
Challenges of Real-World Reinforcement Learning

Gabriel Dulac-Arnold 1 Daniel Mankowitz 2 Todd Hester 2

Abstract

Reinforcement learning (RL) has proven its worth
in a series of artificial domains, and is beginning
to show some successes in real-world scenarios.
However, much of the research advances in RL
are often hard to leverage in real-world systems
due to a series of assumptions that are rarely sat-
isfied in practice. We present a set of nine unique
challenges that must be addressed to production-
ize RL to real world problems. For each of these
challenges, we specify the exact meaning of the
challenge, present some approaches from the liter-
ature, and specify some metrics for evaluating that
challenge. An approach that addresses all nine
challenges would be applicable to a large number
of real world problems. We also present an exam-
ple domain that has been modified to present these
challenges as a testbed for practical RL research.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) is a
powerful algorithmic paradigm encompassing a wide array
of contemporary algorithmic approaches (Mnih et al., 2015;
Silver et al., 2016; Hafner et al., 2018). RL methods have
been shown to be effective on a large set of simulated en-
vironments (Mnih et al., 2015; Silver et al., 2016; Lillicrap
et al., 2015; OpenAI), but uptake in real-world problems
has been much slower. We posit that this is due in large part
to a too-wide divide between the casting of current experi-
mental RL setups and the generally poorly defined realities
of real-world systems.

In this paper, we present the main challenges that make RL
in the real-world more difficult than RL in research. At a
high-level these challenges are:

1Google Research, Brain Team 2DeepMind. Correspondence
to: Gabriel Dulac-Arnold <dulacarnold@google.com>.

Reinforcement Learning for Real Life (RL4RealLife) Workshop in
the 36 th International Conference on Machine Learning, Long
Beach, California, USA, 2019. Copyright 2019 by the author(s).

1. Training off-line from the fixed logs of an external
behavior policy.

2. Learning on the real system from limited samples.
3. High-dimensional continuous state and action spaces.
4. Safety constraints that should never or at least rarely

be violated.
5. Tasks that may be partially observable, alternatively

viewed as non-stationary or stochastic.
6. Reward functions that are unspecified, multi-objective,

or risk-sensitive.
7. System operators who desire explainable policies and

actions.
8. Inference that must happen in real-time at the control

frequency of the system.
9. Large and/or unknown delays in the system actuators,

sensors, or rewards.

While there has been research focusing on these challenges
individually, there has been little research on algorithms
that address all of these challenges together. We hope that
these challenges can guide researchers towards develop-
ing more applicable RL algorithms. For each challenge
above, we motivate its importance, specify it, present ap-
proaches for addressing the challenge, and provide methods
for evaluating that particular challenge. Finally, we illustrate
these challenges on a toy-problem, a control suite (Tassa
et al., 2018) task modified to present all of the challenges
described above.

We consider control systems grounded in the physical world,
optimization of software systems, and systems that interact
with users such as recommender systems and smart phones.
These systems can range in size from a small drone to a dat-
acenter, in complexity from a one-dimensional thermostat
to a self-driving car, and in cost from a calculator to a space-
ship. In all these scenarios there are recurring themes: there
is rarely a good simulator, the systems are stochastic & non-
stationary, have strong safety constraints, and running them
is expensive and/or slow. This is very different from train-
ing on a simulated environment where data is effectively
unlimited, consequences for poor actions are non-existent
and system dynamics are clean and often deterministic.

Although current RL algorithms can learn superhuman poli-
cies for systems we can properly simulate (Silver et al.,
2016; Mnih et al., 2015; OpenAI), for many real-world sys-

Challenges of Real-World Reinforcement Learning

tems, not only is there no existing simulator, but building
one can be extremely difficult. Many interesting systems are
either too complex to model properly (datacenter cooling
plants or deformable object manipulation tasks), or suf-
ficiently varied (arbitrary object assembly with the same
robot arm) that modelling each instance would be impracti-
cal. This lack of available simulators means learning must
be done using data from the real system, and all acting and
exploring must be done on the real system. Thus, we cannot
simply collect massive datasets to solve these challenges,
nor can we ignore safety during training.

To deploy RL to a real production system, robust evaluation
is required. Many research papers in RL look at average
episodic return to evaluate the quality of their agent (al-
though they train with discounted return). This makes sense
when the only optimization criteria is the return itself, how-
ever in real systems there are other aspects of agent behavior
which are equivalently important. In many cases, it may be
important to evaluate performance for the worst case user,
or the worst case object for manipulation, rather than the
average reward. For many real world applications, respect-
ing safety can be much more important than maximizing
returns. Additionally, because the global reward function
is generally a balance of multiple sub-goals (e.g. reducing
both time-to-target and energy use), a proper evaluation
should explicitly separate the individual components of the
reward function to better understand the policy’s tradeoffs.

2. Practical Challenges
In this section we present a series of practical challenges
that appear when using RL on real world systems. Not all of
these challenges will be present in every real system, but in
many cases all of the challenges are present to some degree.
To guide practitioners working on applications of RL, we
present current research directions from the literature for
each challenge. To guide researchers who wish to research
only a subset of challenges at a time, we present evaluation
criteria for that particular challenge. We believe that an RL
algorithm that addresses all of these challenges would be
applicable to a vast number of real world problems.

For this work, we assume the standard Markov Decision
Process (MDP) formulation. An MDP is represented by a
tuple 〈S,A, P, r, γ〉 where S is the state space,A the action
space, P is the stochastic transition function p(s′ | s, a),
and r(s, a) is the reward function which returns a reward
for given state-action. A tuple of experience is of the
form (st, at, rt, st+1). The policy π produces an action
as at ∼ π(·|st). Our notation describes a discrete state
and action space but generalizes to continuous ones. Later,
we consider modifications of this formalism for safety con-
straints, robustness, non-stationarity and partial observabil-
ity. As there will likely be multiple iterations of the policy
through time we index them as πi to indicate the learning it-

eration. An existing system is often controlled by an existing
policy, either in the form of human operators or black-box
controllers; we call this a behavior policy and denote it πB .

2.1. Batch Off-line and Off-Policy Training
As mentioned above, many systems cannot be trained on di-
rectly and need to be learned from fixed logs of the system’s
behavior. In many cases, we are deploying an RL approach
to replace a previous control system, and logs from that
policy are available. In future training iterations, batches of
data will be available from the most recent iteration of the
control algorithm. This setup is an off-line and off-policy
training regime where the policy needs to be trained from
batches of data. We begin by proposing a basic framework
and then discuss possible design choices.

We consider an ordered set of experience tuples produced
by policy πB , DπB

= [{s0, a0, r0, . . . , sT , aT , rT }1≤i≤n].
The initial policy π0 is trained from data from the previous
controller of the system, DπB

. π0 generates data for Dπ0

which is used to train π1 and so-on 1. The details of policy
training are left up to the implementer. The general frame-
work is that of batched reinforcement learning (Scherrer
et al., 2012), which we recall in Algorithm 1 for clarity. We
note that the RL algorithm used to train the policy after each
batch is not restricted; it could be policy iteration, value
function based, policy gradient, etc. (Sutton & Barto, 2018).

Algorithm 1 Batch RL Training
1: procedure BRT(DπB ,Train, N, L)
2: π0 ← Train(DπB)
3: for i = 0, · · · , N do
4: Dπi ← {}
5: for t = 0, · · · , L do
6: at ← πi(st)
7: Dπi ← Dπi ∪ (st, at, rt(st, at))
8: st+1 ∼ P (· | st, at)
9: end for

10: πi+1 ← Train(Dπi)
11: end for
12: end procedure

For a production system where drops in performance could
be very costly, we want to ensure that the new policy im-
proves upon the previous policy. Estimating the policy’s
performance without running it on the real system is termed
off-policy evaluation (Precup et al., 2000). Off-policy evalu-
ation becomes more challenging as the difference between
the policies and the resulting state distributions grows.

The simplest approach to off-policy evaluation is impor-
tance sampling (Precup et al., 2000), which accounts for
the difference between the behavior and target policies. Al-
ternatively, the direct method learns a transition model and

1We consider that any mix of previous experience is acceptable
for training the policy, one does not have to limit training toDπt−1 .

Challenges of Real-World Reinforcement Learning

uses that for evaluation. Doubly-robust estimators (Dudı́k
et al., 2011; Jiang & Li, 2015) combine both and get the
best evaluations from both worlds. There are many more
approaches such as MAGIC (Thomas & Brunskill, 2016) or
more robust doubly robust (Farajtabar et al., 2018) that can
be considered as well.

The performance of the initial policy π0 often dictates
whether access to a system will be granted by system own-
ers as there is usually a minimum performance threshold
the system must respect. Therefore, an important quantity
to evaluate for a new learning algorithm is the warm-start
performance given the behavior policy’s data:

Jstart = R(Train(DπB
)), (1)

where R is the cumulative return from the policy
Train(DπB

). Evaluating the training algorithm’s perfor-
mance on different sizes of DπB

, as well as for differ-
ent quality behavior policies can help understand the al-
gorithm’s ability at finding a starting policy even in the face
of sub-optimal, over-fit, or insufficient data.

2.2. Learning On the Real System from Limited
Samples

Unlike much of the research performed in deep reinforce-
ment learning (Mnih et al., 2015; Hester et al., 2018), real
systems do not have separate training and evaluation envi-
ronments. All training data comes from the real system, and
the agent cannot have a separate exploration policy during
training as its exploratory actions do not come for free. In-
stead, the agent must perform reasonably well and act safely
throughout learning. For many systems, this means that
exploration must be limited, and the resulting data is low-
variance – very little of the state space may be covered in
the logs. In addition, since there is often only one instance
of the system, approaches that instantiate hundreds or thou-
sands of environments to collect more data for distributed
training are usually not compatible with this setup (Horgan
et al., 2018; Espeholt et al., 2018; Adamski et al., 2018).

Almost all of these real-world systems are either slow-
moving, fragile, or expensive enough that the data they
produce is costly, and policy learning must be data-efficient.
In the case where there are off-line logs of the system, these
might not contain anywhere near the amount of data or data
coverage that current RL algorithms expect. Learning it-
erations on a real system can take a long time, as slower
control frequencies might range from 1-hour to multi-month
timesteps, and reward horizons could be on the order of
months (e.g. online advertisement, drug therapies). Even
in the case of higher-frequency control tasks, the learning
algorithm needs to learn quickly from potential mistakes
without needing to repeat them multiple times before fixing
them. Thus, learning on a real system requires an algorithm
to be both sample-efficient and performant.

There are a number of related works that deal with RL
on real systems and, in particular, focus on sample effi-
ciency. One such work is Model Agnostic Meta-Learning
(MAML) (Finn et al., 2017) that focuses on learning about
tasks within a distribution and then, with few shot learn-
ing, quickly adapting to solving a new in-distribution task
that it has not seen previously. Bootstrap DQN (Osband
et al., 2016) learns an ensemble of Q-networks and uses
Thompson Sampling to drive exploration and improve sam-
ple efficiency, and PILCO (Deisenroth & Rasmussen, 2011)
uses Gaussian processes to efficiently model a system and
train a policy.

Another approach to improving sample efficiency is to
use expert demonstrations to bootstrap the agent, rather
than learning from scratch. This approach has been
combined with DQN (Mnih et al., 2015) and demon-
strated on Atari (Hester et al., 2018), as well as combined
with DDPG (Lillicrap et al., 2015) for insertion tasks on
robots (Vecerı́k et al.). Recent Model-based deep RL ap-
proaches (Hafner et al., 2018; Chua et al., 2018), where the
algorithm plans against a learned transition model of the
environment, show a lot of promise for improving sample
efficiency. A common approach is to learn ensembles of
transition models and use various sampling strategies from
those models to drive exploration and improve sample effi-
ciency (Hester & Stone, 2013; Chua et al., 2018; Buckman
et al., 2018).

To evaluate the data efficiency of a particular method, a
simple yet useful measure is to look at the amount of data
necessary to achieve a certain performance threshold:

Jeff. = min |Di| s.t. R(Train(Di)) > Rmin, (2)

where Rmin is the desired performance threshold. Similar
approaches have been used in model-based RL literature
to demonstrate efficiency (Hafner et al., 2018; Chua et al.,
2018).

2.3. High-Dimensional Continuous State and Action
Spaces

Many practical real world problems have large and continu-
ous state and action spaces. For example, consider the huge
action spaces in recommender systems (Covington et al.,
2016), or the number of sensors and actuators to control
cooling in a Google data center (Evans & Gao; Evans et al.,
2018). These large state and action spaces can present se-
rious issues for traditional RL algorithms, as identified in
(Dulac-Arnold et al., 2015).

There are a number of recent works focused on addressing
this challenge. Dulac-Arnold et al. present an approach
based on generating a vector for a candidate action and
then doing nearest neighbor search to find the closest real
action available. Zahavy et al. propose an Action Elimi-
nation Deep Q Network (AE-DQN) that uses a contextual

Challenges of Real-World Reinforcement Learning

bandit to eliminate irrelevant actions. He et al. present
the Deep Reinforcement Relevance Network (DRRN) for
evaluating continuous action spaces in text-based games.
Finally, Chandak et al. proposes a method to learn action
embedding according to their effects on state transitions.

Evaluating a policy in the face of large action spaces should
consider both the number of actions and the quality of the
metric over the action space: well-organized action spaces
are easier to reason with than smaller but poorly ordered
spaces. Even if embeddings are learned, the inherent rela-
tionship between actions should be varied when evaluating.

2.4. Satisfying Safety Constraints
Almost all physical systems can destroy or degrade them-
selves and their environment. As such, considering these
systems’ safety is fundamentally necessary to controlling
them. Safety is important during system operation, but also
during exploratory learning phases as well. These could be
safety considerations either of the system itself (limiting sys-
tem temperatures, contact forces or maintaining minimum
battery levels) or of its environment (avoiding dynamic ob-
stacles, limiting end effector velocities). There may exist
a fallback watchdog controller, which would take over if
the learned policy violates the safety constraints, but we
consider that it should not be explicitly relied upon.

Recent work in RL safety (Dalal et al., 2018; Achiam
et al., 2017) has cast safety in the context of Con-
strained MDPs (CMDPs) (Altman, 1999), and we will
concentrate on pre-defined constraints on the environ-
ment in this context. Constrained MDPs define a con-
strained optimization problem and can be expressed as:
maxπ∈ΠR(π) subject to Ck(π) ≤ Vk, k = 1, . . . ,K.

Here, R is the cumulative reward of a policy π for a given
MDP, and Ck(π) describes the incurred cumulative cost
of a certain policy π relative to constraint k. The CMDP
framework describes multiple ways to consider cumulative
cost of a policy π: the total cost until task completion, the
discounted cost, or the average cost. Specific constraints are
defined as ck(s, a).

The CMDP setup allows for arbitrary constraints on state
and action to be expressed. In the context of a physical
system these can be as simple as box constraints on a specific
state variable, or more complex such as dynamic collision
avoidance constraints. One major challenge with addressing
these safety concerns in real systems is that safety violations
will likely be very rare in logs of the system. In many cases,
safety constraints are assumed and are not even specified by
the system operator or product manager.

An alternative to CMDPs is budgeted MDPs (Boutilier &
Lu, 2016; Carrara et al., 2018). While for a CMDP, the con-
straint level Vk is given, for budgeted MDPs, it is unknown.
Instead, the policy is learned as a function of constraint level.

Then the user can examine the trade-offs between expected
return and constraint level and choose the constraint level
that best works for the data. This more closely matches the
common real-world scenario where the constraints may not
be absolute, but small violations may be allowed for a large
improvement in expected returns.

Recently, there has a been a lot of work focused on the
problem of safety in reinforcement learning. One focus has
been the addition of a safety layer to the network (Dalal
et al., 2018; Pham et al., 2017). This type of approach has
enabled an agent to learn a task with zero safety violations
as well as transfer some problems to the real world. These
approaches focus on safety during training. There are other
approaches (Achiam et al., 2017; Tessler et al., 2018; Bohez
et al., 2019) that learn a policy that violates constraints
during training but produce a trained policy that respects
the safety constraints. Thomas (2015) presents the notion of
‘safe RL’ where the algorithm searches for a new, improved
policy and ensures that the probability of a ‘bad policy’
being proposed is low. In addition, this work computes
a high confidence lower bound on the performance of an
evaluation policy.

Other RL approaches include using Lyapunov functions
to learn safe policies (Chow et al., 2018) and safe ex-
ploration strategies that predict the safety of neighboring
states (Turchetta et al., 2016; Wachi et al., 2018). A Proba-
bilistic Goal MDP (Mankowitz et al., 2016) is another type
of objective that encourages an agent to consider whether
it should do something risky for large reward or be more
conservative for smaller rewards within a pre-defined period
of time.

To evaluate the safety of an RL algorithm, we consider
counting the number of safety violations for each individual
constraint. Accumulating all these violations into a single
number has been proposed previously (Dalal et al., 2018)
and provides a good global summary. We propose also
maintaining each individual constraint’s count of violations:

Jsafety(π) =

(
T∑
i=1

cj(si, ai)

)
1≤j≤K

∈ RK , (3)

where K is the number of safety constraints in the CMDP.
Visualizing this vector’s evolution during both training and
once running on the environment is essential to understand-
ing the policy’s behavior relative to the provided safety
constraints.

2.5. Partial Observability and Non-Stationarity
Almost all real systems where we would want to deploy re-
inforcement learning are partially observable. For example,
on a physical system, we likely do not have observations
of the wear and tear on motors or joints, or the amount of
buildup in pipes or vents. On systems that interact with

Challenges of Real-World Reinforcement Learning

users such as recommender systems, we have no observa-
tions of the mental state of the users. Often times, these
partial observabilities appear as non-stationarity (e.g. as
a pump’s efficiency degrades) or as stochasticity (e.g. as
each robot being operated behaves differently). Partially
observable problems are typically formulated as a partially
observable Markov Decision Process (POMDP). The key
difference from the MDP formulation is that the agent’s
observation x ∈ X is now separate from the state, with
an observation function O(x | s) giving the probability of
observing x given the environment state s.

There are two common approaches to handling partial ob-
servability in the literature. First is to incorporate history
into the observation of the agent. DQN (Mnih et al., 2015)
stacks four Atari frames together as the agent’s observation
to account for partial observability. An alternate approach
is to use recurrent networks within the agent, enabling them
to track and recover hidden state. Hausknecht & Stone ap-
ply such an approach to DQN, and show that the recurrent
version can perform equally well in Atari games when only
given a single frame as input. Nagabandi et al. propose
an approach modeling the system as non-stationary with a
time-varying reward function, and use meta-learning to find
policies that will adapt to this non-stationarity.

Much of the recent work on transferring learned policies
from simulation to real system also focuses on this area,
as the underlying differences between the systems are not
observable (Andrychowicz et al., 2018; Peng et al., 2018).
Real world systems are often stochastic and noisy compared
to most simulated environments. In addition, sensor and
action noise as well as action delays add to the perturbations
an agent may experience in the real-world setting. There
are a number of RL approaches that have been utilized to
ensure that an agent is robust to different subsets of these fac-
tors. We will focus on the Robust MDP formalism, domain
randomization and system identification as frameworks for
dealing with noisy, non-stationary systems.

A Robust MDP is defined by a tuple 〈S,A,P, r, γ〉 where
S,A, r and γ are as previously defined; P is a set of tran-
sition matrices referred to as the uncertainty set (Iyengar,
2005). The objective that we optimize is the worst case
value function defined as:

Jworst(π) = inf
p∈P

Ep
[∞∑
t=0

γtrt|P, π
]
.

At each step, nature chooses a transition function that the
agent transitions with so as to minimize the long term value.
The agent learns a policy that maximizes this worst case
value function. Recently, a number of works have surfaced
that have shown this formulation to yield robust policies that
are agnostic to a range of perturbations in the environment
(Tamar et al., 2014; Mankowitz et al., 2018; Shashua &
Mannor, 2017). The solutions do tend to be overly conserva-

tive but some work has been done to yield less conservative,
‘soft-robust’ solutions (Derman et al., 2018).

In addition to the robust MDP formalism, the practitioner
may be interested in both robustness due to domain ran-
domization and system identification. Domain randomiza-
tion (Peng et al., 2018) involves explicitly training an agent
on various perturbations of the environment and averag-
ing these learning errors together during training. System
identification involves training a policy that can determine
online the environment in which it is operating and modify
the policy accordingly (Finn et al., 2017; Nagabandi et al.,
2018).

We can train a policy to be robust, but the question arises
as to how we can evaluate the performance of such a policy.
Robustness to noisy measurements (possibly both sensor
and action noise), as well as action delays, can be evalu-
ated by executing the policy in K test environments that
exhibits these types of perturbations. Comparing the aver-
age test performance of the policy across the K perturbed
test environments can provide a notion of robustness. That
is,

Jrobust(π) =
1

K

∑
p∈P

Ep
[T∑
i=1

r(si, ai)

]
, (4)

where p is a perturbed test environment within the test set P.
This has previously been applied in a number of different
works (Mankowitz et al., 2018; Di Castro et al., 2012; Der-
man et al., 2018). Evaluating the performance of a policy
on a stream of constantly changing environment perturba-
tions and its ability to adapt online to these perturbations
provides another notion of robustness. In each of these
cases, for a given task, experiment designers must decide
which dimensions of the perturbations are pertinent and look
at the effects of variations in these dimensions on policy
performance.

2.6. Unspecified and Multi-Objective Reward
Functions

Reinforcement learning frames policy learning through the
lens of optimizing a global reward function, yet most sys-
tems have multi-dimensional costs to be minimized. In
many cases, system or product owners do not have a clear
picture of what they want to optimize. When an agent is
trained to optimize one metric, other metrics are discovered
that also need to be maintained or improved. Thus, a lot of
the work on deploying RL to real systems is in formulating
the reward function, which may be multi-dimensional. Be-
cause the global reward function is generally a balance of
multiple sub-goals (e.g. reducing both time-to-target and
energy use), a proper evaluation should explicitly separate
the individual components of the reward function to better
understand the policy’s tradeoffs.

In addition, it may be desired that the policy performs well

Challenges of Real-World Reinforcement Learning

for all task instances and not just in expectation. For ex-
ample, an algorithm deployed to a factory needs to work
on every robot, not just on average, and a recommender
system must work for every user, not just on average. There-
fore, policy quality cannot be summarized by a single scalar
describing cumulative reward, but must consider both mul-
tiple dimensions of the policy’s behavior and the full dis-
tribution of behaviors both during training and testing. A
typical approach to evaluate the full distribution of reward
across groups is to use a Conditional Value at Risk (CVaR)
objective (Tamar et al., 2015b), which looks at a given
percentile of the reward distribution, rather than expected
reward. Tamar et al. show that by optimizing reward per-
centiles, the agent is able to improve upon its worst-case
performance. Distributional DQN (Dabney et al., 2018;
Bellemare et al., 2017) explicitly models the distribution
over returns, and it would be straight-forward to extend it to
use a CVaR objective.

There are a number of works devoted to recovering an un-
derlying reward function from demonstrations, such as in-
verse reinforcement learning (Russell, 1998; Ng et al., 2000;
Abbeel & Ng, 2004; Ross et al., 2011). Hadfield-Menell
et al. examine how to infer the truly intended reward func-
tion from the given reward function and training MDPs, to
ensure that the agent performs as intended in new scenarios.
For problems with multi-objective reward functions, there
are approaches to learning the pareto-optimal reward func-
tion (Roijers et al., 2013), but none of these have been scaled
to the deep reinforcement learning setting yet. Van Seijen
et al. present an approach that takes advantage of multi-
objective reward signals to learn super-human performance
in the Atari game Mc-PacMan.

We propose a simple multi-objective analysis of return.
If we consider that the global reward function is de-
fined as a linear combination of sub-rewards, r(s, a) =∑K
j=1 αjrj(s, a), then we can consider the vector of per-

component rewards for evaluation:

Jmulti(π) =

(
Tn∑
i=1

rj(si, ai)

)
1≤j≤K

∈ RK . (5)

When dealing with multi-objective reward functions, it is
important to track the different objectives individually when
evaluating a policy. This way, problem stakeholders can
understand the different tradeoffs the policy is making and
choose which compromises they consider best.

To evaluate the performance of the algorithm across the
full distribution of scenarios (e.g. users, tasks, robots, ob-
jects,etc.), we independently analyze the performance of the
algorithm on each cohort. This is also important for ensuring
fairness of an algorithm when interacting with populations
of users. Another approach is to analyze the CVaR return
rather than expected returns (Tamar et al., 2015b). One eval-

uation procedure is to determine whether rare catastrophic
rewards are minimized (Tamar et al., 2015b;a). Another eval-
uation procedure is to observe behavioural changes when
an agent needs to be risk-averse or risk-seeking such as in
football (Mankowitz et al., 2016).

2.7. Explainability
Another essential aspect of real systems is that they are
owned and operated by humans, who need to be reassured
about the controllers’ intentions and require insights regard-
ing failure cases. For this reason, policy explainability is
important for real-world policies. Especially in cases where
the policy might find an alternative and unexpected approach
to controlling a system, understanding the longer-term intent
of the policy is important for obtaining stakeholder buy-in.
In the event of policy errors, being able to understand the
error’s origins a posteriori is essential.

Verma et al. define their policies using a domain-specific
programming language, and then use a local search algo-
rithm to distill a learned neural network policy into an ex-
plicit program. Additionally, the domain-specific language
is verifiable, which allows the learned policies to be verifi-
ably correct. There are many methods to attempt to elicit
the intent of deep neural networks (Montavon et al., 2018)
which could also be used to understand a learned policy.
Additionally, model-based methods with explicit rollouts
used for planning (Hafner et al., 2018; Chua et al., 2018) can
provide insights on what the policy’s ‘intent’ may have been.
In the case of (Verma et al., 2018), evaluation is centered on
looking at the performance of the programatically defined
policy, since the policy is inherently defined as a human-
readable program. Evaluating actual explainability comes
down to evaluating how well a human understands the in-
tent of the policy’s expression, which can be done through
A/B experiments with users on mechanical turk (Poursabzi-
Sangdeh et al., 2018).

2.8. Real-Time Inference
To deploy RL to a production system, policy inference must
be done in real-time at the control frequency of the system.
This may be on the order of milliseconds for a recommender
system (Covington et al., 2016) responding to a user request
or the control of a physical robot, and up to the order of
minutes for building control systems (Evans & Gao). This
constraint both limits us from running the task faster than
real-time to generate massive amounts of data quickly (Sil-
ver et al., 2016; Espeholt et al., 2018) and limits us from
running slower than real-time to perform more computation-
ally expensive approaches (e.g. some forms of model-based
planning).

There has been literature focused on this problem in the case
of robotics. Hester et al. present a real-time architecture
to do model-based RL on a physical robot that uses Monte

Challenges of Real-World Reinforcement Learning

Carlo Tree Search and returns actions when required by the
task, but will improve given more time and more rollouts.
Other rollout-based approaches like AlphaGo (Silver et al.,
2016) will improve with more rollouts, but are not engi-
neered to run at a specific frequency. Wawrzyński analyzes
the potential gains to be had by allowing more computation
time than is possible on a true real-time system.

2.9. System Delays
Finally, most real systems have delays in either the sensation
of the state, the actuators, or the reward feedback. For ex-
ample, Hester & Stone focus on controlling a robot vehicle
with significant delays in the control of the braking system.
They incorporate recent history into the state of the agent so
that the learning algorithm can learn the delay effects itself.
Mann et al. look at delays in recommender systems, where
the true reward is based on the user’s interaction with the
recommended item, which may take weeks to determine.
They present a factored learning approach that is able to
take advantage of intermediate reward signals to improve
learning in these delayed tasks.

Hung et al. introduce a method to better assign rewards
that arrive significantly after a causative event. They use
a memory-based agent, and leverage the memory retrieval
system to properly allocate credit to distant past events that
are useful in predicting the value function in the current
timestep. They show that this mechanism is able to solve
previously unsolvable delayed reward tasks. Arjona-Medina
et al. introduce the RUDDER algorithm, which uses a
backwards-view of a task to generate a return-equivalent
MDP where the delayed rewards are re-distributed more
evenly throughout time. This return-equivalent MDP is
easier to learn and is guaranteed to have the same optimal
policy as the original MDP. They improvements using this
approach in Atari tasks with long delays.

Evaluation in this context depends on the source of delay.
Delays in the state & action domain can be patched onto
existing environments, and the correlation between delay
magnitude and the policy’s cumulative reward can be used
to evaluate the policy’s robustness to these perturbations.

3. Example Environment
In this section, we present an example environment from the
DeepMind control suite (Tassa et al., 2018), and the mod-
ifications required to make it present all of the challenges
for real world RL that we have presented in this paper2. We
also describe how to perform specific evaluations for each
challenge where it makes sense. Our goal is both that this
environment and its modifications drive research in real-
world RL as well as help evaluate candidate algorithms’
applicability to real-world problems.

2A more complete task description, as well as three other pro-
posed tasks are presented in the Appendix.

Humanoid Variables: θ,u,F
Type Constraint

Static
Limit joint angles.
Enforce uprightness.
Avoid dynamic obstacles.

Kinematic Limit joint velocities.

Dynamic Limit foot contact forces.
Encourage falls on pelvis.

Table 1. Safety constraints for the Humanoid environment.

We start from the control suite’s humanoid task, as it already
has a high-dimensional continuous state and action space.
Next, we present a set of modifications to the task to make
it present all nine challenges.

First, the training must be done in the batch RL regime as
presented in Sec. 1. To imitate the situation where we are
taking over control from a system with an existing controller,
we recommend first training a policy on the task with a
different algorithm than the one being evaluated, and then
generating a dataset from this policy to serve as the initial
D(πb). As the size, quality, and coverage of this dataset can
be critical, we suggest evaluating algorithms with a variety
of datasets of different sizes, converged performances, and
policy entropies.

Second, we are constrained to act on-line in the domain,
meaning every training run needs to be considered as if it
is on the actual system, thus incurring safety and efficiency
penalties. For the third challenge, the humanoid domain
already presents a high-dimensional continuous state and
action space. Table 1 proposes safety constraints for the
humanoid task. In the case of physical systems, we can
generally consider that safety constraints involve one or
many of static, kinematic and dynamic aspects of the system.

One can modify the simulation to have non-stationarity
and partial observability by sampling a new set of domain
parameters (frictions, CoGs, masses) from a distribution
every episode. This can either be done during both training
and evaluation, or only during evaluation depending on
the envisioned scenario. For multi-objective reward, we
consider rewards for distance moved as well as for energy
used in movement. We also consider worse-case reward for
each sampled episode; we want the agent to perform well in
every perturbation, not just on average.

For explainability, there is not a modification to the do-
main, but evaluation must be performed qualititatively with
humans determining the quality of the explainability (e.g.
perhaps with mechanical turk (Poursabzi-Sangdeh et al.,
2018)). We require that real-time inference be enforced and
that the physics simulation be run no slower than real-time.

Challenges of Real-World Reinforcement Learning

Finally, we can introduce artificial delays on the system
actuators, storing the requested actions in an n-step queue
before passing them to the simulator.

Metric (Challenges) Definition
Average Return
Warm-Start (1) Equation (1)
Time-to-Rmin (2) Equation (2)
Safety Violations (4) Equation (3)
Robust Performance (5) Equation (4)
CVaR Return (6) (Tamar et al., 2015b)
Multi-Objective (6) Equation (5)
Explainability (7) User Evals

Table 2. The full set of evaluation metrics to consider to address
all the challenges of real world RL, along with which challenges
they are relevant for.
In addition to evaluating the average rewards achieved dur-
ing the trials, we can also look at specific metrics to evaluate
individual challenges (Table 2). We look at the warm-start
performance after the training on the behavior policy data
(Eq. 1). For sample efficiency, we examine the number of
data samples required to reach a minimum performance
level (Eq. 2). We also track the number of safety viola-
tions for every safety constraint (Eq. 3). We evaluate the
worst-case reward over sampled perturbations (Eq. 2.5). We
independently evaluate the reward on both objectives (Eq. 5).
Finally, we want to qualitatively evaluate the explainability
of the agent’s policies. Only by looking at all these evalua-
tors can we truly get an idea of an algorithm’s aptitude for
real-world use. Our goal is for this task to present a testbed
for other researchers who wish to develop new algorithms
that address the challenges of real world RL.

4. Related Work
While we covered related work specific to each challenge in
the sections above, there are a few other works related to our
goal of practical reinforcement learning. Hester & Stone
similarly present a list of challenges for real world RL, but
specifically for RL on robots. They present four challenges
(sample efficiency, high-dimensional continuous state and
action spaces, sensor and actuator delays, and real-time in-
ference), all of which we include in our set of challenges as
well. They do not include our other challenges such as ro-
bust performance, learning from fixed logs, non-stationarity,
safety constraints, etc. Their approach is to setup a real-time
architecture for model-based learning where ensembles of
models are learned to improve robustness and sample effi-
ciency.

Henderson et al. investigate the effects of existing degrees
of variability between various RL setups and their effects on
algorithm performance. Although restricted to the domain
of existing environments, Henderson et al. propose more
robust performance estimators for RL learning algorithms

which complement those presented here. The paper ends
with the question ”In what setting would [a given algorithm]
be useful?” to which we try to contribute by proposing a
specific setting in which well-adapted work should hope-
fully stand out. Wagstaff argue similarly to us regarding
supervised ML, mentioning the too-strong lack of real-world
applications in ML conferences and the subsequent impact
on research directions this can have. The Horizon plat-
form (Gauci et al., 2018) and Decision Service (Agarwal
et al., 2016) provide software platforms for training, evalu-
ation and deployment of RL agents in real-world systems.
In the case of Decision Service, transition probabilities are
logged to help make off-policy evaluation easier down the
line, and both systems consider different approaches to off-
policy evaluation. We believe well-structured frameworks
such as these are crucial to productionizing RL systems.
Finally, Irpan discusses a complementary series of difficul-
ties of getting RL systems working on real systems, and
offer interesting directions for future research such as taking
into consideration domain-specific priors, or densifying the
reward signal.

5. Conclusion
We argue that real-world problems in RL contain multiple
challenges which are not often considered in the current
literature. We have presented nine such challenges for prac-
tical RL. For each one, we have motivated the challenge,
presented examples, and specified the challenge more for-
mally. For practitioners wishing to deploy RL to their own
problems, we have pointed the reader to relevant references
for each challenge that may guide them in deploying RL
to a production system. For RL researchers, we have pre-
sented an example environment and evaluation criteria with
which to measure progress on these challenges. There have
been many recent works on each of these challenges indi-
vidually, but little work on approaches that address all nine
challenges.

There are a few themes that appear across the related works
for each challenge. While model-based RL seems especially
promising to address the issue of sample efficiency, it can
also help address off-policy evaluation, robustness, and ex-
plainability. Ensembles are useful both to improve sample
efficiency and robustness. One very important component
of deploying RL to any real product is interacting with
the product owner or other human experts. We must work
closely with the experts to formulate the right reward objec-
tives and safety constraints, to get expert demonstrations to
warm-start learning, and we must explain the algorithm’s
actions enough that they have enough confidence in the
system to deploy it. These themes should point the way
towards research that can address all these challenges and
be deployed on more real world systems and products.

Challenges of Real-World Reinforcement Learning

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, pp. 1.
ACM, 2004.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. CoRR, abs/1705.10528, 2017. URL
http://arxiv.org/abs/1705.10528.

Adamski, I., Adamski, R., Grel, T., Jedrych, A., Kaczmarek,
K., and Michalewski, H. Distributed deep reinforcement
learning: Learn how to play atari games in 21 minutes.
In International Conference on High Performance Com-
puting, pp. 370–388. Springer, 2018.

Agarwal, A., Bird, S., Cozowicz, M., Hoang, L., Langford,
J., Lee, S., Li, J., Melamed, D., Oshri, G., Ribas, O.,
et al. Making contextual decisions with low technical
debt. arXiv preprint arXiv:1606.03966, 2016.

Altman, E. Constrained Markov decision processes, vol-
ume 7. CRC Press, 1999.

Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. arXiv preprint arXiv:1808.00177, 2018.

Arjona-Medina, J. A., Gillhofer, M., Widrich, M., Un-
terthiner, T., and Hochreiter, S. Rudder: Return
decomposition for delayed rewards. arXiv preprint
arXiv:1806.07857, 2018.

Bellemare, M. G., Dabney, W., and Munos, R. A distri-
butional perspective on reinforcement learning. CoRR,
abs/1707.06887, 2017. URL http://arxiv.org/
abs/1707.06887.

Bohez, S., Abdolmaleki, A., Neunert, M., Buchli, J., Heess,
N., and Hadsell, R. Value constrained model-free contin-
uous control. arXiv preprint arXiv:1902.04623, 2019.

Boutilier, C. and Lu, T. Budget allocation using weakly cou-
pled, constrained markov decision processes. In Proceed-
ings of the 32nd Conference on Uncertainty in Artificial
Intelligence (UAI-16), pp. 52–61, New York, NY, 2016.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H.
Sample-efficient reinforcement learning with stochastic
ensemble value expansion. CoRR, abs/1807.01675, 2018.

Carrara, N., Laroche, R., Bouraoui, J., Urvoy, T., Olivier, T.
D. S., and Pietquin, O. A fitted-q algorithm for budgeted
mdps. In EWRL 2018, 2018.

Chandak, Y., Theocharous, G., Kostas, J., Jordan, S., and
Thomas, P. S. Learning action representations for rein-
forcement learning. arXiv preprint arXiv:1902.00183,
2019.

Chow, Y., Nachum, O., Duenez-Guzman, E., and
Ghavamzadeh, M. A lyapunov-based approach to safe
reinforcement learning. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 31, pp. 8092–8101. 2018.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models. In Advances in Neural Infor-
mation Processing Systems, pp. 4754–4765, 2018.

Covington, P., Adams, J., and Sargin, E. Deep neural net-
works for youtube recommendations. In Proceedings of
the 10th ACM conference on recommender systems, pp.
191–198. ACM, 2016.

Dabney, W., Ostrovski, G., Silver, D., and Munos,
R. Implicit quantile networks for distributional re-
inforcement learning. In Dy, J. and Krause, A.
(eds.), Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pp. 1096–1105,
Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018.
PMLR. URL http://proceedings.mlr.press/
v80/dabney18a.html.

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru,
C., and Tassa, Y. Safe exploration in continuous action
spaces. CoRR, abs/1801.08757, 2018. URL http://
arxiv.org/abs/1801.08757.

Deisenroth, M. and Rasmussen, C. E. Pilco: A model-based
and data-efficient approach to policy search. In Proceed-
ings of the 28th International Conference on machine
learning (ICML-11), pp. 465–472, 2011.

Derman, E., Mankowitz, D. J., Mann, T. A., and Mannor,
S. Soft-robust actor-critic policy-gradient. arXiv preprint
arXiv:1803.04848, 2018.

Di Castro, D., Tamar, A., and Mannor, S. Policy gradi-
ents with variance related risk criteria. arXiv preprint
arXiv:1206.6404, 2012.

Dudı́k, M., Langford, J., and Li, L. Doubly robust policy
evaluation and learning. arXiv preprint arXiv:1103.4601,
2011.

Dulac-Arnold, G., Evans, R., van Hasselt, H., Sunehag, P.,
Lillicrap, T., Hunt, J., Mann, T., Weber, T., Degris, T., and
Coppin, B. Deep reinforcement learning in large discrete
action spaces. arXiv preprint arXiv:1512.07679, 2015.

http://arxiv.org/abs/1705.10528
http://arxiv.org/abs/1707.06887
http://arxiv.org/abs/1707.06887
http://proceedings.mlr.press/v80/dabney18a.html
http://proceedings.mlr.press/v80/dabney18a.html
http://arxiv.org/abs/1801.08757
http://arxiv.org/abs/1801.08757

Challenges of Real-World Reinforcement Learning

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dun-
ning, I., Legg, S., and Kavukcuoglu, K. IMPALA:
Scalable distributed deep-RL with importance weighted
actor-learner architectures. In Dy, J. and Krause, A.
(eds.), Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceed-
ings of Machine Learning Research, pp. 1407–1416,
Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018.
PMLR. URL http://proceedings.mlr.press/
v80/espeholt18a.html.

Evans, R. and Gao, J. Deepmind ai reduces google data cen-
tre cooling bill by 40%. https://deepmind.com/
blog/deepmind-ai-reduces-google-data-
centre-cooling-bill-40/.

Evans, R. A., Gao, J., Ryan, M. C., Dulac-Arnold, G.,
Scholz, J. K., and Hester, T. A. Optimizing data cen-
ter controls using neural networks, July 19 2018. US
Patent App. 15/410,547.

Farajtabar, M., Chow, Y., and Ghavamzadeh, M. More
robust doubly robust off-policy evaluation. CoRR,
abs/1802.03493, 2018. URL http://arxiv.org/
abs/1802.03493.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1126–1135. JMLR. org, 2017.

Gauci, J., Conti, E., Liang, Y., Virochsiri, K., He, Y., Kaden,
Z., Narayanan, V., and Ye, X. Horizon: Facebook’s open
source applied reinforcement learning platform. arXiv
preprint arXiv:1811.00260, 2018.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J.,
and Dragan, A. D. Inverse reward design. CoRR,
abs/1711.02827, 2017.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

Hausknecht, M. J. and Stone, P. Deep recurrent q-learning
for partially observable mdps. CoRR, abs/1507.06527,
2015.

He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L., and
Ostendorf, M. Deep reinforcement learning with a natural
language action space. arXiv preprint arXiv:1511.04636,
2015.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that
matters. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Hester, T. and Stone, P. TEXPLORE: Real-time sample-
efficient reinforcement learning for robots. Machine
Learning, 90(3), 2013. doi: 10.1007/s10994-012-5322-
7. URL http://dx.doi.org/10.1007/s10994-
012-5322-7.

Hester, T., Quinlan, M., and Stone, P. RTMBA: A real-
time model-based reinforcement learning architecture
for robot control. In IEEE International Conference on
Robotics and Automation (ICRA), May 2012.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Horgan, D., Quan, J., Sendonaris, A., Os-
band, I., Dulac-Arnold, G., Agapiou, J., Leibo, J. Z., and
Gruslys, A. Deep q-learning from demonstrations. In
Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), pp. 3223–3230, 2018.
URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16976.

Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel,
M., van Hasselt, H., and Silver, D. Distributed prioritized
experience replay. CoRR, abs/1803.00933, 2018. URL
http://arxiv.org/abs/1803.00933.

Hung, C.-C., Lillicrap, T., Abramson, J., Wu, Y., Mirza,
M., Carnevale, F., Ahuja, A., and Wayne, G. Optimizing
agent behavior over long time scales by transporting value.
arXiv preprint arXiv:1810.06721, 2018.

Irpan, A. Deep reinforcement learning doesn’t work yet.
https://www.alexirpan.com/2018/02/14/
rl-hard.html, 2018.

Iyengar, G. N. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257–280, 2005.

Jiang, N. and Li, L. Doubly robust off-policy value
evaluation for reinforcement learning. arXiv preprint
arXiv:1511.03722, 2015.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Mankowitz, D. J., Tamar, A., and Mannor, S. Situa-
tional awareness by risk-conscious skills. arXiv preprint
arXiv:1610.02847, 2016.

Mankowitz, D. J., Mann, T. A., Bacon, P.-L., Precup, D.,
and Mannor, S. Learning robust options. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

Mann, T. A., Gowal, S., Jiang, R., Hu, H., Lakshmi-
narayanan, B., and György, A. Learning from de-
layed outcomes with intermediate observations. CoRR,
abs/1807.09387, 2018.

http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
http://arxiv.org/abs/1802.03493
http://arxiv.org/abs/1802.03493
http://dx.doi.org/10.1007/s10994-012-5322-7
http://dx.doi.org/10.1007/s10994-012-5322-7
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16976
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16976
http://arxiv.org/abs/1803.00933
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

Challenges of Real-World Reinforcement Learning

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Montavon, G., Samek, W., and Müller, K.-R. Methods
for interpreting and understanding deep neural networks.
Digital Signal Processing, 73:1–15, 2018.

Nagabandi, A., Finn, C., and Levine, S. Deep online learn-
ing via meta-learning: Continual adaptation for model-
based RL. CoRR, abs/1812.07671, 2018.

Ng, A. Y., Russell, S. J., et al. Algorithms for inverse
reinforcement learning. In Icml, volume 1, pp. 2, 2000.

OpenAI. Openai five. https://blog.openai.com/
openai-five/.

Osband, I., Blundell, C., Pritzel, A., and Van Roy,
B. Deep exploration via bootstrapped dqn. In
Lee, D. D., Sugiyama, M., Luxburg, U. V.,
Guyon, I., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 29, pp.
4026–4034. Curran Associates, Inc., 2016. URL
http://papers.nips.cc/paper/6501-deep-
exploration-via-bootstrapped-dqn.pdf.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel,
P. Sim-to-real transfer of robotic control with dynam-
ics randomization. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 1–8. IEEE,
2018.

Pham, T., Magistris, G. D., and Tachibana, R. Optlayer -
practical constrained optimization for deep reinforcement
learning in the real world. CoRR, abs/1709.07643, 2017.
URL http://arxiv.org/abs/1709.07643.

Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M.,
Vaughan, J. W., and Wallach, H. M. Manipulating and
measuring model interpretability. CoRR, abs/1802.07810,
2018.

Precup, D., Sutton, R. S., and Singh, S. P. Eligibility traces
for off-policy policy evaluation. In Proceedings of the Sev-
enteenth International Conference on Machine Learning,
ICML ’00, pp. 759–766, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-707-2.
URL http://dl.acm.org/citation.cfm?id=
645529.658134.

Roijers, D. M., Vamplew, P., Whiteson, S., and Dazeley, R.
A survey of multi-objective sequential decision-making.
Journal of Artificial Intelligence Research, 48:67–113,
2013.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635, 2011.

Russell, S. J. Learning agents for uncertain environments.
In COLT, volume 98, pp. 101–103, 1998.

Scherrer, B., Gabillon, V., Ghavamzadeh, M., and Geist, M.
Approximate modified policy iteration. arXiv preprint
arXiv:1205.3054, 2012.

Shashua, S. D.-C. and Mannor, S. Deep robust kalman filter.
arXiv preprint arXiv:1703.02310, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tamar, A., Mannor, S., and Xu, H. Scaling up robust mdps
using function approximation. In International Confer-
ence on Machine Learning, pp. 181–189, 2014.

Tamar, A., Chow, Y., Ghavamzadeh, M., and Mannor, S.
Policy gradient for coherent risk measures. In Advances in
Neural Information Processing Systems, pp. 1468–1476,
2015a.

Tamar, A., Glassner, Y., and Mannor, S. Optimizing the
cvar via sampling. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015b.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Tessler, C., Mankowitz, D. J., and Mannor, S. Re-
ward constrained policy optimization. arXiv preprint
arXiv:1805.11074, 2018.

Thomas, P. and Brunskill, E. Data-efficient off-policy policy
evaluation for reinforcement learning. In International
Conference on Machine Learning, pp. 2139–2148, 2016.

Thomas, P. S. Safe reinforcement learning. 2015.

Turchetta, M., Berkenkamp, F., and Krause, A. Safe ex-
ploration in finite markov decision processes with gaus-
sian processes. CoRR, abs/1606.04753, 2016. URL
http://arxiv.org/abs/1606.04753.

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
http://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn.pdf
http://papers.nips.cc/paper/6501-deep-exploration-via-bootstrapped-dqn.pdf
http://arxiv.org/abs/1709.07643
http://dl.acm.org/citation.cfm?id=645529.658134
http://dl.acm.org/citation.cfm?id=645529.658134
http://arxiv.org/abs/1606.04753

Challenges of Real-World Reinforcement Learning

Van Seijen, H., Fatemi, M., Romoff, J., Laroche, R., Barnes,
T., and Tsang, J. Hybrid reward architecture for rein-
forcement learning. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 30, pp. 5392–5402. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/
7123-hybrid-reward-architecture-for-
reinforcement-learning.pdf.

Vecerı́k, M., Sushkov, O., Barker, D., Rothörl, T., Hester, T.,
and Scholz, J. A practical approach to insertion with vari-
able socket position using deep reinforcement learning.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri,
S. Programmatically interpretable reinforcement learning.
arXiv preprint arXiv:1804.02477, 2018.

Wachi, A., Sui, Y., Yue, Y., and Ono, M. Safe exploration
and optimization of constrained mdps using gaussian
processes. In AAAI, pp. 6548–6556. AAAI Press, 2018.

Wagstaff, K. Machine learning that matters. arXiv preprint
arXiv:1206.4656, 2012.

Wawrzyński, P. Real-time reinforcement learning by se-
quential actor-critics and experience replay. Neural Netw.,
22(10):1484–1497, December 2009. ISSN 0893-6080.
doi: 10.1016/j.neunet.2009.05.011. URL http://
dx.doi.org/10.1016/j.neunet.2009.05.011.

Zahavy, T., Haroush, M., Merlis, N., Mankowitz, D. J., and
Mannor, S. Learn what not to learn: Action elimination
with deep reinforcement learning. In Advances in Neural
Information Processing Systems, pp. 3562–3573, 2018.

http://papers.nips.cc/paper/7123-hybrid-reward-architecture-for-reinforcement-learning.pdf
http://papers.nips.cc/paper/7123-hybrid-reward-architecture-for-reinforcement-learning.pdf
http://papers.nips.cc/paper/7123-hybrid-reward-architecture-for-reinforcement-learning.pdf
http://dx.doi.org/10.1016/j.neunet.2009.05.011
http://dx.doi.org/10.1016/j.neunet.2009.05.011

Challenges of Real-World Reinforcement Learning

Appendix

Cart-Pole Variables: x, θ
Type Constraint

Static Limit range:
xl < x < xr

Kinematic Limit velocity near goal:
|θc − θ| > θL ∨ θ̇ < θ̇V

Dynamic Limit cart acceleration:
ẍ < Amax

Walker Variables: θ,u,F
Type Constraint

Static
Limit joint angles:
θL < θ < θU
Enforce uprightness:
0 < ux

Kinematic Limit joint velocities:

maxi

∣∣∣θ̇i∣∣∣ < Lθ̇

Dynamic Limit foot contact forces:
Ffoot < Fmax

Manipulator Variables: θ,F ,M
Type Constraint

Static
Limit joint angles
θL < θ < θU
Avoid dynamic obstacles
M∩MO,i = ∅
Avoid self-contact
M∩M =M

Kinematic Limit joint velocities:

maxi

∣∣∣θ̇i∣∣∣ < Lθ̇

Dynamic Acceleration Limits:

maxi

∣∣∣θ̈i∣∣∣ < Lθ̈
Limit end effector forces:
FEE < Fmax

Humanoid Variables: θ,u,F
Type Constraint

Static
Limit joint angles:
θL,i < θi < θU,i
Enforce uprightness:
0 < ux

Kinematic Limit joint velocities:

maxi

∣∣∣θ̇i∣∣∣ < Lθ̇

Dynamic Limit foot contact forces.
FFoot < Fmax
Encourage falls on posterior
Fi < Fmax,1∀i ∈ C \ ipost
Fpost < Fmax,2

Table 3. Safety-constrained control environments.

Additional Environments

We extend four example environments from the DeepMind
Control Suite (Tassa et al., 2018) with both safety and non-
stationarity contraints (which can be considered indepen-
dently or together) to illustrate the challenges proposed in
this paper. Our goal is both that these environments drive
research in real-world RL as well as help evaluate candi-
date algorithms’ applicability to real-world problems. Fu-
ture work involves developing an open-source benchmark
around these safety constraints.

We chose the Cart-Pole, Quadruped, Reacher, and Hu-
manoid tasks for their increasing difficulty and closeness to
real-world control systems.

Safety

In the case of physical systems, we can generally consider
that safety constraints involve one or many of static, kine-
matic and dynamic aspects of the system. We present safety
constraints of these environments in Table 3.

Robustness

Env. Noise Non-Stationarity

Cart-Pole Actuator and sen-
sor delays

Track friction in-
creasing with time

Walker Noisy perception
of terrain

Occasionally non-
responsive leg ac-
tuator

Manipulator Imprecise proprio-
ception

Changes in gripper
friction

Humanoid Reduced torque on
leg actuator

Varying payload
CoGs

Table 4. Possible perturbations to environments to illustrate noise
& non-stationarity.

Table 4 presents some ideas of specific noise and non-
stationarity perturbations for each of the proposed environ-
ments. The possibilities are effectively endless, and certain
choices could make for impossible to learn, so well-designed
environments will be important for useful evaluations.

Evaluators

We resume the proposed evaluators in table 5.

Challenges of Real-World Reinforcement Learning

Challenge Evaluator

Off-line Jstart = R(Train(DπB))

Efficient Jeff. = min |Di| s.t. R(Train(Di)) > Rmin

Safe Jsafety(π) =
(∑T

i=1 cj(si, ai)
)
1≤j≤K

∈ RK

Robust Jrobust(π) = 1
K

∑
p∈P Ep

[∑T
i=1 r(si, ai)

]
Discerning Jmulti(π) =

(∑Tn
i=1 rj(si, ai)

)
1≤j≤K

∈ RK

Table 5. Proposed evaluators.

