
Delft University of Technology

Software Engineering Research Group

Technical Report Series

Challenges of Reengineering into

Multi-Tenant SaaS Applications

Cor-Paul Bezemer, Andy Zaidman

Report TUD-SERG-2010-012

SERG

TUD-SERG-2010-012

Published, produced and distributed by:

Software Engineering Research Group

Department of Software Technology

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:

http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:

http://www.se.ewi.tudelft.nl/

Note: Paper submitted to the 1st Workshop on Engineering SOA and the Web (ESW’10).

c⃝ copyright 2010, by the authors of this report. Software Engineering Research Group, Department of

Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-

versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any

means without prior written permission of the authors.

Challenges of Reengineering into Multi-Tenant

SaaS Applications

Cor-Paul Bezemer1,2 and Andy Zaidman1

1 Delft University of Technology, the Netherlands
2 Exact, Poortweg 6, 2612 PA Delft, the Netherlands, http://www.exact.com

{c.bezemer, a.e.zaidman}@tudelft.nl

Abstract. Multi-tenancy is a relatively new software architecture prin-
ciple in the realm of the Software as a Service (SaaS) business model. It
allows to make full use of the economy of scale, as multiple customers –
“tenants” – share the same application and database instance. All the
while, the tenants enjoy a highly configurable application, making it ap-
pear that the application is deployed on a dedicated server. The major
benefits of multi-tenancy are increased utilization of hardware resources
and improved ease of maintenance, resulting in lower overall application
costs, making the technology attractive for service providers targeting
small and medium enterprises (SME). In our paper, we identify some
of the core challenges of implementing multi-tenancy. Furthermore, we
present a conceptual reengineering approach to support the migration of
single-tenant applications into multi-tenant applications.

1 Introduction

Software as a Service (SaaS) represents a novel paradigm and business model ex-
pressing the fact that companies do not have to purchase and maintain their own
ICT infrastructure, but instead, acquire the services embodied by software from a
third party. The customers subscribe to the software and underlying ICT infras-
tructure (service on-demand) and require only Internet access to use the services.
The service provider offers the software service and maintains the application [8].
However, in order for the service provider to make full use of the economy of
scale, the service should be hosted following a multi-tenant model [10].

Multi-tenancy is an architectural pattern in which a single instance of the
software is run on the service provider’s infrastructure, and multiple tenants
access the same instance. In contrast to the multi-user model, multi-tenancy
requires customizing the single instance according to the multi-faceted require-
ments of many tenants [10]. The multi-tenant model also contrasts the multi-
instance model, in which each tenant gets his own instance of the application [2].

The benefits of the multi-tenant model are twofold. On one hand, application
maintenance becomes easier for the service provider, as only one application
instance has to be maintained. On the other hand, the utilization rate of the
hardware can be improved. These two factors reduce the overall costs of the
application and this makes multi-tenant applications especially interesting for

SERG Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications

TUD-SERG-2010-012 1

2

customers in the small and medium enterprise (SME) segment of the market, as
they often have limited financial resources and do not need the computational
power of a dedicated server.

Because of these benefits, many organizations working with SaaS technol-
ogy are currently looking into transforming their single-tenant applications into
multi-tenant ones. Yet, they see a major barrier in the reengineering process
that they should go through for this transformation [15]. This is where this pa-
per aims to contribute, by specifically addressing the challenges and difficulties
of this process. More specifically, our paper contains the following contributions:
1. A clear, non-ambiguous definition of a multi-tenant application.
2. An overview of the challenges of developing and maintaining scalable, multi-

tenant software.
3. A description of the requirements of reengineering a single-tenant into a

multi-tenant application.
4. A conceptual reengineering approach for supporting this process.
5. A case study of reengineering an open source single-tenant application into

a multi-tenant application.
This paper is further organized as follows. In the next section, we give a def-

inition of multi-tenancy and discuss its benefits and related work. In Section 3,
we discuss the challenges of multi-tenancy. In Section 4, we present our reengi-
neering approach for the transformation of a single-tenant to a multi-tenant ap-
plication. Section 5 covers our case study of reengineering a single-tenant open
source application into a multi-tenant application. We conclude our paper with
a discussion and concluding remarks.

2 Multi-Tenancy

Multi-tenancy is an organizational approach for SaaS applications. Although
SaaS is a business model, its introduction has lead to numerous interesting prob-
lems and research in the web application community. Despite this research, we
believe multi-tenancy has not yet received the attention it deserves. A number
of definitions of a multi-tenant application exist [17, 18], but we believe these are
all unclear. Therefore, we define a multi-tenant application as the following:

Definition 1. A multi-tenant application lets customers (tenants) share the
same hardware resources, by offering them one shared application and database
instance, while allowing them to configure the application to fit their needs as if
it runs on a dedicated environment.

Definition 2. A tenant is the organizational entity which rents a multi-tenant
SaaS solution. Typically, a tenant groups a number of users, which are the stake-
holders in the organization.

These definitions focus on what we believe to be the key aspects of multi-tenancy:
1. Hardware resource sharing.
2. High degree of configurability.
3. Shared application and database instance.

Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications SERG

2 TUD-SERG-2010-012

3

In the next paragraphs we will explain the difference between a multi-user
and a multi-tenant application and elaborate on the key aspects of multi-tenancy.

2.1 Multi-Tenant versus Multi-User

It is necessary to make an important, but subtle distinction between the concepts
multi-tenant and multi-user. In a multi-user application we assume all users
are using the same application with limited configuration options. In a multi-
tenant application, we assume each tenant has the possibility to configure the
application heavily. This results in the situation that, although tenants are using
the same building blocks in their configuration, the appearance or workflow of the
application may be completely different for two tenants. An additional argument
for the distinction is that the Service Level Agreement (SLA) of each tenant can
differ, while this is usually not the case for users in a multi-user system.

2.2 Hardware Resource Sharing

In traditional single-tenant software development, tenants usually have their
own (virtual) server. Usually, in the SME segment, utilization of such a server
is low. By placing several tenants on the same server, the server utilization can
be improved [16, 17]. Although this happens when virtualization is used as well,
virtualization imposes a much lower limit on the number of tenants per server
due to the relatively high memory requirements for every virtual server [12].
Higher utilization of the existing servers will result in lower overall costs of the
application, as the total amount of hardware required is lower. The concept of
multi-tenancy comes in different flavours, and depending on which flavour is
implemented, the utilization rate of the underlying hardware can be maximized.
The following variants of (semi-)multi-tenancy can be distinguished [2, 10]:
1. Shared application, separate database
2. Shared application, shared database, separate table
3. Shared application, shared table (pure multi-tenancy)

Throughout this paper, we will assume the pure multi-tenancy variant is
being used, as the other two have performance issues when a large number of
tenants are placed on the same server [2, 16].

2.3 High degree of configurability

In a single-tenant environment, every tenant has his own, (possibly) customized
application instance. In multi-tenancy, all tenants share the same application
instance, although it must appear to them as if they are using a dedicated one.
Because of this, a key requirement of multi-tenant applications is the possibility
to configure and/or customize the application to a tenant’s need. In single-tenant
software customization is often done by creating branches in the development
tree. In multi-tenancy this is no longer possible and configuration options must
be integrated in the product design instead [14]. Another feature that is essential
to the design of multi-tenancy is version support, as it may be necessary to run
multiple versions of an application (e.g., for backwards compatibility). Because it
is undesirable to deploy different instances of a multi-tenant application, version
support must be integrated as a configuration feature.

SERG Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications

TUD-SERG-2010-012 3

4

2.4 Shared Application and Database Instance

A single-tenant application may have many running instances and they may all
be different from each other because of customization. In multi-tenancy, these
differences no longer exist as the application can be configured at runtime.

The overall number of instances will clearly be much lower (ideally it will
be one, but the application may be replicated for scalability purposes). As a
consequence, maintenance is much easier and cheaper, as updates have to be
unrolled on a small number of instances only. In addition, new data aggregation
opportunities are opened because all tenant data is in the same place.

2.5 Benefits

From the previous paragraphs a number of reasons for companies to change their
software to be multi-tenant can be deducted:
1. Higher utilization of hardware resources. (§2.2)
2. Easier and cheaper application maintenance. (§2.4)
3. Lower overall costs, resulting in the opportunity to offer a service at a lower

price than competitors. (§2.2, §2.4)
4. New data aggregation opportunities. (§2.4)

2.6 Related Work

Even though SaaS is an extensively researched topic, multi-tenancy has not
received a large deal of attention yet in academic software engineering research.
A number of researchers [2, 5, 10] have described the possible variants of multi-
tenancy, as we have described in Section 2.2. Wang et al. [16] have evaluated
these variants for different numbers of tenants and make recommendations on
the best multi-tenant variant to use, based on the number of tenants, the number
of users per tenant and the amount of data per tenant.

Kwok et al. [10] have described a case study of developing a multi-tenant
application, in which they emphasize the importance of configurability. This
importance is emphasized by Nitu [14] and Mietzner et al. [13] as well, although
the latter approach still requires deploying a different module for every tenant.

Guo et al. [5] have proposed a framework for multi-tenant application de-
velopment and management. They believe the main challenge of multi-tenancy
is tenant isolation, and therefore their framework contains mainly components
for tenant isolation, e.g., data, performance and security isolation. We believe
tenant isolation forms a relatively small part of the challenges of multi-tenancy,
which is why our paper focuses on different aspects.

The native support of current database management systems (DBMSs) for
multi-tenancy was researched by Jacobs and Aulback [7]. In their position paper
on multi-tenant capable DBMSs, they conclude that existing DBMSs are not
capable of natively dealing with multi-tenancy. Chong et al. [2] have described
a number of possible database patterns, which support the implementation of
multi-tenancy, specifically for Microsoft SQL Server.

One problem in multi-tenant data management is tenant placement. Kwok
et al. [11] have developed a method for selecting the best database in which a

Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications SERG

4 TUD-SERG-2010-012

5

new tenant should be placed, while keeping the remaining database space as
flexible as possible for placing other new tenants.

Finally, Salesforce, an industrial pioneer of multi-tenancy, has given an insight
on how multi-tenancy is being handled in their application framework [18].

3 Challenges

Unfortunately, multi-tenancy has its challenges and even though these challenges
exist for single-tenant software as well, they appear in a different form and are
more complex to solve for multi-tenant applications. In this section we will list
the challenges and discuss their specificity with regard to multi-tenancy.

3.1 Performance

Because multiple tenants share the same resources and hardware utilization is
higher on average, we must make sure that all tenants can consume these re-
sources as required. If one tenant clogs up resources, the performance of all other
tenants may be compromised. This is different from the single-tenant situation,
in which the behaviour of a tenant only affects himself. In a virtualized-instances
situation this problem is solved by assigning an equal amount of resources to each
instance (or tenant) [12]. This solution may lead to very inefficient utilization of
resources and is therefore undesirable in a pure multi-tenant system.

3.2 Scalability

Because all tenants share the same application and datastore, scalability is more
of an issue than in single-tenant applications. We assume a tenant does not
require more than one application and database server, which is usually the
case in the SME segment. In the multi-tenant situation this assumption cannot
help us, as such a limitation does not exist when placing multiple tenants on
one server. In addition, tenants from a wide variety of countries may use an
application, which can have impact on scalability requirements. Each country
may have its own legislation on, e.g., data placement or routing. An example
is the European Union’s (EU) legislation on the storage of electronic invoicing,
which states that electronic invoices sent from within the EU must be stored
within the EU as well3. Finally, there may be more constraints such as the
requirement to place all data for one tenant on the same server to speed up
regularly used database queries. Such constraints strongly influence the way in
which an application and its datastore can be scaled.

3.3 Security

Although the level of security should be high in a single-tenant environment, the
risk of, e.g., data stealing is relatively small. In a multi-tenant environment, a
security breach can result in the exposure of data to other, possibly competitive,
tenants. This makes security issues such as data protection [5] very important.

3 http://ec.europa.eu/taxation_customs/taxation/vat/traders/invoicing_

rules/article_1733_en.htm (last visited on Feb 09, 2010)

SERG Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications

TUD-SERG-2010-012 5

6

3.4 Zero-Downtime

Introducing new tenants or adapting to changing business requirements of ex-
isting tenants brings along the need for constant growth and evolution of a
multi-tenant system. However, adaptations should not interfere with the services
provided to the other existing tenants. This induces the strong requirement of
zero-downtime for multi-tenant software, as downtime per hour can go up to
$4,500K depending on the type of business [4].

4 Architectural Approach for Multi-Tenancy

In order to be able to address the challenges discussed in Section 3, the archi-
tecture of the traditional three-tier single-tenant web application [6] must be
adapted. We propose an architectural approach for reengineering single-tenant
to multi-tenant applications, shown in Figure 1. Our approach is suitable for
making this transformation, as the components can be integrated by making
minor changes to the original, single-tenant source code. In this section we will
elaborate on the purpose of each layer shown in Figure 1.

Fig. 1. Multi-tenant reengineering approach

4.1 Authentication

The purpose of the authentication layer is to provide a mechanism for identifying
each tenant in the application, by generating a tenant ticket (token) after a
tenant successfully logs in. This ticket can be used throughout the application to
load the corresponding configuration for a tenant. To provide a straightforward
and efficient authentication verification mechanism, a single-sign on protocol,
such as Kerberos [9] can be used for ticket generation. The advantage of such

Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications SERG

6 TUD-SERG-2010-012

7

a protocol is that all multi-tenant components can be implemented as stand-
alone services, which means they are better scalable. In addition, there is no
need to contact the authentication server as all components can easily verify the
authenticity of a tenant using the ticket.

4.2 Configuration

In order to make a single-tenant application multi-tenant capable, it is necessary
to allow at least the following types of configuration:

Layout The layout configuration component allows the use of tenant-specific
themes.

General configuration The general configuration component allows the specifi-
cation of tenant-specific configuration, such as database settings, encryption key
settings and personal profile details.

File I/O The file I/O configuration component allows the specification of tenant-
specific file paths, which can be used for, e.g., report generation.

Workflow The workflow configuration component allows the configuration of
tenant-specific workflows. An example of an application in which workflow con-
figuration is required is an enterprise resource planning (ERP) application, in
which the workflow of requests can vary significantly for different companies.

4.3 Database

Perhaps the most important difference between a single-tenant and multi-tenant
application is the greater requirement for data management and isolation. Be-
cause current off-the-shelf DBMSs are not capable of dealing with multi-tenancy
themselves [7], this should be done in a layer between the business logic and the
application’s database pool. The main tasks of this layer are as follows:

Creation of new tenants in the database If the application stores and/or retrieves
data, which can be made tenant-specific, in/from a database, it is the task of the
database layer to create the corresponding database records when a new tenant
has signed up for the application.

Query adaptation In order to provide adequate data isolation, the database layer
must make sure that all queries are adjusted so that each tenant can only access
his own records.

Load balancing To improve the performance of the multi-tenant application, effi-
cient load balancing is required for the database pool. Note that any agreements
made in the SLA of a tenant and any constraints imposed by the legislation of
the country a tenant is located in must be satisfied. In addition, the application
may have requirements on where a tenant’s data is being stored, e.g., for report
generation. These requirements make it difficult to use existing load balancing
algorithms. On the other hand, our expectation is that it is possible to devise
more efficient load balancing algorithms using the information we possess about
tenants.

SERG Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications

TUD-SERG-2010-012 7

8

5 Reengineering single-tenancy into multi-tenancy

Formally evaluating a reengineering approach is very difficult, which is why
we use a case study to investigate the suitability of our choice of multi-tenant
components [19]. In this case study, we transform a single-tenant application
into a multi-tenant version. We report on the challenges that we encountered
during this reengineering operation and we touch upon a number of technological
considerations.

In particular, we will use the ScrewTurn Wiki4 system (referred to as STWiki
throughout the rest of this paper) as a case study. An example stakeholder of a
transformation of the STWiki system is a hosting provider looking for a cheaper
way to offer STWiki to its customers. By offering a multi-tenant version instead
of a separate instance for every customer, maintenance costs can be kept much
lower as only one instance has to be changed at the time of a program update.

5.1 Case Study: ScrewTurn Wiki

STWiki is an open source wiki application with an active developers community,
written in C# and based on the ASP.NET 3.5 platform. In this section we will
explain which steps were taken to transform STWiki into a multi-tenant version.
Figure 2 depicts how each multi-tenant component was implemented in our case
study.

Fig. 2. Implementation of multi-tenant components for ScrewTurn Wiki

4 http://www.screwturn.eu/

Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications SERG

8 TUD-SERG-2010-012

9

5.2 Authentication

The authentication layer is conceived as two separate components. The ticket
generation mechanism is implemented as a web service, which generates tickets
using the Kerberos protocol. Such tickets contain enough details to allow tenant
identification throughout the application without requiring continuous calls to
the Ticket Server web service. In addition, it is possible to add extra information
to the ticket when necessary, such as configuration details. Because the ticket is
encrypted, a user cannot change this information.

The Authentication Module is implemented as a ASP.NET HttpModule. For
every HTTP request, this module verifies whether it comes from an identified
tenant. If this is not the case, a login screen is displayed to the tenant, otherwise
the STWiki application is shown with the correct configuration. Note that this
mechanism does not interfere with the authentication mechanism of STWiki
itself, which means that different users represented by the same tenant can still
have different roles.

5.3 Configuration

The configuration library consists of three separate components. The layout
component is implemented as HttpModule, which loads a tenant-specific master
page5 for each requested page.

The general configuration and file I/O components are implemented as cus-
tom libraries and integrated by adapting the STWiki source code to make use of
these libraries. Note that only a part of the configuration and file I/O is adapted,
as the goal of this case study is to serve as a prototype for our reengineering
approach, rather than deliver a fully functioning multi-tenant version of STWiki.

An alternative would be to integrate the libraries using Aspect Oriented Pro-
gramming (e.g., with PostSharp [3]), but this is future work. Defining file I/O as
a crosscutting concern is a tedious task, because of the many different possible
ways of doing file I/O in .NET. Configuration is very difficult to define as a cross-
cutting concern, because no generic configuration mechanism exists. Therefore,
it is necessary to manually discover and extend the current configuration mecha-
nism for each application. This may be very easy (loading a tenant-specific XML
configuration file) or more difficult (replacing hardcoded configuration values),
depending on the existing application.

In our case study we have not reconfigured the workflow of STwiki. However,
we have investigated how we could enable this in future case studies and we
found that while defining workflow configuration as a crosscutting concern is a
difficult task, extension of workflow languages with aspect-oriented programming
has been addressed in other research [1].

5.4 Database

The database layer is built as a custom library and integrated by adapting
STWiki to use this library. The query adjuster updates the WHERE clause of

5 Master pages are the ASP.NET mechanism for defining page templates.

SERG Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications

TUD-SERG-2010-012 9

10

every SQL query with the statement tenantId = ‘xxx’, where xxx is retrieved
from the tenant’s session ticket. In this case study, no database load balancing
is done.

6 Discussion

Scalability The multi-tenant components defined in our reengineering approach
are defined with scalability in mind. They either introduce little computational
overhead, such as the file I/O and configuration components, or they may be
implemented as stand-alone services on separate servers, such as the session
ticket server.

Part of the scalability issues find their origin in database access. Therefore
it is important to make database access scalable, e.g., by implementing the load
balancer as a stand-alone service such that it can easily be replaced or scaled if
necessary. A requirement of the load balancer is that it should allow extension
of the database pool by adding new database servers when desired. In addition,
placing a load balancer before the Tenant Auth and Config Data databases
makes the authentication and configuration components more scalable. It is also
possible to move these databases to the main database pool, which may give
better results, depending on the load balancing constraints and requirements.

Because we expect the database access to cause the majority of the scalability
problems, we have not taken the scalability of the single-tenant business logic
into account. However, this may cause problems when more tenants use the
system. Further research must be done to find out if multi-tenancy imposes new
scalability requirements on the existing single-tenant business logic.

Configurability A multi-tenant application may require much more configura-
bility than the single-tenant business logic currently offers. Even though we
recognize configurability as a key aspect of a multi-tenant application, we also
realize that the configuration requirements depend heavily on the type and im-
plementation of the application. Therefore, we have decided not to give a detailed
specification of configuration requirements.

Version Support In Section 2.3, we mentioned that version support is an es-
sential feature in the design of a multi-tenant application. Supporting different
application versions in the same instance is a complex task and will be addressed
in future research.

Completeness Specific multi-tenant functionality can be clearly defined as an
extension of single-tenancy and we have decided to leave non-specific multi-
tenant functionality, such as testing, out of the picture in order to avoid clutter.

Different Applications Even though our reengineering approach is designed with
the goal of transforming a single-tenant application into a multi-tenant applica-
tion, our research is useful for multi-tenant applications created from scratch as
well. Our approach emphasizes the key aspects in multi-tenancy, which should
be addressed by any multi-tenant application. In fact, we believe that any multi-
tenant application should be mappable onto our architectural approach.

Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications SERG

10 TUD-SERG-2010-012

11

Threats to Validity We have discussed some of the issues concerning the external
validity of our approach in the above discussion. As far as the internal validity
is concerned, we would like to emphasize that a reengineering approach is very
difficult to evaluate. To evaluate the correctness of the transformation, we have
tested the multi-tenant application by manually verifying a random sampling of
functionality.

As multi-tenancy is a relatively new concept, especially in the software engi-
neering world, very little research has been done on this subject. We have defined
the multi-tenant components in our approach after having researched existing
problems in multi-tenant applications. This research was conducted by analyz-
ing papers, the demand from industrial partners and by reading blog entries
(including the comments, which form a source of valuable information as they
contain information about the current problems in the SaaS industry).

While we have performed only one case study, the application transformed
in our case study is representative because it is open-source and has a large,
active developer community. This tends to result in a well-tested code-base. In
addition, a wiki is a realistic example of an application, which must be made
multi-tenant. In the future, we will perform a case-study on an industrial multi-
tenant closed-source application as well.

7 Concluding Remarks

In this paper, we have defined multi-tenancy as a Software-as-a-Service (SaaS)
engineering challenge, thereby extending its current classification as a business
model. Multi-tenancy is an engineering principle that can (1) lead to improve-
ments in hardware utilization and (2) reduce overall application costs, specifically
during the maintenance phase. This in turn leads to a competitive advantage for
service providers, in particular those providers targeting the small and medium
enterprises (SME) segment. In order to optimize the benefits achieved through
implementing multi-tenancy, a number of challenges, mainly in the field of perfor-
mance, scalability and zero-downtime must be overcome. An additional challenge
is reengineering existing single-tenant applications to support multi-tenancy. In
this context, we have proposed a reengineering approach, which supports this
process. Through a case study with the ScrewTurn wiki system, we have shown
that our approach is applicable and executable.

Future work includes more specific research on the challenges of multi-tenancy,
in particular performance, scalability and version support in large-scale multi-
tenant systems. In addition, we also plan to conduct case studies on industrial
multi-tenant applications with a large number of real users.

Acknowledgements We would like to thank Exact for funding the Multi-Tenant
Systems project (http://swerl.tudelft.nl/bin/view/Main/MTS).

References

1. Charfi, A., Mezini, M.: Aspect-oriented workflow languages. In: On the Move to
Meaningful Internet Systems Pt I. LNCS, vol. 4275, pp. 183–200. Springer (2006)

SERG Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications

TUD-SERG-2010-012 11

12

2. Chong, F., Carraro, G., Wolter, R.: Multi-tenant data architecture. http://msdn.
microsoft.com/en-us/library/aa479086.aspx (June 2006)

3. Fraiteur, G.: Postsharp - bringing aop to .net. http://www.postsharp.org/ (2010)
4. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM

Systems Journal 42(1), 5–18 (2003)
5. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native

multi-tenancy application development and management. In: Proc. of the 9th Int.
Conf. on E-Commerce Technology (CEC) and the 4th Int. Conf. on Enterprise
Computing, E-Commerce, and E-Services (EEE). pp. 551–558. IEEE CS (2007)

6. Hassan, A.E., Holt, R.C.: Architecture recovery of web applications. Proc. of the
Int. Conf. on Software Engineering (ICSE), IEEE CS pp. 349–359 (2002)

7. Jacobs, D., Aulbach, S.: Ruminations on multi-tenant databases. In: Daten-
banksysteme in Business, Technologie und Web (BTW), 12. Fachtagung des GI-
Fachbereichs Datenbanken und Informationssysteme (DBIS), Proc. 7.-9. Mrz. LNI,
vol. 103, pp. 514–521. GI (2007)

8. Kaplan, J.M.: Saas: Friend or foe? In: Business Communications Review. pp. 48–53
(June 2007), http://www.webtorials.com/abstracts/BCR125.htm

9. Kohl, J., Neuman, C., Muse, A.: The kerberos network authentication service (v5).
http://www.faqs.org/rfcs/rfc1510.html (last visited on Feb 08, 2010) (1993)

10. Kwok, T., Nguyen, T., Lam, L.: A software as a service with multi-tenancy support
for an electronic contract management application. In: Proc. of the Int. Conf. on
Services Computing (SCC). pp. 179–186. IEEE CS (2008)

11. Kwok, T., Mohindra, A.: Resource calculations with constraints, and placement of
tenants and instances for multi-tenant saas applications. In: Proc. Int. Conf. on
Service-Oriented Computing (ICSOC). LNCS, vol. 5364, pp. 633–648 (2008)

12. Li, X.H., Liu, T., Li, Y., Chen, Y.: Spin: Service performance isolation infras-
tructure in multi-tenancy environment. In: Proc. of the 6th Int. Conf. on Service-
Oriented Computing (ICSOC). LNCS, vol. 5364, pp. 649–663 (2008)

13. Mietzner, R., Leymann, F., Papazoglou, M.P.: Defining composite configurable saas
application packages using sca, variability descriptors and multi-tenancy patterns.
In: Third Int. Conf. on Internet and Web Applications and Services (ICIW). pp.
156–161. IEEE CS (2008)

14. Nitu: Configurability in saas (software as a service) applications. In: Proc. of the
2nd annual conf. on India softw. eng. conference (ISEC). pp. 19–26. ACM (2009)

15. Tsai, C.H., Ruan, Y., Sahu, S., Shaikh, A., Shin, K.G.: Virtualization-based tech-
niques for enabling multi-tenant management tools. In: 18th IFIP/IEEE Int. Work-
shop on Distr. Systems: Operations and Management (DSOM). LNCS, vol. 4785,
pp. 171–182. Springer (2007)

16. Wang, Z.H., Guo, C.J., Gao, B., Sun, W., Zhang, Z., An, W.H.: A study and
performance evaluation of the multi-tenant data tier design patterns for service
oriented computing. In: Proc. of the Int. Conf. on e-Business Engineering (ICEBE).
pp. 94–101. IEEE CS (2008)

17. Warfield, B.: Multitenancy can have a 16:1 cost advantage
over single-tenant. http://smoothspan.wordpress.com/2007/10/28/

multitenancy-can-have-a-161-cost-advantage-over-single-tenant/ (last
visited on Jan 30, 2010) (October 2007)

18. Weissman, C.D., Bobrowski, S.: The design of the force.com multitenant internet
application development platform. In: Proc. of the 35th SIGMOD int. conf. on
Management of data (SIGMOD). pp. 889–896. ACM (2009)

19. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in Software Engineering – An Introduction. Kluwer (2002)

Bezemer et al. – Challenges of Reengineering into Multi-Tenant SaaS Applications SERG

12 TUD-SERG-2010-012

TUD-SERG-2010-012

ISSN 1872-5392 SERG

