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Background

Bones in human body are prone to damage due to different causes such as fractures, dis-

eases, and infections. Nevertheless, they have a remarkable capacity to repair and heal 

themselves after trauma and illness. Large defects, however, are never completely rein-

stated because their sizes are beyond the limit up to which the bones can repair [1]. In 

these conditions, therefore, a medical remedy is required to stabilize, align and support 

the damaged bone region to restore the lost function. Bone autografts are considered the 

gold standard treatment. However, they have a number of shortcomings including the 

limited sources and donor site morbidity. Allografts also have the risk of immune rejec-

tion and disease transmission [2, 3]. �erefore, the research has headed for other solu-

tions via tissue engineering. Bone tissue engineering provides three-dimensional (3D) 
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structures called scaffolds for new bone tissue regeneration using biomaterials, cells, and 

growth factors. To achieve the optimal function, that is proper bone tissue repair, the 

material of a bone scaffold should possess favorable biological properties including bio-

compatibility, biodegradability, and osteoconductivity, and acceptable mechanical prop-

erties including strength, and stiffness/modulus of elasticity [4, 5]. Furthermore, from 

the structural point of view, a scaffold should have porous structure of appropriate inter-

connected pore networks and proper pore size for efficient mass-transport activities 

including nourishment of cells, exchange of nutrients and wastes, and cell migration [6, 

7]. �ese requirements make the design process (material and geometry optimization) 

very complex and may prevent easy customization of a scaffold for a specific patient 

defect, particularly when using conventional manufacturing approaches. �e conven-

tional methods to fabricate scaffolds usually do not have sufficient control on scaffold 

architecture (chemical composition variations, amount of porosity, pore size, shape 

and their network) and lead to suboptimal 3D bone scaffolds. However, 3D printing or 

additive manufacturing technologies are relatively new approaches which are capable of 

fabricating customized scaffolds with precise control on structure and with advanced 

materials [8–12]. In these manufacturing processes, the physical objects are built layer-

by-layer through the continuous addition of small amounts of material, based on pro-

grammed routine and a computer model. Medical image-based modeling is an effective 

tool that can be combined with 3D printing to generate a complex customized 3D scaf-

fold, matching the defect shape in the anatomical structure [13]. Furthermore, the com-

puter-aided-design (CAD) model derived from medical images can be efficiently used 

for systematic optimization of scaffold material and geometry which leads to minimized 

trial and error experimentation and reduced cost.

�e present review paper provides information on the development of CAD mod-

els for the additive manufacture of bone scaffolds. �is starts from the anatomical data 

acquisition to the final CAD model. It also discusses on how the internal architecture 

of scaffolds and materials should be optimized to achieve the best function. At the end, 

the paper describes the advantages and limitations of 3D printing technologies used for 

making bone scaffolds, and discusses on the optimization of their process parameters to 

achieve successful scaffolds.

Computer modeling of customized bone sca�olds

�e use of 3D printing technologies for medical applications is rather different from 

other engineering components, particularly for the devices which are intended to be 

used inside the human body. In this area, the objects (organs and tissues) already exist 

physically, thus the development of the tissue-replacing parts involves reverse engineer-

ing approach which begins with the anatomical data acquisition. �e acquired data, 

however, requires extensive efforts before 3D printing to provide a format which is com-

patible with a CAD program. Customized or patient-specific scaffold geometry can be 

gained by applying CAD software along with known individual patient anatomy param-

eters related to the defect site. Computer modeling before 3D printing of a bone scaf-

fold essentially have two distinct steps: (1) data acquisition, and (2) image processing 

and model generation. �ese are important steps because there is significant variation 

in bone anatomy between different patients, and various defect shapes and sizes exist 
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[14, 15]. �erefore, care must be taken to do these two steps accurately as they affect the 

quality of the final medical model and product.

Anatomical data acquisition

�e anatomical data of the damaged bone can be commonly obtained using computed 

tomography (CT) or magnetic resonance imaging (MRI) technologies [16, 17]. �e for-

mer is a good choice for hard tissues imaging and provides reasonably high-resolution 

images. In this imaging method, differentiation of tissue is carried out through con-

trast segmentation and the grayscale value of each voxel is identified by tissue density 

[18]. �erefore, CT is much more efficient in the modeling of sharply distinct density 

variations, for example the interface between bone and soft tissues. �e latter approach 

(MRI), however, is preferable when soft tissues are involved because MRI is highly capa-

ble of differentiating the soft tissue types and distinguishing the boundaries of the tissues 

with similar density [19, 20]. Hence, for modeling the damaged bone and the replacing 

bone scaffolds, CT scans can be favorably used. CT images are obtained based on the 

absorption detection of an ionizing radiation (X-rays). �e damaged bone is exposed 

to the radiation and CT scans are conducted to provide a series of two-dimensional 

(2D) images identifying a density map of the bone (in DICOM format). By stacking the 

acquired images, a 3D representation of the bone scanned area is gained.

3D reconstruction and CAD model

�e 3D anatomical representation is usually built through either segmentation or volu-

metric representation [21, 22]. 2D segmentation is to extract the geometry of the object 

of interest, that is a bone region, from the CT scan data. �e boundaries must be defined 

for each slice independently either by manual tracing or by edge detection using image-

processing algorithms [23]. When a set of closed contours is gained, they are stacked 

in 3D and used as reference to form a solid model. �is is usually carried out by skin-

ning operations. After that, smoothing can be done to eliminate the wiggles from the 

skinned surface. Finally, the surface model is generated (Fig. 1a, adapted from [23]). 3D 

segmentation [24] of the CT data can recognize voxels bounding the bone and extract a 

tiled surface from them. Tiled surface is a discrete representation that typically consists 

of connected triangles. Once the segmentation and visualization are accomplished, the 

data can be translated into instructions for making of physical parts by 3D printing. Seg-

mentation and 3D reconstruction can be done by MIMIC software. Volume representa-

tion involves volume rendering providing surfaces and the voxel-based representation 

[25, 26]. Volumetric imaging offers a 3D display with a continuum of image and surface 

intensity of data, however without explicitly defining a geometric surface in computer.

Design, analysis and optimization, however, require to be conducted in a computer-

aided-design system and by providing CAD-based solid models which can be subsequently 

used in finite element analysis (FEA) software such as ABAQUS. �ere are several ways 

to generate CAD models from medical images including MedCAD interface approach, 

reverse engineering interface method and STL-triangulated model converting technique 

[19]. Among these methodologies, the reverse engineering approach is explained here, 

because the CAD models obtained by this method are much more stable in configuration, 

and there is less error in data transfer formats, particularly for an integrated CAD and FEA 
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application. However, this process is relatively time-consuming despite the considerably 

better results. In the reverse engineering approach, a 3D voxel model generated from the 

segmentation is converted to point data, which is imported into a reverse engineering soft-

ware such as Geomagic or Solidworks. �ese point clouds are then triangulated to create a 

faceted model. �e freeform surfaces of non-uniform rational B-spline (NURBS) patches 

are used to fit across the outer shape of the model. Figure 1b shows this procedure which is 

adapted from [19].

By doing the above-mentioned steps, both the target bone with defect, and the isolated 

defect can be modeled. �e whole model can be used later for analysis via FEA such as 

comparison of bone biomechanics before and after using scaffold and comparison with 

healthy bone, and the isolated defect model can be used to match the external shape of the 

designed scaffold. To design a successful bone scaffold, it is necessary to have knowledge 

on scaffold material and structural requirements. �erefore, the following section provides 

information on these requirements.

Contour data Skinned model Skinned model after 

smoothing

Point cloud Triangulation Faceted model

NURBS fit (CAD) Grid generation Surface cleaning

a

b

Fig. 1 a 3D reconstruction of CT data (reprinted with permission from Springer Nature, J. H. Ryu et al. [23] 
copyright (2004)), and b reverse engineering approach to provide CAD model (reprinted from Sun et al. [19] 
Copyright (2005), with permission from Elsevier)
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Requirements for bone sca�olds and the clinical relevance

Clinical translation of bone scaffolds still deals with many challenges despite the intense 

efforts, and advancement over the past years. To develop more clinically practicable scaf-

folds, further investigations on right design and material properties are required which 

should be tailored in the scaffolds according to the different types of bone defects and frac-

ture sites. Primarily, a material should be biocompatible and interact with living cells and 

tissues without provoking undesirable physiological responses. Biocompatibility encom-

passes all aspects dealing with the function of a biomaterial in human body [27]. �is is a 

screening criterion which could be examined from different aspects (from in vitro cytotox-

icity assay to in vivo acute and sub-chronic systemic toxicity) based on ISO 10993. Further-

more, it is desired that a bone scaffold material could be biodegradable, meaning that it can 

break down over time into non-toxic products capable of being metabolized and cleared 

from the body [28, 29]. Concurrently, the new tissue grows and gradually fills the defect. 

Other important factors are osteoconductivity, osteoinductivity, and osseointegration abil-

ity [30–33]. An osteoconductive material guides bone growth on its surface by supporting 

the growth of capillaries and cells from the host. Osteoinductive materials induce the osteo-

genesis process, by stimulating immature and pluripotent stem cells from a non-osseous 

environment to differentiate into chondrocytes and osteoblasts. �ese materials, therefore, 

allow regeneration in a place which normally does not heal if left untreated. Osseointegra-

tion occurs when direct functional and structural anchorage forms between an implant and 

bone. Lack of osseointegration, which is seen in bioinert materials, leads to the formation 

of a non-adherent fibrous capsule around the biomaterial a few weeks after implantation. 

Clinical complications of poor osseointegration, most often are due to mechanical insta-

bility. At the bone defect ends, where the bone interfaces the scaffold, there should be no 

micromotion which otherwise causes non-unions [34]. Furthermore, mechanical instabil-

ity and micromotion may produce wear debris upon friction at the bone–scaffold interface 

and consequently result in lack of osseointegration and other adverse biological reactions. 

From the mechanical properties, strength and modulus of elasticity/stiffness of a bone scaf-

fold material are of particular importance [5, 35]. Adequate mechanical strength provides 

integrity after implantation. Bone scaffolds are required to have temporary mechanical 

stability and withstand early biomechanical forces, such as wound contraction forces and 

body loads, as they degrade over time. Sometimes, in clinical practice a temporary exter-

nal fixation is used to stabilize the bone. �e mechanical strength depends on the material 

used and the manufacturing approach. For example, Peters et al. [36] used two different 

techniques including a conventional shaping technique (milling) and inkjet 3D printing 

(IJP) approach for building custom-made porous scaffolds from β-tricalcium phosphate 

(β-TCP). �e authors showed that the 3D-printed scaffolds had much lower compressive 

strength, which was in the range of trabecular compressive strength (1.5–38 MPa [37]), but 

lower than that of cortical bone (100–150 MPa [38]). �is restricts the use of these scaf-

folds at highly loaded site and suggests a post-treatment to enhance the mechanical proper-

ties. For bone tissue repair, the stiffness of bone scaffold should not be very low to provide 

mechanical stability, and should not be very high to cause stress-shielding. �e elastic 

moduli of human cancellous and cortical bone tissues lie in the ranges of 10–1570 MPa 

and 14.9–35.3 GPa, respectively [37, 39]. Appropriate stiffness, close to that of bone at the 

defect site, is required to allow natural remodeling of the bone. �is depends on the type of 
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material and the porosity in the scaffold structure. Titanium and its alloys in the bulk/dense 

form have much higher elastic moduli (> 100 GPa) than the human bone. �erefore, despite 

their acceptable biocompatibility, stress-shielding phenomenon occurs which affects the 

bone remodeling. Numerous studies investigated on different porous Ti–6Al–4 V scaffolds 

using selective laser melting (SLM) technique (a 3D-printing method) and could success-

fully obtain low elastic moduli comparable to that of the cortical or the cancellous bone 

[39]. However, one challenge is to obtain high compressive strength because most of porous 

Ti–6Al–4 V structures have ultimate compressive strength values moderately lower than 

that of cortical bone. Other mechanical properties such as fatigue and creep resistances 

also seem to be essential over the long term [40, 41]. Scaffolds are subjected to cyclic loads 

during daily activity and they may experience fatigue failure [42]. At body temperatures, 

metals and ceramics are relatively resistant to creep [43] because it becomes significant at 

about 40–50% of their melting point [34], which is much higher than the body temperature. 

However, the creep behavior comes to be important generally above − 200 °C for polymers, 

thus it probably happens for these materials at physiological temperatures [34, 44, 45]. 

Mass transport is another issue that affects the nourishment of cells, exchange of nutrients 

and wastes, and cell migration [46, 47]. �is can be addressed by structural design of bone 

scaffolds. Several factors related to porosity including pore size, pore shape, pore intercon-

nectivity and amount of porosity can influence the success of a designed bone scaffold [48, 

49]. In addition to mass transport, porosity has influence on different material properties 

of scaffolds such as stiffness and strength. �e effect of porosity on the scaffold properties 

leads to a trade-off between the desired properties as the higher porosity, for example is 

favorable for mass transport while is unfavorable for mechanical function. One key point 

is the manufacturing route to make scaffolds because the exterior geometry of the defect is 

required to replicate. Readily adaptable processing helps in easy customization of different 

outer shapes of the defects and achieving a diversity of internal configurations [4]. Conven-

tional methods, for instance those involving the molding technique, require the redesign 

and building of a new mold for each different geometry. �erefore, 3D printing technolo-

gies can efficiently be used to address this important aspect and to reduce cost. Further-

more, one can use 3D printing to control porosity and internal architecture of scaffolds.

It should be noted that fulfilling all these requirements may not be achieved by selecting 

a single uniform material or by any designed porosity provided by a conventional manu-

facturing approach. To achieve a bone scaffold with thorough function, there is a need for 

optimal porous structure, and optimal material ingredients provided by a precise advanced 

manufacturing approach, that is 3D printing. �is has encouraged material engineers to 

utilize computer modeling and analysis for optimization, to develop hybrid porous mate-

rials such as composites [50], and hierarchical/functionally graded porous bone scaffolds 

[47], and to combine these with 3D printing technologies.

Optimization for biomimetic function

Internal structure

�e internal architecture design of bone scaffold is a prime factor in successful func-

tion as it influences the mechanical characteristics of the scaffold and cell responses [47, 

51–53]. To design the internal architecture, one can use unit cells as building blocks 

and then assemble them to form a 3D scaffold. �ese unit cells usually have hollow 
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multi-dimensional/polyhedral shapes (Fig. 2a) and comprise feature primitives such as 

cylinder, for which the designers are capable of selectively changing their porous struc-

ture such as pore size and strut thickness. �is enables them to adjust and tailor the 

properties of 3D scaffolds from different aspects including mechanical, physical, and 

biological. �erefore, it is possible to develop uniform and hierarchical structures. �e 

natural tissues in human body such as bone usually have a gradient porosity, which 

causes the tissue to have gradient mechanical strength and stiffness. �e radial and lin-

ear changes are observed in long, short and irregular bones, respectively. �erefore, 

the porous bone scaffold with gradient structure similar to that of the repairing bone 

is required [54]. �e radial structural gradient can be achieved, for example by arrang-

ing struts of different thickness/diameter. Computer modeling of bone scaffolds based 

on FEA has been conducted in previous studies to evaluate the effect of different geo-

metrical design (design variables) mostly on mechanical properties (objective functions) 

including compressive strength, stiffness, and effective bulk or elastic modulus [55–67].

Fig. 2 a The scaffold designed by periodic repeating of unit cells created in ABAQUS software, and b Boolean 
operation between the scaffold block model and the actual model of the mandible bone defect (reprinted 
from N. Vitković et al. [68] copyright (2018), with permission from Elsevier)
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From the biological point of view, appropriate transport of the nutrient and oxygen 

into the scaffold structure, and cell seeding are important in bone healing process. Fluid 

flow analysis, therefore, is an essential element in the internal design of bone scaffold. 

�is can be done by combining CAD, FEA and computational fluid dynamics (CFD) [69, 

70] to gain mechanical and micro-circulation properties including the stress–strain of 

the blood against the scaffold channels, and the blood flow velocity. �e fluid flow char-

acteristics depends on the scaffold pore size as the larger pores with higher permeabil-

ity [71, 72] cause the cell suspension to move effortlessly through the scaffold structure. 

�is may lead to higher average fluid velocities giving less time to the cells for adhesion 

to the scaffold surface [73]. It has been indicated that pore size and shape can affect the 

bone ingrowth [74, 75] as these influence the fluid flow characteristics, which may pro-

vide a shear stress possibly stimulating osteogenesis [76]. Another important biological 

aspect is that when a biodegradable bone scaffold is implanted in a given defect, both 

hydrolysis and bone remodeling processes start to happen. �ese also can be modeled, 

analyzed and optimized by FEA [77–79].

Despite the large number of investigations on different unit cells, the literature lacks 

optimization of geometrical parameters in bone scaffold considering fully mechano-bio-

logical criteria. �e identification of the optimal value of all the scaffold geometrical fea-

tures requires a systematic approach taking into account multiple responses with respect 

to different types of pore shapes and sizes. Several studies are now available in the litera-

ture using parametric analysis [80–86]. For example, one investigation by Boccaccio and 

the colleagues [80] developed an optimization algorithm which perturbs iteratively the 

unit cell geometry until the bone formation was maximized. �e best way to optimize 

the bone scaffold geometry appears to be parametric finite element analysis consider-

ing all the variables (pore shape, pore size, porosity percentages, and pore interconnec-

tivity) and multiple responses (mechanical properties, permeability and cell responses) 

together to achieve a thorough design. It is better for optimization to be done based on 

the given application to define appropriate loads and boundary conditions and tailor the 

best internal structure. However, it should be noted that multi-objective optimization 

with several independent variables is a challenging task which requires knowledge on 

advanced computer modeling and mathematical approaches. One way is to apply Design 

of Experiments (DOE) [7, 87–89] which is a systematic strategy that can proficiently 

determine all effects of design variables including main, interaction and quadratic, and 

in the meantime reduces the computational efforts while it is able to obtain the required 

information. Several software packages including Minitab and Expert Design are used 

for these purposes [90–92]. DOE has been used in the optimization process of scaffolds, 

however, mostly for finding optimal hybrid materials or process parameters [93–95]. �e 

suggested optimization process of scaffold internal architecture is shown in Fig. 3.

Once the optimized internal architecture is obtained, it should subsequently match 

the external defect shape in the target anatomic structure, precisely. �is can be done 

using Boolean operation between the scaffold block model and the actual model of the 

tissue defect which is isolated when providing CAD model (Fig. 2b, adapted from [68]).

One point that should be noted is that periodic distribution of unit cells with reg-

ular geometry are very sophisticated and allow easier modeling, optimization, and 

manufacturing. Irregular porous internal architecture has been also modeled to attain 
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more similar structure to that of the replacing tissue, however by applying particular 

equations such as reaction–diffusion model [96]. Irregular porous internal architec-

ture could be modeled for biomimetic printing of cortical and trabecular bones. It 

can also be useful when detailed biological features are involved in the model such as 

lacuna for osteocytes. Nevertheless, creation of the detailed model with irregularity 

Design feature primitive with initial 

dimensions 

(This is selective and can be 

changed)

Design of unit cell 

(This is selective and can be 

changed by orientation of feature 

primitives)

Replication of unit cell and 

generation of a scaffold model 

(This is selective and can be 

changed by alignment of unit cells)

Applying material properties and, 

loading and boundary conditions

FEA to predict objective functions 

such as strain energy, elastic 

modulus, stress distribution,

compressive strength, and 

permeability

Are the criteria

satisfied?

End 

Start

Yes

No

Fig. 3 Optimization process of scaffold internal architecture
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and biological features is a real challenge and requires very sophisticated computa-

tional approaches.

Advanced materials

�ere are a large number of materials including metals, ceramics and polymers used in 

bone scaffold tissue engineering. However, the existing single-constituent biomaterials 

fail in satisfying all the requirements and are unable to completely replicate the bone 

properties when used alone [97]. �erefore, they cannot optimally match the host bone. 

�is is the motivation for developing new hybrid biomaterials including composites. 

Composite materials, which consist of two or more constituents, can be tailored to have 

spatial arrangement in order to provide desired properties in a single material system. 

Judicious selection of the constituents, and optimizing their volume fraction and ori-

entation, during the design process of bone scaffolds can possibly lead to biomimetic 

design, for example it may provide the material degradation rate coinciding the target 

tissue regeneration [98]. Different types of composites including polymer–ceramic, 

polymer–metal, ceramic–metal, and polymer–polymer have been developed to achieve 

improved function. Polymer and ceramic are usually combined to make a compromise 

between the insufficient rigidity of the polymer caused mechanical instability, and the 

brittleness of the ceramic caused fracture. However, other characteristics such as hydro-

phobicity, low cell adhesion site, and little biological interactions of some polymers 

like polycaprolactone (PCL), also, can be modified by adding a ceramic like nano-sized 

hydroxyapatite (HA) [99]. Polymers and biodegradable metals including poly-L-lactic 

acid (PLLA) and magnesium (Mg), can also make composites to provide desired bio-

degradability rate and at the same time higher strength and structural integrity [100]. 

Furthermore, composites of ceramic and biodegradable metal such as magnesium–cal-

cium phosphate can provide superior biocompatibility, biodegradability and faster and 

more efficient osteogenesis in vivo [101]. Polymer–polymer composites have also been 

extensively developed for making bone scaffolds with better function, examples are scaf-

folds made of polyethylene glycol (PEG)-PLA [102], PLA-polyaniline (PANI) [103], chi-

tosan–collagen–hyaluronic acid [104] and many others. It should be pointed out despite 

the advantages offered by uniform composite, there is a trade-off between the material 

properties. One advanced generation of composites are functionally graded materials 

(FGMs) which have been investigated for bone tissue repair [105–107]. FGMs are non-

uniform composites usually designed to have a chemical composition gradient and/or 

porosity gradient selectively in one or more direction, based on the required properties, 

in one material system [9, 108]. Such structure is usually seen in natural biological mate-

rials, and therefore is highly demanded. FGMs can be particularly useful for replacing 

the defect sites where a transition from bone to cartilage exists [109–113] such as osteo-

chondral defects. �e FGM for these defects should possess a hard material for bone 

replacement at one site and a flexible material for cartilage replacement at the other site.

In the design stage of composites and FGMs, there are several variables that influence 

the final properties. To achieve the optimal material design, therefore, extensive labo-

ratory efforts are required which involves too much cost. It seems rational to take the 

advantage of computer modeling and analysis to gain optimum solution and after that 

start the manufacturing process. Applying scaffold CAD model and FEA software aid in 
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finding the best chemical composition, volume fraction, orientation and gradient direc-

tion considering multiple responses such as mechanical strength and bone remodeling. 

Figure 4 shows the general steps in optimization of hybrid materials (composites/FGMs) 

for scaffolds. From the manufacturing point of view, it is rather difficult to fabricate 

composites and particularly FGMs by 3D printing technologies. To provide bone scaf-

folds with functionally graded property through these contemporary approaches, there 

is a need for a CAD software that can define material gradient in the 3D solid model of 

a scaffold, and a 3D printing machine with multiple feeders/nozzles and mixing cham-

bers [111, 114]. Zhang and Bandyopadhyay [115] utilized laser engineered net shaping 

(LENS), which is a laser-based 3D printing method, to fabricate a Ti–Al2O3 FGM with 

4 layers. �is material primarily was developed for load-bearing applications in ortho-

pedics such as articular surfaces where the ceramic surface with high hardness provides 

high wear resistance at articulation and Ti surface interacts with the bone tissue [116, 

117].

3D printing of bone sca�old based on CAD model

3D printing techniques are modern manufacturing approaches which are programmed 

based on the generated computer models to fabricate 3D physical objects precisely ful-

filling the individual customer (patient) needs. �e 3D CAD models are used to manu-

facture the complex bone tissue scaffolds with the external shape matching the defect, 

and internal optimal porosity. Usually, the 3D bone scaffold model is converted to a 

number of triangular facets connected at the vertices, that is surface tessellation (STL) 

files, which is subsequently sliced horizontally using a computer algorithm. �e sliced 

data are applied to provide information for layer-by-layer building of the final bone scaf-

fold exactly replicating its 3D model. �e 3D printing technologies for making bone 

tissue scaffolds are increasingly used and include a wide range of approaches (Fig. 5a). 

�ese methods, however, operate under the same principles. �ey use different types 

of materials including metals, polymers, ceramics, or even cells which are encapsulated 

within a bio-ink. �e 3D printing approaches are classified from different perspectives. 

In the following subsections, two classifications based on stimulation used for integrat-

ing matter, and based on inclusion of cells are presented. Subsequently, the process opti-

mization associated with these technologies is discussed.

3D printing technologies based on stimulation used

�e 3D printing machines, based on the stimulation used for integrating matter, can 

be categorized into (1) laser-based 3D printing technologies which operate using laser 

stimulation to bond either material powders or fluid medium; (2) extrusion-based 3D 

printing technologies which extrude molten materials that either cool and physically 

bond or are further solidified by UV stimulation, and (3) ink-based 3D printing tech-

nologies which print liquid or aerosol chemical binders to chemically bond the material 

powders together. Laser-based technologies include stereolithography (SLA) [118–130], 

selective laser sintering (SLS) [131–136], electron beam melting (EBM) [137–139], LENS 

[140], SLM [39, 141–149], and two-photon polymerization (2PP) [150, 151]. Extrusion-

based technologies include fused deposition modeling (FDM) [152], and material jet-

ting (MJ) [96]. Ink-based technologies include IJP [153], and aerosol jet printing (AJP) 
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[154]. Comprehensive descriptions of these technologies can be found in [2, 155–157], 

to name a few. However, the operation mechanisms of these techniques and their advan-

tages and limitations are briefly described here.

Laser-based technologies

Stereolithography �is technique makes physical objects by photo-polymerization of 

photosensitive resin using a laser beam (UV light). �e photosensitive material is con-
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Design of composite/FGM

(This is selective and can be 

changed by volume fraction, shape, 

orientation and gradient direction)

Calculation of composite/FGM 

effective properties via 
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End 
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Fig. 4 Optimization process of scaffold material
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verted to solid on a platform bed when it is exposed to the laser and by movement of 

the laser beam based on the model first slice, a layer is formed. To build the successive 

layer, the platform is moved down and fresh liquid resin flows over the first layer which 

is then solidified and adheres to the previous layer. �is is done iteratively to build the 

entire physical object matching the 3D CAD model (Fig. 6a). �e SLA is able to fabricate 

complex internal features and large parts. Furthermore, the accuracy and resolution of 

SLA-built parts are high. �e other advantage is that it can be adapted to be used for 

bioprinting. One limitation of SLA technique is the need for support structures to avoid 

the collapse under hydrostatic pressure. Usually, the support structures are difficult to be 

removed from the printed bodies. Other disadvantages include extensive cleaning pro-

cedures, chemical reactions with ambient air, restricted height of the printed part to the 

resin bath size, and resin waste [158].

Selective laser sintering Selective laser sintering is very similar to SLA printing tech-

nique, however, the material used is in the form of powder (mostly polymer) which is first 

placed on a platform bed. �en, to build the model cross-sectional shape, a laser selec-

tively sinters the powder by elevating the temperature to melt the powder surface lead-

ing to diffusion. �e print platform is subsequently adjusted by descending and a roller 

spreads new powder layer over the prior working surface. �e process is repeated until 

the stacked layers provide the final shape (Fig. 6b). �e printed objects by SLS possess 

good mechanical properties and do not often need post-processing. For fabricating SLS 

parts, the support structures are not required and the technique is economic. However, 

a b

c

Fig. 5 a Percentages of different 3D printing approaches investigated for bone scaffolds; b percentages of 
3D bioprinting uses in different tissue engineering applications, and c comparison of uses of different 3D 
bioprinting approaches over time (based on Scopus search, type of document was article, keywords for a 3D 
printing and bone scaffold and the technique name, b 3D bioprinting with each application name, and c 3D 
bioprinting and name of approach)
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the issues related to material wastage and difficulty in removal of the entrapped powder 

exist.

Electron beam melting In the electron beam melting machine, as the name implies, 

accelerated electrons generated by an electron gun via heating a tungsten filament are 

used for integrating matter (metals). �e electron beam scans the metal powders in a 

vacuum chamber to sinter them based on the given CAD model. �e raw powders are 

gravitationally poured down from cassettes (powder hoppers) and raked to distribute 

onto the sintering platform for making the first layer or over the prior solidified layer 

for making the successive cross-section. �e build platform moves down after building 

of each layer of the prescribed component, consecutively (Fig. 6c). �e vacuum leads to 

reduced risk of reactive metals oxidation (such as titanium), decreased contamination 

and impurity-free objects. Furthermore, the printed objects have good mechanical prop-

erties. However, there is a need for support structures to avoid warping. Meanwhile, EBM 

is slow and expensive.

Laser-engineered net shaping �is technique is very similar to EBM, however there are 

some differences including use of a laser beam rather than an electron beam, motion 
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control system, and material feeding approach. LENS uses metal or ceramic powders 

which are distributed on a table numerically controlled in XY plane. A laser beam is 

then directed on the powder to provide cross-sections of the model. First the material 

melts and a small molten pool is provided. After that, a certain amount of powders is 

fed directly into the molten pool as the table moves in X and Y directions according to 

the computer model, thus the volume increases. �e molten material line is solidified 

rapidly when the laser beam moves away. After building a layer, the laser-head and the 

powder feeding nozzle move upward and provide a distance by the thickness of the next 

layer to generate it. �is is repeated until the entire 3D object is produced (Fig. 6d). Good 

mechanical properties are shown by the objects printed by LENS. �is technique can be 

used to fabricate composites and FGMs. �e challenges in fabricating objects by LESN 

include the need for post-processing, cutting of the built part from the build substrate, 

and low-dimensional accuracy.

Selective laser melting SLM machine, which is also known as direct metal laser sintering 

(DMLS), operates similar to SLS, however, it uses a laser beam for melting metal powder 

instead of polymer powder, on a build platform to print the 3D objects. SLM applies a 

high-power density laser that can melt metallic powders and fuse them together. Similar 

to EBM, the building of objects in SLM is conducted in a chamber of highly controlled 

atmosphere of inert gas. Nevertheless, its powder feeding system is similar to SLS having 

two platforms; one for dispensing powder and the other for building the component. In 

fact, a layer of metal powder is uniformly distributed onto a metal substrate plate fas-

tened to a table with vertical movement. Each layer is selectively melted while the laser 

beam scans in X and Y directions. Figure 6a, which shows the SLS process, also can be 

representative of SLM because their difference is in the materials used. SLM-fabricated 

components exhibit high mechanical properties. In this technique, however, there is 

probability of warping and inconsistent mechanical properties due to non-uniform heat 

distribution. Similar to EBM, SLM is a slow and expensive 3D printing approach.

Two-photon polymerization �e 2PP technique provides the opportunity of fabricating 

components at a greater depth, higher resolution up to nano-level, and a fast speed for 

making small parts. In 2PP, a near-infrared (NIR) ultra-short-pulsed laser is concentrated 

into a volume of photosensitive solution to cause a phase change from liquid to solid 

by a polymerization process to fabricate 3D structures. 2PP is based on the concurrent 

absorption of two photons inducing chemical reactions. A high-precision stage (piezo-

electric/PZT or linear motor-driven) is employed for movement of the fabricating sample 

across a fixed laser excitation beam (Fig. 6e). In fact, the table enables positioning in all 

directions. Single-photon absorption, which is used for example in stereolithography, is 

basically 2D, because the absorption of UV light by the resin occurs within the first few 

micrometers. However, the photo-curable resins are transparent in NIR region, thus the 

laser pulses are able to focus into the volume of the resin [159].

�e 2PP system is able to print at the 100-nm level and is capable of integrating nano- 

and microscale features in the fabricating parts. �e 2PP is possibly suitable for pattern-

ing tissue engineering structures with surface features [160, 161] in order to promote 

tissue repair. �e controlled 3D topology provided by 2PP can positively influence 
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cell–biomaterial interactions [162, 163]. Considering the typical size of bone scaffolds, 

this approach could be time-consuming and may not be cost-effective. For example, 

the time needed to make a 1-mm3 volume structure for use in microfluidics exceeds 

104 days [164]. However, it could be possibly used along with other 3D printing methods 

for making bone scaffolds. Another limitation of 2PP technique is that multi-material 

printing is difficult.

Extrusion-based technologies

Fused deposition modeling FDM process is used to manufacture objects like 3D bone 

scaffolds by melting an extruding material, which is typically a thermoplastic polymer, 

through a moveable nozzle onto a build platform. FDM uses a filament of material which 

goes through two rotating rollers and reaches into the extruder head, where it is melted. 

�e nozzle movement is in X and Y directions making the filament to be deposited on the 

platform and build a parallel series of material deposits to finally provide the first layer 

of the component. Afterward, the platform moves down along the Z axis for manufac-

ture of the subsequent new layer over the previous layer. When the deposited material 

cools, it solidifies and adheres to the prior layer. �is is done iteratively until the final 3D 

structure is gained. Some models of FDM machines have two nozzles, one of which is 

used for depositing the filament material while the other is employed to extrude a tem-

porary support material. �e structures provided by support material are broken away 

or dissolved by a solution. Figure 7a shows schematic of FDM 3D printing system. �e 

3D structures fabricated by FDM usually have good mechanical properties such as those 

made up of PLA and PCL [165, 166]. Furthermore, the control over porosity and proper-

ties can be achieved by adjusting the printing speed. FDM is a well-known 3D printing 

technique which is easy to use, safe and reliable with a low purchase price. �e FDM-

printed objects can be handled almost directly after fabrication as the post-processing is 

not often required. However, sometimes a support is used and required to be removed 

or improved surface finish is desired. FDM machines have minimal material wastage 

because only the required amount of filament is used. A wide range of thermoplastic 

polymers such as PLA, PCL, and recently their composites with ceramics like HA [167] 

can be made by this printer in quite complex structure and superior chemical and physi-

cal functionality. �is technique also has been used with other fabrication methods such 

as electrospinning [168] to provide more efficient bone scaffolds. FDM, however, is not 

suitable for printing most proteins and cells because heating is needed for providing the 

molten phase. Despite this, the technology could be adapted for bioprinting.

Material jetting Material jetting technique extrudes liquid photopolymer through a 

print-head onto a substrate platform. �is machine uses UV light to solidify the layers 

when they build up. �e resin is first heated to attain ideal viscosity for printing, then 

the print-head moves over the platform to jet/deposit a number of photo-cure polymer 

droplets to the desired sites. A UV light source is attached to the print-head that cures 

and solidifies the deposited droplets of material to build the first layer. When the layer 

is completed, the platform moves down by a layer thickness and the process is repeated 

until the entire part is built. Figure 7b schematically shows MJ 3D printing system. MJ 

as an extrusion-based 3D printing technique is able to fabricate 3D scaffolds with flex-
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ible geometrical control. �e manufacture resolution is in the range of tens to hundreds 

of microns which can meet the size demand for bone scaffolds. However, the objects 

printed by MJ usually exhibit poor mechanical properties. Furthermore, similar to FDM, 

it is limited in precisely mimicking the natural biological features in micron or submicron 

scale, if needed.

Ink-based technologies

Aerosol jet printing Aerosol jet printing is a 3D printing technology which is able to 

print objects with small featured size in the range of 10 µm. Aerosol jet printing uses 

aerodynamic focusing to dispense a printing ink onto a substrate which can be either 

planner or non-planner as it has the ability to print at varying distances. �e process 

begins with atomization process which causes the liquid ink to atomize into aerosol with 

a droplet size of 1–5 µm, using pneumonic or ultrasonic atomizers. �e provided aerosol 

is then headed toward a print-head where it is aerodynamically focused by a sheath gas 

stream. �e gas flow does not allow the aerosol to have contact with the nozzle print-head 

inner cladding. Figure 7c shows aerosol jet printing technique schematically. �e objects 

obtained by AJP has higher resolution, and greater range of materials with significantly 

lower viscosities can be used than IJP [169]. �is approach due to the atomization process 

might not be suitable for inclusion of biomolecule in the printing structures. Similar to 

2PP approach, AJP could be time and cost consuming for making bone scaffolds where 

the required sizes are usually large. However, it can be used for patterning thin layer 

deposition [170]. �e AJP printing also has low materials waste.

Inkjet printing Inkjet printing is a drop-by-drop printing technique which can possibly 

create cellularized structures. Inkjet 3D printing, similar to MJ distributes droplets of 

ink, however to integrate powders. �is process is similar to aerosol jet printing, but with 
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no atomization process and with lower resolution. �e print-head is located over a bed 

of powder and dispenses the ink onto powder through programmed routine to provide 

a particular shape related to the first cross-section (polymerization stabilizes the printed 

material in place). �e print-head and the platform distance is then increased incremen-

tally to roll a new powder layer over the stage for scanning the next cross-section which 

adheres to the previously printed layer. �is process is repeated until the whole physical 

object is achieved. Figure 7d represents inkjet printing schematically. Inkjet 3D printing 

can have more than one print-head from which cells and biomaterials can be individually 

deposited under computer control. �erefore, IJP can be utilized for bioprinting [171], 

and is fast and cheap. However, it should be pointed out that the constructs built by IJP 

are often fragile and require post-processing to be strengthened. Table 1 represents some 

information about the advantages and limitations of all above-mentioned 3D printing 

approaches, and the materials used for printing objects.

3D printing technologies based on cell inclusion

�e 3D printing technologies can also be divided into the approaches that make the scaf-

folds from the biomaterials solely with the cell seeding done as a post-processing task, 

and to the so-called bioprinting [172–174] technologies in which the living cells can be 

incorporated into the fabrication process. �e former group does not deal with the dif-

ficulty of maintaining cell viability through the production process and can be imple-

mented to develop porous structure with a wide range of materials, even with natural 

polymers which have poor 3D printability. Indirect 3D printing also can be done via 

these approaches [175]. Indirect 3D printing builds a negative mold used for pouring the 

natural polymers which is the positive for the reproduction of the original scaffold. �en, 

the polymer scaffold (such as collagen) are removed from the mold through a drying 

process [176, 177]. �is facilitates using the advantages of the natural polymers including 

good biocompatibility and favorable micro-environment for cells. Indirect 3D printing 

technique has also been used for other polymeric materials (synthetic polymers) to have 

controllable porosity [178, 179]. Bioprinting (the latter group) is an additive fabrication 

approach with the potential of building or patterning viable organ-like or tissue struc-

tures in 3D [180]. It has attracted the researchers to investigate different cell-laden struc-

tures for regeneration of many tissues in the recent years (Fig. 5b). In these approaches, 

generally, bio-inks are used to make scaffolds in a layer-by-layer manner. Bio-inks are a 

mixture of one or more biomaterials with living cells [181]. Biomaterials for bioprinting 

require to be processed with no adverse effects on the suspended cells, and to be strong 

enough when printed to maintain their shapes. Hydrogels (water swollen polymers 

designed to control a number of cellular functions including adhesion, spreading, prolif-

eration and differentiation) are typically used as bio-inks for printing cells, morphogens, 

and growth factors in different tissue regeneration areas including cartilage, bone, bile 

duct, nerve, heart, etc.[182–191]. Different formulations have been used for making the 

bio-ink hydrogels. For example, Bendtsen et al. [184] developed seven different hydrogel 

formulations to find the optimal composition to make bone tissue scaffolds. �ree of the 

hydrogels consisted of alginate,  Na2HPO4, and  CaSO4, three others had additional HA, 

and one had additional HA and NaCl. Furthermore, mouse calvaria 3T3-E1 (MC3T3) 
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Table 1 Summarized description of 3D printing technologies

Technology category Technology 
name

Compatible 
materials

Advantages Limitations

Laser-based SLA Liquid photopolymers Obtaining complex 
internal features

Ability to build large 
parts

Bioprinting
Good accuracy and 

high resolution

Need for support struc-
tures, not to collapse 
under hydrostatic 
pressure

Difficulty in removal of 
support structures

SLS Polymer powders
Ceramic powders

No need for post-
processing

No need for support 
structures

Good mechanical 
properties

Economic

Material wastage
Difficulty in removal 

of the entrapped 
powder manually

EBM Metal powders Good mechanical 
properties

Slow and expensive
Need for support 

structures to reduce 
stresses and avoid 
warping

LENS Metal powders
Ceramic powders

Good mechanical 
properties

Ability to fabricate 
composites and 
FGMs

Post-processing is 
required

Cutting of built part 
from the build sub-
strate

Low dimensional 
accuracy

SLM Good mechanical 
properties

Probability of warping 
and inconsistent 
mechanical properties 
due to non-uniform 
heat distribution

Slow and expensive

2PP Photopolymer or 
hydrogel solutions

Good resolution 
enabling integration 
of nano-sized and 
microscale features

For bone scaffolding, 
should be used along 
with other 3D printing 
methods to provide 
favorable material 
properties

Extrusion-based FDM Polymeric and 
polymer-based 
composite filaments

Good mechanical 
properties

Moderate speed 
enabling the control 
over porosity and 
properties

Adaptable for bio-
printing

Not suitable for printing 
most proteins and 
cells because the 
heating needed for 
providing molten 
phase

MJ Liquid photopolymers No need for post-
curing

Poor mechanical prop-
erties

Ink-based IJP Mostly hydrogels, but 
other polymers and 
ceramics are also 
used such as PCL, 
HA, bioactive glasses 
and PLA

Metal nanoparticles 
can be incorporated 
such as silver

Bioprinting
Fast and cheap

Constructs built are 
often fragile

Need for post-process-
ing to strengthen the 
constructs

AJP Higher resolution than 
Inkjet Printing

Greater range of 
materials with 
significantly lower 
viscosities than 
inkjet printing

Not suitable for
bioprinting due to 

necessity to atomize 
the inks

Expensive
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cells were incorporated in the optimal hydrogel (2.5% alginate, 0.15%  Na2HPO4, 0.20% 

 CaSO4, 2.5% HA) and 3D printed. In another study, Wehrle et  al. [187] examined 3D 

bioprinting of hydrogel consisting of fibrin, gelatin, hyaluronic acid, glycerol and HA 

with incorporation of mesenchymal stem cells (MSCs). �e scaffold showed promising 

results in terms of mechanical stability, cell viability and calcification after bioprinting. 

Incorporation of HA resulted in suitable viscoelastic properties along with excellent bio-

compatibility. Furthermore, Daly et  al. [192] examined several bio-inks and found the 

optimal one to engineer endochondral bone formation and the whole bone organ. For 

the former purpose, 3D-printed PCL scaffolds combined with a bio-ink laden by MSCs 

through infusion. �e compressive modulus of the constructs increased about 350-

fold. For the latter purpose, a model of human vertebrae was prepared to print PCL and 

MSCs-laden bio-ink filaments rather than infusing the MSCs-laden bio-ink into a pre-

printed PCL network. In this approach, the bio-ink filaments co-deposited alongside the 

PCL filaments in a layer-by-layer manner to build a composite structure for vertebrae. 

�e in vivo results showed the development of a vascularized bone tissue having trabec-

ular-like endochondral bone with a marrow structure. Furthermore, in situ printing of 

mesenchymal stromal cells along with collagen and nano-HA was conducted to obtain 

favorable bone regeneration, in a calvaria defect model in mice [193]. �e results of this 

study showed that different cellular arrangements affect the bone tissue formation.

A number of 3D bioprinting systems has been developed which falls in the same cat-

egories as 3D printing techniques [193–201]. Among these techniques, the extrusion-

based bioprinting has become more popular (Fig.  5c) because hydrogel precursors 

having low‐shear viscosities can be used for printing and it is able to deposit high cell 

densities, similar to the target tissue structure [202]. Although bioprinting techniques 

have the same principles of the methods explained in previous “3D printing technolo-

gies based on stimulation used” section, they may have some differences due to the need 

for adaptation not to adversely influence the living cells. For example, in the laser-based 

printing approaches, the laser directly focused on the raw matter to make a solid object. 

However, in laser-based bioprinting (also known as laser-assisted bioprinting) a NIR 

pulsed laser beam concentrated on a transparent quartz glass slide/ribbon coated with a 

gold layer to absorb the beam energy creating a cavitation in a thin layer of bio-ink which 

is spread on the ribbon. �is indirectly drives a micro-droplet, having cells, towards the 

substrate (Fig. 6f ). �is nozzle-free technique is able to position multiple cell types, pre-

serve the activity of encapsulated cells, and provide high spatial resolutions lower than 

20 µm [203, 204]. Laser-based bioprinting method can also facilitate the positioning of a 

singular cell per droplet [193, 205]. Nevertheless, it is an expensive bioprinting process 

requiring a highly complex setup with low stability and scalability [203]. Furthermore, 

the long-term influence of laser exposure on the printing cells is not fully known and 

requires more investigations for example on genotoxicity [206–208]. �e inkjet bioprint-

ing techniques are similar to IJP and MJ, but neither to bind powders nor to be pho-

topolymerized. �is bioprinting technique is capable of producing objects with a spatial 

resolution between 50 and 300 µm [203, 209]. However, the undesirable aggregation of 

cells within the hydrogel can induce variations in droplet formation and change the tra-

jectory, thus it influences the printing quality [204, 210]. Furthermore, printing of the 

highly viscous materials to make 3D constructs is a real challenge in inkjet bioprinting 
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technique, thus this method is mostly used for building up small scaffolds [211]. One 

advantage of this method is the use of multi-nozzle printhead which decreases the print-

ing time and facilitates the production of larger-scale cellular constructs [212]. �e prin-

ciple of extrusion-based bioprinting (also known as direct ink writing) technique is also 

same as the MJ process. �e only difference is the materials used, which is a cell-laden 

bio-ink in the bioprinting. �e key advantages of this technique are the control over the 

deposition and distribution of cells within the bio-inks, the possibility of printing very 

high cellular densities and multiple materials, and a superb structural integrity because 

of continuous bio-ink deposition [213]. �ese make the application of this technology 

very relevant for manufacture of scaffolds, despite the lower resolution (about 200 µm) 

compared to the inkjet (50–300 µm) and laser-based (< 20 µm) bioprinting techniques 

[207]. One limitation of this technique is that the mechanical-based extrusion mecha-

nisms generate large driving forces and pressure drops at the nozzle which can induce 

cell apoptosis and rupture cell membranes [214, 215]. However, the pneumatic-based 

extrusion systems are more appropriate for highly viscous bio-inks because they can 

maintain a filamentous structure after deposition [204].

A main advantage of bioprinting compared to other 3D printing methods is the con-

trolled allocation of cells within the scaffold structure during the manufacturing process. 

�is avoids the need for post-processing cell seeding and the problems of non-uniform 

distribution and poor attachment of the cells [1]. �e bioprinting, however, has limita-

tions regarding the use of biomaterials and the processing parameters such as printing 

speed. �e presently available hydrogels cannot offer adequate mechanical properties 

comparable with those of bone, and they have restrictions in providing large size scaffold 

because of slow print speed which is essential for cell viability [216, 217]. �e rheological 

properties of the bio-inks are important in making them suitably printable. �e presence 

of additional constituents to provide composite material or drug may induce changes on 

the ink rheological behavior which consequently influences the microstructure and the 

mechanical properties of the final scaffolds [218]. It has been shown that bio-ink molec-

ular weight and crosslinking ratio affect the mechanical properties and fate of cells inside 

the printed tissue constructs [185]. �erefore, careful process optimization is required in 

addition to material and geometrical optimization due to the involvement of cells and 

biomolecules in the manufacturing process [219]. For making composite bone scaffolds, 

however, combining of multiple 3D printing techniques can be a possible way forward 

[220] where the hybrid bone scaffolds can be processed with desired size, and adequate 

mechanical characteristics, while filled with precisely positioned cells.

3D printing process optimization

In addition to materials and structural optimization, the process parameters should 

be adjusted and optimized to manufacture scaffolds with desired attributes. Numer-

ous studies investigated the effect of process parameters on different responses such as 

mechanical properties (strength, elongation, Young’s modulus), surface roughness, reso-

lution and dimensional accuracy, and printing quality in different techniques including 

SLA [221–224], SLS [225–234], EBM [235–241], LENS [242, 243], SLM [39, 244–250], 

2PP [251–253], FDM [254–256], MJ [257, 258], AJP [259–262], and IJP [263–266]. 

�ere are many parameters in the 3D printing approaches which vary between different 
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techniques as their machine structure, printing mechanisms, and materials used are 

rather different. Figure 8 summarizes the process and material variables for 3D printing 

technologies.

Although the factors in laser-based techniques are somewhat different, the laser vari-

ables are commonly considered. It has been reported that the most common process 

variables studied for Ti–6Al–4 V are laser power and scanning speed to find the optimal 

level of relative density, microstructure, surface roughness and mechanical properties 

[39]. In the printing approaches that use powder materials (SLS, EBM, LENS, SLM, and 

IJP), the characteristics of the powder such as particle size and morphology are impor-

tant. One study on printing of β-tricalcium phosphate demonstrated that it is crucial 

for the printing process that the powder facilitates the formation of thin layers (100–

200 μm thickness) with no grooves in the surface to achieve a favorable printing quality, 

which is associated with the powder particle size distribution (particle sizes between 20 

and 50 μm with the absence of particles smaller than 5 μm) [267]. Another study also 

investigated the effect of SLM process parameters (layer thickness, laser power, point 

distance, exposure time, and hatching distance) for a range of particle size distributions 

of Ti–6Al–4 V and found that small powder particles helps in achieving higher density 

parts in a much shorter fabrication time [268]. Material viscosity is of importance in the 

printing methods such as SLA, 2PP, IJP and SLS where resins are used, or when ceramic 

or composite objects are intended to be made using slurries. One challenge in ceramic 

ink/slurry, such as zirconia and alumina slurry, is the rather low-volume fraction of solid 

constituent (ceramic loading) which is usually below 40 vol% [269]. �is is particularly 

challenging for SLA as a result of the restricted solubility of the resin to ceramic pow-

der. �e solid loading of ceramic slurry could influence the accuracy of printed objects, 

the sintering shrinkage, and the mechanical behavior. One recent study by Brazete et al. 

investigated on the optimization of  ZrO2 inks to build 3D porous load-bearing bone 

scaffolds [270]. �ey could successfully prepare  ZrO2 inks with high solid volume frac-

tion (48 vol%) which resulted in a satisfactory shape retention in the scaffolds with 

macropores of different sizes. Another challenge is that only relatively coarse particles 

can be used to gain a flowable slurry, which is essential for the layer deposition [271]. 

�is hinders the densification during sintering and necessitates the use of additional 

post-treatment. It has been reported that the viscosity of ink/binder is also important 

in the dimensional accuracy of the printed β-TCP scaffolds by IJP; too low concentra-

tion resulted in irregular customized block forms due to irregular binder flow inside the 

powder pile, and too high concentration led to irregular and brittle scaffolds due to the 

blocking of inkjet printer [36]. Nozzle characteristics are also influential in 3D printing 

approaches including FDM, MJ, AJP, and IJP. For example, it has been reported that the 

FDM printing technique can accurately build scaffolds when the diameter of strands 

used to make PLA scaffolds were close to the nozzle diameter. On the contrary, in case 

of a large difference, fabrication errors were large and imposed on the filament diameter 

due to inappropriate material flow [272]. �e strand diameters tested for nozzle diam-

eter of 800 µm were 500, 600, 700, and 800 µm, and for nozzle diameter of 400 µm it was 

400 µm. �e strand diameters of 400 µm and ≥ 600 µm were well reproduced, but large 

reproduction errors were observed for the strand diameter of 500 µm. �is happened 

because the material flow was only 39%, which was considerably smaller than 100%, thus 
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the nozzle did not fill properly and consequently the filament could not form correctly. 

Furthermore, the nozzle diameter is very important in bioprinting where inappropriate 

diameter can induce mechanical damage to the cell membrane during 3D bioprinting 

process. Chang et al. [273] studied the effects of nozzle diameter (150, 250, 400 μm) and 

dispensing pressure (5, 10, 20, and 40 psi) of a 3D bioprinting technique on HepG2 liver 

cells recovery and proliferation. �e results of their study showed that the mechanical 

damage to the cells due to increase in dispensing pressure or decrease in nozzle diam-

eter, caused the cell viability to decrease (53.39% at 40 psi and 23.07% at 150 μm). Print-

ing speed is another factor that affects the print quality and consequently the scaffold 

performance. In extrusion-based bioprinting process, the print speed and extrusion 

pressure interactively affect the strand diameter of the printing scaffold [274, 275]. It has 

been indicated that printing at lower extrusion pressure needs a slower print speed while 

printing at higher extrusion pressure requires a faster print speed to obtain mechani-

cally stable structure. Furthermore, higher pressure reduces the cell viability percentage 
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[274, 276]. Billiet et al. [276] investigated the 3D bioprinting of gelatin methacrylamide 

cell-laden constructs using a new photoinitiator (VA-086). �e effect of several factors 

including hydrogel concentration, printing pressure, printing speed, printing tempera-

ture and cell density on construct architecture were analyzed. Finally, the scaffolds could 

be printed with a 100% pore interconnectivity in the gelatin concentration range of 

10–20 w/v%. �e authors could control the deposited strand dimensions by the hydrogel 

physical properties and operating parameters and achieved a mechanically stable scaf-

fold with high cell viability (> 97%). �e effect of printing speed on HA slurry with a solid 

volume fraction of 55% showed that the printing speed affected the shape and print-

ing quality of the final scaffold [277]. A low print speed (3 mm/s) could not match the 

amount of extruding slurry and the printed lines piled up resulting in wider lines and 

smaller scaffold pore size than the actual model. On the other hand, fast printing speed 

(8 mm/s) caused the printed lines to be thinner or broken because of a higher stretching 

force at the same volume of extruding slurry. �e best printing speed was found to be 

5 mm/s for 55vol.% HA slurry. Another study on  Al2O3 slurry also indicated that the vis-

cosity, print speed, nozzle diameter and layer thickness are influential in printing quality 

and shape of the fabricated scaffolds [278]. Moreover, in temperature-dependent tech-

niques, the temperature should be controlled not to affect the final quality of the objects. 

�e selected temperature in the process depends on the types of materials such as melt-

ing temperature of metals and ceramics or glass transition of polymers. For example, the 

SLS-printed biphasic calcium phosphate (BCP) scaffolds may have wavy deformations 

in their structures due to the uneven temperature distribution involved in SLS process 

[279]. BCP is a mixture of HA and β-TCP, thus the HA decomposition and conversion of 

β-TCP to α-TCP can occur at the elevated temperatures produced during SLS printing.

Among the studies on process parameters, some have used systematical methodolo-

gies including DOE and response surface methodology (RSM) such as Taguchi, two-

level factorial, Box–Behnken, and central composite designs [221, 222, 228, 230, 234, 

244, 245, 247, 253–255, 260, 263, 266]. A response surface methodology is an optimi-

zation approach and a collection of statistical and mathematical approaches utilized to 

accomplish the multi-objective optimization procedure in various systems including 

materials, geometry and process.

Conclusions

Nowadays, 3D printing has become a definite part of tissue engineering, due to its con-

trollability on manufacture of designed porous structure and customizability. �is is the 

result of integrating medical imaging, and computer modeling with fabrication systems. 

�e steps usually taken in order to 3D print a bone scaffold include obtaining CT images 

of the bone with defect, providing 3D solid model of the defect, creating 3D model of 

bone scaffold internal structure by repeating unit cells in x, y and z directions, provid-

ing the scaffold external geometry through Boolean operation, converting the scaffold 

model to STL file format, slicing the model via computer algorithm, and 3D printing.

�e challenges in manufacture of bone tissue scaffold via 3D printing are the bone 

defect geometrical complexity, the material properties, and the insertion of biomol-

ecules and cells. Medical imaging and processing, and the resulting CAD model aid 

in overcoming the first challenge. However, regarding the printable materials, there 
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is still limitation, particularly for bioprinting and when functionally graded materi-

als are involved. �ere is a need for further improvement of 3D printing machines to 

make high strength and low modulus bone scaffolds. Furthermore, development of 

a software that is able to define the material property within the 3D solid model of a 

bone scaffold is also required. Furthermore, the optimization of internal architecture 

and material of a bone scaffold needs to be done because several variables exist both 

in the material design and geometry design. �is will enable us to achieve superior 

performance, particularly when considering multiple objectives including mechanical 

strength, elastic modulus, permeability and bone growth. It is better to do the opti-

mization, based on a given application which can be accomplished using CAD model 

of the scaffold and the bone with defect, along with finite element analysis via a para-

metric analysis. In this way, design of experiments can be employed to reduce the 

number of analyses and to aid in better interpretation.

�ere are several 3D printing technologies including laser-based, extrusion-based, 

and ink-based 3D printing, some of which can incorporate cells in the scaffold struc-

ture during the fabrication process. �e 3D printing techniques involve a number of 

variables in their processing approaches which influences the characteristics of the 

fabricated bone scaffolds, hence there is a need for careful optimization of these fac-

tors with respect to the properties obtained. �e most studied parameters are power 

of laser beams and scanning speed in laser-based approaches, particulate character-

istics in powder-based techniques, printing speed and viscosity of ink or slurry in 

ink-based techniques or for manufacture of ceramic and composite scaffolds, and the 

nozzle dimensions in nozzle-based approaches. �e process optimization is of par-

ticular importance when cells and biomolecules are involved in the manufacturing 

process. In the inkjet and extrusion-based bioprinting, the viscosity of the bio-ink, 

print speed, nozzle diameter and dispensing pressure are important factors that affect 

the mechanical stability of a scaffold and the fate of cells within the construct.

Looking into the future, even when the technology-related challenges are overcome, 

there will be a long distance from transforming research know-how into clinical prod-

ucts from which society can benefit. �erefore, the standardization of 3D-printed 

scaffolds needs to be accelerated.
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