. Data was collected
for about five minutes from each subject at a sampling rate
of 60Hz.

3. VHDL IMPLEMENTATION
In this section we give detailed explanation of the VHDL
implementation of PKA. We begin with the preliminaries
about the various stages of PKA, and then move on to a
detailed description of the implementation of each of the
stages, and design choices we had to make in each case.

3.1 Preliminaries
The PKA implementation consisted of six main stages: 1)
FFT Computation, 2) Peak Detection, 3) Quantization, 4)

1Such FPGA boards can also be directly interfaced with
the sensor nodes in the BAN. Recent years have seen the
emergence of several systems FPGA based hardware add-
ons for Crossbow motes [2] [7] [17]. In such a system the
motes are interfaced with boards containing an FPGA. The
FPGA has its own crystal clock, I/O ports and RAM and
communicates with the mote using UART connection.

Polynomial Evaluation, 5) Chaff Point Generation and Mix-
ing, and 6) Lagrangian Interpolation. Each of these stages
requires extensive floating point operations which VHDL
does not provide. Ideally we would want to build an ALU
in VHDL for addressing this. However, that would require
around 40000 gates [4]. To satisfy our minimal resource
utilization design goal we did not go for an ALU design in
VHDL. Further floating point numbers were not represented
according to the IEEE 754 standard as it is complex and re-
quires almost 47% of the logic cells present in an FPGA [13].
Instead a fixed-point representation was used. As we shall
see, this approximation did not adversely affect the accuracy
of PKA.

3.2 Numeral Representation
In our prototype the floating point numbers are represented
using fixed-point scheme that makes the implementation of
arithmetic operators easier. The conversion to the fixed-
point representation is a three step process - 1) The floating
point numbers are represented in binary-point format; 2)
The binary-point representation is shifted seven places to the
right and all the bits to right of the binary-point are ignored;
3) The bits to the left of the binary point are then used to
represent the floating point number in the 32 bit fixed-point
representation. The principal idea behind the process is to
multiply the floating point number by 128 and to store the
integer portion of the result. This effectively provides a rep-
resentation of the floating point number with a precision of
two decimal places. Given, the fixed-point representation of
floating point numbers, we then developed a framework for
basic arithmetic operations on floating point numbers such
as 32 bit floating point addition, subtraction, multiplication,
division, comparison and exponentiation [15]. Apart from
these, we also had to perform complex arithmetic operations
(for FFT computations). We addressed this issue by repre-
senting complex numbers using two registers for the real and
imaginary parts. Complex arithmetic was performed by sep-
arately manipulating the real and imaginary part of complex
numbers.

3.3 Stage Details
In this section we describe in detail how each of the principal
stages of PKA were implemented using VHDL.

FFT Computation: The Cooley Tukey (CT) algorithm [6]
was implemented in VHDL to compute FFT. FFT compu-
tation is extremely memory intensive. In order to meet the
minimal resource usage design goal we had to employ strate-
gies to reduce the memory footprint of the FFT computation
(measured by the number of register bits required for the
implementation). The solution to this problem was an im-
plementation of FFT with only a single butterfly structure2.
No attempt was made to parallelize the butterfly operation,
on streams of data, as that would have increased the memory
footprint of the system. For our specific implementation we
required a 256 point FFT. According to the CT algorithm
the computation of FFT is divided into several stages (for

2Butterfly operation is the basic computation in FFT. The
butterfly structure has two complex floating point inputs
and two complex floating point outputs. The computation
is done in two stages; first, a complex addition and a complex
subtraction are done on the inputs, then each of the outputs
is multiplied by appropriate twiddle factors.
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256 point FFT computation there are 8 such stages) where
in each stage a smaller point FFT is calculated. Figure 3
shows the implementation logic of a particular stage of the
FFT computation. We first organized the data in the bit-
reversed [12] order and stored it in a register bank X that
contained 256 registers each 32 bits long (data word). Each
stage of FFT had three phases: 1) Re-arrangement : In this
phase the data from the previous stage of implementation
was re-organized and stored in a register Y (size of Y = size
of X) such that, each pair of data elements on which the
butterfly operation would be performed were in successive
words of the register. This re-arrangement ensured that af-
ter the butterfly computation the output data elements can
be stored in the same location as the input data elements; 2)
Butterfly : The butterfly operation was performed on pairs
of data elements that were fed serially into the butterfly.
Butterfly operation consisted of two complex additions and
two complex multiplications by the twiddle factor [3]; and
3) Storage: The results of the butterfly computation on the
data words were then stored in their respective locations in
the register Y (feasibility of such storage is ensured by the
re-arrangement phase). This approach to FFT computation
helps in reducing its memory footprint as we use only a sin-
gle butterfly and only two register banks (each containing
256 data words each 32 bits long) for the entire operation.
This FFT implementation has a greater latency than any
parallelized computation of FFT but it helps in keeping the
memory footprint low.

Peak Detection: Once the FFT was implemented, peak
based features were extracted from it. Peak detection is an
essential step in this regard and was done by implementing
a slope detector (that detects a positive or negative slope
in the FFT coefficient curve) and a threshold detector (that
compares the difference in two FFT values with a thresh-
old). Figure 4 illustrates the peak detection process. The
FFT coefficients were fed one by one to the register RegA (a
parallel in parallel out 32-bit shift register) which was trig-
gered by a clock. The output of RegA was connected to the

input of RegB and thus RegB contained the FFT coefficient
that was present in RegA in the previous clock cycle. The
contents of RegA was compared with RegB using a 32 bit
comparator that outputs true if value in RegA was greater
than that in RegB and false otherwise. A true output of the
comparator, suggested an upward slope in the FFT coeffi-
cient curve, which eliminated the possibility of a peak. We
therefore moved on and compared the next two FFT coeffi-
cients. However, if RegB was greater than RegA it suggested
an abrupt change in slope from positive to negative. This
indicated that the value in RegB could be a possible peak.
The clock to RegB was therefore gated in order to store the
possible peak. The value of RegB was then compared with
successive FFT coefficients using the threshold detector to
see whether there was a significant decrease in the values of
the FFT coefficients. If the difference in the value of the
FFT coefficient was greater than a previously set threshold
then content in RegB was considered as a peak and was
stored in the register bank.

Quantization: Once the peak index and their magnitudes
(peak values) were detected, they were quantized into one
of many levels. These levels were determined based on the
standard deviation and mean of the peak values. This step
involved exponentiation, which was achieved by doing re-
peated addition and shifting using shift registers. Care had
to be taken to avoid overflow at the registers, which is fur-
ther discussed in Subsection 3.4.

Polynomial Evaluation: Once the features were quan-
tized, a vth order polynomial was selected, whose coefficients
were generated randomly, using the Mid-Square method [11].
The polynomial evaluation based on the features involved
basically multiplying the feature values to the polynomial
coefficients and adding them.

Chaff Point Generation and Mixing: The feature points
and their polynomial projections were obfuscated using chaff
points which were again generated using a random number
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generator. Extra register banks were required for the storage
of the chaff points, where in order to store 1000 chaff points
2000 registers were required (each 32 bit in size) amounting
to about 8 KB of memory.

Lagrangian Interpolation: The Lagrangian interpolation
algorithm for decoding polynomials from their projections
involved the computation of convolution3 of two polynomi-
als. The convolution of two polynomials each of order p
was computed by first storing them into register banks with
2p − 1 number of 32 bit shift registers. Figure 5 shows the
implementation of polynomial convolution. For one of the
polynomials, the coefficients were stored in the register bank
BankA and the bank was padded with p−2 zeros to the left.
The other polynomial was stored in the register bank BankB
and was padded with p− 2 zeros to the right. Then the reg-
ister bank BankB was slid over BankA by shifting BankB
to the right. For each slide 2p− 1 multiply and accumulate
operations were performed. The result of the multiply and
accumulate operation was stored in another register bank
BankC with 2p + 1 entries. This register bank stored the
coefficients for the resulting polynomial.

3.4 Overflow Issues
An important issue to be considered during the implemen-
tation of the aforementioned stages is overflow. We suggest
the following two simple strategies to overcome this issue:

• Division before Addition: Where ever possible per-
form division operation before the addition operation.
For example, during the quantization phase, calcula-
tion of mean and standard deviation of FFT coeffi-
cients were required. These involved addition opera-
tion followed by a division operation. The accumulate
operation often lead to overflow when executed before
the division operation.

3Convolution means multiplication of two polynomials to
generate a third polynomial. If the two polynomials that
are being multiplied have orders a and b respectively then
the resultant polynomial has order a + b.
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• Scaling Down Large Numbers: It is often useful
to scale down large numbers by a factor before exe-
cuting multiply operations in order to avoid overflow.
For example, during the evaluation of the polynomial,
at each feature point, the feature values were scaled
down by a factor of 1000 so that their post-evaluation
projections do not overflow.

4. EVALUATION
A number of approximations had to be made for implement-
ing PKA protocol on VHDL. These implementation deci-
sions need to be validated in order to ensure the correct
operation of the PKA protocol. We evaluate our implemen-
tation by showing its compliance with the design goals. We
also discuss the several trade-offs that were required to be
considered during the implementation.

4.1 Compliance with Design Goals
In this section we demonstrate that our implementation of
PKA (a CPSS) in VHDL meets the three design goals we
set forth earlier.

Accuracy: The primary approximation we made was the
fixed-point representation of floating point numbers. This
resulted in the overall loss of precision but did not adversely
affect our results, especially at the pivotal stage of FFT com-
putation. We verified this by comparing the FFT computed
on VHDL with the FFT computed by our benchmark Mat-
lab version. Figure 6 shows the comparative results. The
root mean square error calculated as a percentage of the
mean of the FFT coefficients is around 0.94% for VHDL im-
plementation. The accuracy of implementation of the peak
detection module was tested by comparing the number of
peaks obtained in the VHDL implementation with the num-
ber of peaks obtained in the Matlab benchmark. The results
of the comparison are shown in the Table 1. Figure 7 com-
pares the peak-values and peak indexes of the FFT coeffi-
cients obtained from Matlab and VHDL. The results show
that the peak indexes do not differ but the peak values do
sometimes, primarily due to the quantization process. How-
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by VHDL and Matlab

ever, this loss of accuracy with respect to the benchmark
implementation is not detrimental to the vault construction
in PKA, as there is a substantial difference between com-
mon features from same and different subjects. By choosing
a polynomial order in between these two values (our choice
was an 8th order polynomial), as specified in [24], we can
ensure the accurate operation of the protocol thus meeting
the design goal.

Low Latency: The latency of our implementation is eval-
uated on the basis of time taken for the execution of the
protocol. We measured the number of clock cycles taken by
our implementation of PKA and then multiplied it by the
clock speed of our reference FPGA. Table 2 summarizes the
results. The total time taken for the execution of PKA at
the sender side is 32.2 msec and that on the receiver side
is 59 msec after the measurement phase of the physiological
signal. These results were obtained by considering the clock
speed of FPGA to be 20 MHz [1]. The receiver takes more
time to execute the protocol as it involves the computation
of Lagrangian interpolation in addition to FFT computation
and peak detection, resulting in a significant increase in the
number of clock cycles.

Minimal Resource Usage: The primary requirement of
this design goal is to keep the hardware requirement of the
implementation below the available amount of resource in
the FPGA system. In order to evaluate this design goal we
propose a new metric - memory footprint. We define memory
footprint of a VHDL implementation as the number of bits
that are being used by all the variables that are declared in
the implementation. Table 2 shows the memory footprint of
the sender and the receiver. From the results we can see that
our implementation has a memory footprint much less than
the total amount of RAM (56K*4Kb=28MB) present in our
FPGA custom board thus meeting the minimum resourced
usage design goal.

4.2 Trade-Offs
The adherence to the design goals presents a number of
trade-offs during implementation. Below we list the trade-
offs with respect to our implementation of PKA. We believe
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Figure 7: Comparison of Peaks in FFT Coefficients
between VHDL implementation and Matlab of PKA

that these will affect any CPSS implementation and should
be carefully considered.

Accuracy vs. Complexity: There is an inherent tradeoff
between the accuracy and the resource usage design goals.
Intuitively higher accuracy in implementation requires higher
amount of resource. In the specific example of PKA we
did not implement an IEEE 754 compliant representation
of floating point numbers due to the complexity of the ap-
proach and its potential high memory usage. Instead a much
simpler fixed-point representation of floating point numbers
was used that gave us the required accuracy while not stress-
ing the memory usage.

Latency vs. Resource Usage: Trade-off exists between
the latency and resource usage design goals where in order
to keep resource usage within limits, performance degrada-
tion is incurred. In PKA implementation we incurred this
trade-off during the FFT computation. We did not imple-
ment a parallelized version of FFT as that would incur more
memory usage. However, the implementation approach that
we took increased the latency of the FFT computation but
it enabled us to perform FFT using minimal resource (low
memory footprint).

5. SOFTWARE IMPLEMENTATION
In this section we discuss the viability of a software imple-
mentation of PKA (on sensor nodes in a BAN) based on
important insights drawn from the VHDL implementation.
Software implementation of the protocol has many advan-
tages compared to a hardware add-on:

• The hardware is customized to perform only a single
task and cannot be adapted easily to meet the chang-
ing requirements of the mote. Software version of the
protocol can be updated on the fly or its parameters
tweaked easily.

• The hardware has its own powering needs which may
potentially strain the mote batteries. Software imple-
mentations are usually not so power intensive.



Table 1: Comparison of number of peaks in Matlab and VHDL

Parameters Matlab VHDL
Average number of peaks 30 26.5
Number of common peaks for sensor nodes in same BAN 12 10
Number of common peaks for sensor nodes in different BAN 2 1.7

• Each mote needs to be interfaced with the board, which
can be expensive and time consuming process. No ad-
ditional interfacing is required if the mote itself can
implement PKA.

In this section we provide a high level analysis of the is-
sues in implementing CPSS in mote software with specific
reference to PKA. The sensor nodes in the BAN are imple-
mented using Crossbow motes that have a 8MHZ processor,
4KB RAM, utilize a ZigBee radio to communicate and are
powered with 2AA batteries. The implementation platform
of Crossbow motes (used in the Ayushman system’s BAN) is
quite different from an FPGA. In an FPGA there is no Arith-
metic Logic Unit (ALU) however in motes there is a 32 bit
fixed-point ALU implemented. Hence, many of VHDL com-
ponents implementing basic arithmetic operations are not
required with motes. Again we do not have to concentrate on
gate level or register level specifications of components, al-
gorithmic specification of components in TinyOS and NesC
(mote programming language) will suffice. Despite these
differences there are certain inherent similarities in the op-
eration of the two platforms. Both VHDL and TinyOS do
not support floating operations and have a fixed-point rep-
resentation of numbers, and both the FPGA and the mote
hardware are at an inherent disadvantage with respect to
supporting signal processing applications. The prototype
development of the protocol in VHDL helped us to iden-
tify several important challenges and optimization options
that were applicable to software based implementation. We
summarize the important ones below:

• The implementation of a floating point arithmetic unit
in VHDL can also be applied for motes.

• The FFT implementation technique in VHDL is appli-
cable for implementation in motes as it helps to keep
memory usage within limits.

• The procedure followed in the implementation of the
quantization, polynomial evaluation and Lagrangian
interpolation methods can also be employed here, us-
ing the 32 bit fixed-point representation of the floating
point numbers.

• Overflow issue while executing floating point opera-
tions should be taken into account. The methods em-
ployed to avoid them in VHDL can be easily extended
for the mote environment.

• Efficient management of chaff points is required to im-
plement the protocol in motes in order minimize the
memory required.

A very important constraint in the software based approach
to the implementation of CPSS is the limitation in the avail-
able amount of resources in the mote hardware especially

memory. This may require additional design choices so as to
meet the Minimum Resource Usage design goal. For exam-
ple, it is already mentioned in Section 4 that the generation
and storage of chaff points takes about 8 KB of RAM mem-
ory for 1000 chaff points. Many of the present day motes
only have 8 KB RAM memory which means that blindly gen-
erating chaff points and storing them would leave no space
for other operations. Thus an efficient handling of memory
is needed while implementing PKA directly in the mote.

6. RELATED WORK
The study of the challenges and trade-offs of implementing a
CPSS in a BAN is novel and has not been conducted so far.
The authors in [22] provide a survey of current directions in
the area of security solutions for pervasive healthcare. The
idea of a cyber-physical approach to security was first pro-
posed in [5] and [23] - where the authors proposed the use
of physiological signals for hiding secret between two sen-
sor nodes. However, no working system was developed by
them. [20] and [24] proposed security infrastructure that
took an environmentally coupled approach towards security.
The authors used EKG (Electrocardiogram) and PPG (Pho-
toplethysmogram) signals to provide authentication to sen-
sor nodes within the same BAN. However, the authors did
not do any implementation in real world systems and hence
could not provide the design guidelines or challenges for ac-
tuating such a system in a BAN. In [9] the authors describe
an implementation of a mote based underwater sensor net-
work where it implements signal processing applications in
the mote such as FFT. This solution is considerably more
complex due to the computation of 1024 point FFTs and
higher. Further, they have higher latency as well due to the
memory transfers between ROM and RAM. The authors
in [18] and [19] provide discussions on the thermal safety
issues in BAN taking a cyber-physical approach to the com-
munication scheduling and thermal-aware routing problems.
However they do not provide insight on the challenges in se-
curing the inter-sensor communication in a BAN.

7. CONCLUSIONS
In this paper we presented the challenges involved in the
implementation of a new class of security protocols which
are cyber-physical in nature - Cyber Physical Security So-
lutions (CPSS) - which combine signal processing with se-
curity primitives. We identified design guidelines for the
implementation of a CPSS from our experiences while im-
plementing a specific solution Plethysmogram based Key
Agreement (PKA) on FPGA (using VHDL). There were in-
herent trade-offs within the design goals that required in-
telligent decisions at several stages of the implementation.
Based on our experience with the VHDL implementation of
PKA we provided insights into the possible challenges and
trade-offs in a software based implementation of any CPSS
in a BAN. We envision that the challenges and trade-offs



Table 2: Clock Cycles and Memory Footprint of implementation of PKA

Module Clock Cycles Memory Footprint(KB)
Transmitter 6,433.15 47.35
Receiver 11,779.80 45.3

are applicable in general to the realization of any CPSS in
resource constrained environments.
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