
 Open access Proceedings Article DOI:10.1145/3417990.3420204

Challenges & opportunities in low-code testing — Source link

Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé

Institutions: University of Nantes

Published on: 16 Oct 2020 - Model Driven Engineering Languages and Systems

Topics: Cloud testing

Related papers:

 Practices and tools for better software testing

 Challenges and Perils of Testing Database Manipulation Code

 Probing into code analysis tools: A comparison of C# supporting static code analyzers

 Unit Testing in Java: How Tests Drive the Code

 CORE: Automating Review Recommendation for Code Changes

Share this paper:

View more about this paper here: https://typeset.io/papers/challenges-opportunities-in-low-code-testing-
5c1tt479jm

https://typeset.io/
https://www.doi.org/10.1145/3417990.3420204
https://typeset.io/papers/challenges-opportunities-in-low-code-testing-5c1tt479jm
https://typeset.io/authors/faezeh-khorram-2kj3hlmury
https://typeset.io/authors/jean-marie-mottu-3xw7f8oe4t
https://typeset.io/authors/gerson-sunye-2vcpmqbu9d
https://typeset.io/institutions/university-of-nantes-1ykeh23a
https://typeset.io/conferences/model-driven-engineering-languages-and-systems-j57frwb9
https://typeset.io/topics/cloud-testing-he5cumx2
https://typeset.io/papers/practices-and-tools-for-better-software-testing-d1qz770kwc
https://typeset.io/papers/challenges-and-perils-of-testing-database-manipulation-code-cbd9bezcrf
https://typeset.io/papers/probing-into-code-analysis-tools-a-comparison-of-c-269j25xzxi
https://typeset.io/papers/unit-testing-in-java-how-tests-drive-the-code-19zduiqk8e
https://typeset.io/papers/core-automating-review-recommendation-for-code-changes-5789gj0pnr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/challenges-opportunities-in-low-code-testing-5c1tt479jm
https://twitter.com/intent/tweet?text=Challenges%20&%20opportunities%20in%20low-code%20testing&url=https://typeset.io/papers/challenges-opportunities-in-low-code-testing-5c1tt479jm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/challenges-opportunities-in-low-code-testing-5c1tt479jm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/challenges-opportunities-in-low-code-testing-5c1tt479jm
https://typeset.io/papers/challenges-opportunities-in-low-code-testing-5c1tt479jm

HAL Id: hal-02946812
https://hal.archives-ouvertes.fr/hal-02946812

Submitted on 23 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenges & Opportunities in Low-Code Testing
Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé

To cite this version:
Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé. Challenges & Opportunities in Low-Code Testing.
ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems
(MODELS ’20 Companion), Oct 2020, Virtual, Canada. ฀10.1145/3417990.3420204฀. ฀hal-02946812฀

https://hal.archives-ouvertes.fr/hal-02946812
https://hal.archives-ouvertes.fr

Challenges & Opportunities in Low-Code Testing

Faezeh Khorram
faezeh.khorram@imt-atlantique.fr

LS2N, IMT Atlantique
Nantes, France

Jean-Marie Mottu
jean-marie.mottu@ls2n.fr

LS2N, Université de Nantes, IMT
Atlantique

Nantes, France

Gerson Sunyé
gerson.sunye@ls2n.fr

LS2N, Université de Nantes
Nantes, France

ABSTRACT

Low-code is a growing development approach supported by many

platforms. It fills the gap between business and IT by supporting

the active involvement of non-technical domain experts, named

Citizen Developer, in the application development lifecycle.

Low-code introduces new concepts and characteristics. However,

it is not investigated yet in academic research to point out the exist-

ing challenges and opportunities when testing low-code software.

This shortage of resources motivates this research to provide an

explicit definition to this area that we call it Low-Code Testing.

In this paper, we initially conduct an analysis of the testing

components of five commercial Low-Code Development Platforms

(LCDP) to present low-code testing advancements from a business

point of view. Based on the low-code principles as well as the result

of our analysis, we propose a feature list for low-code testing along

with possible values for them. This feature list can be used as a base-

line for comparing low-code testing components and as a guideline

for building new ones. Accordingly, we specify the status of the

testing components of investigated LCDPs based on the proposed

features. Finally, the challenges of low-code testing are introduced

considering three concerns: the role of citizen developer in test-

ing, the need for high-level test automation, and cloud testing. We

provide references to the state-of-the-art to specify the difficulties

and opportunities from an academic perspective. The results of

this research can be used as a starting point for future research in

low-code testing area.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Low-code, Testing, Low-code Development Platform, Citizen De-

veloper

ACM Reference Format:

Faezeh Khorram, Jean-Marie Mottu, and Gerson Sunyé. 2020. Challenges &

Opportunities in Low-Code Testing. In ACM/IEEE 23rd International Con-

ference on Model Driven Engineering Languages and Systems (MODELS ’20

Companion), October 18–23, 2020, Virtual Event, Canada. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3417990.3420204

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM/IEEE 23rd
International Conference on Model Driven Engineering Languages and Systems (MODELS
’20 Companion), October 18–23, 2020, Virtual Event, Canada, https://doi.org/10.1145/
3417990.3420204.

1 INTRODUCTION

A Low-Code Development Platform (LCDP) is a software on the

cloud whose target clients are non-programmers aimed at building

applications without having IT knowledge. It migrates the appli-

cation development style from manual coding using traditional

programming languages into interacting with graphical user inter-

faces, using prebuilt components, and setting configurations. The

user interfaces, business logic, and data services are built through

visual diagrams, high-level abstraction, declarative languages, and

in specific cases by manual coding. Less traditional hand-coding

causes more speed in application delivery and thus less cost [35, 37].

The main user of LCDP, called Citizen Developer, is a domain

expert with no programming knowledge [35]. Ease of use and sim-

plicity, from the citizen developer’s point of view, is the determining

success factor of an LCDP. The number of low-code development

platforms is growing as they have been highly requested by citizen

developers. These platforms fill the gap between business and IT

through abstraction and automation, so they improve the quality

of the final product and accelerate the release time.

Independently from the tool or platform used for system de-

velopment, the system needs to be tested to ensure that all the

requirements are realized. Each development approach, including

low-code, has its own features and requirements that have to be

considered in both system development and testing to provide the

highest level of confidence to the final product.

The Citizen developer has a major role in both system develop-

ment and testing in LCDPs, but his lack of technical IT knowledge

leads to the emergence of new requirements and challenges in the

context of low-code. There are many success stories of existing

commercial LCDPs [26, 37], which demonstrate they overcome the

challenges somehow, however, there is a vendor lock-in that con-

fines the existing resources. In addition to commercial tools, to the

best of our knowledge, there is no academic research that precisely

describes the issues involved, especially for low-code testing; we

use the term ‘low-code testing’ to denote the testing approaches

considering the low-code context.

The quality of the system built using an LCDP has to be as-

sured, so a dedicated testing component which satisfies low-code

principles is required for LCDPs. As far as we know, there is no

research at the moment which specifies the features of such testing

component and the potential techniques which can be used for its

development. In other words, according to Mary Shaw classification

of the phases of research in software engineering [30], the research

in low-code testing is in the first stage that is basic research since

there is no formal structure to the ideas, concepts, and research

questions of this area. Overall, this lack of resources for low-code

testing motivates this research.

https://doi.org/10.1145/3417990.3420204
https://doi.org/10.1145/3417990.3420204
https://doi.org/10.1145/3417990.3420204

MODELS ’20 Companion, October 18ś23, 2020, Virtual Event, Canada Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé

In this paper, we identify the challenges and discuss their diffi-

culties and opportunities in low-code testing to prepare a roadmap

for future academic research in the context. To this end, the testing

components of five commercial LCDPs are discovered primarily and

then are analyzed based on a detailed set of features for low-code

testing which is proposed in this research. Afterward, the exist-

ing challenges of the domain, and consequently their associated

difficulties and opportunities are described in a research-centric

approach by providing related work in the state-of-the-art.

The rest of this paper is organized as follows: Section 2 describes

the background of the low-code domain. In Section 3 an introduc-

tion to five commercial LCDPs and their testing services is provided.

Section 4 introduces a feature list for low-code testing, and also the

status of the testing components of selected LCDPs based on that

list. The challenges in low-code testing area and the opportunities

for further research in this context are presented in Section 5. The

paper concludes with a discussion of the limitations and future

work in Section 6.

2 BACKGROUND

Low-code is an alive and in-progress domain that requires new

techniques and tools proposal for resolving the existing challenges

or for realizing new requirements. This needs an understanding

of the theory behind the low-code domain that is described in this

section.

2.1 Domain-Specific Language

A Domain-Specific Language (DSL) is a computer language special-

ized to a particular application domain that enables domain experts

to create a system using concepts they are familiar with. A DSL

has to be designed in a way to be understandable for humans while

executable by machine. For example, SQL is a well-known DSL

specific for manipulation of databases [8].

Regarding the main objective of LCDPs, i. e., providing system

development facilities for domain experts, DSLs are the underlying

theory in the LCDP development. The target application domain

of an LCDP, or more specifically, the aspects of a system that are

modeled in that LCDP, defines which kind of DSLs are used on

its basis. For instance, the Business Process Model and Notation

(BPMN) is a well-known DSL for modeling business processes. It is

used in Mendix LCDP to enable users to develop applications for

automating the business processes of their organizations [31].

2.2 Model-Driven Engineering

Model-Driven Engineering (MDE) is a software developmentmethod-

ology that uses models as the pivotal elements in the development.

Model is an abstract representation of a system that conforms to a

specific metamodel (i. e. the abstract syntax of a specific DSL), and

is also independent of the technologies. To build a system following

MDE principle, a domain expert first models the application domain

manually, and then the models are automatically transformed to

either intermediate models (i. e., model-to-model transformation)

or source code (i. e., model-to-text transformation) [6]. In the first

case, a model-driven execution platform is used for interpreting and

running the intermediate models at runtime, while in the second,

code generation engines produce executable code of the system (i. e.,

editable source code or bytecode) that can be executed at runtime

environments [5]. In both cases, the transformation is implemented

once by language engineers, and then is used several times to

auto-generate many systems of the same type. Abstraction along

with automation resulted in simplicity, reusability, higher accuracy,

portability, interoperability, complexity management, lower cost,

and faster release time [6], and these are the potential advantages

offered by LCDPs.

LCDPs follow MDE principles. Indeed, they support system de-

sign through visual modeling, and automatic generation of the

executable final system following two distinct architectural ap-

proaches. Some LCDPs, such as OutSystems, use code generation

engines to produce executable code, and others, such as Mendix

and Lightening, use a model-driven execution platform [5].

3 TESTING IN COMMERCIAL LCDPS

We previously mentioned that there is a lack of research in low-

code testing and the objective of this paper is to define it precisely

from an academic perspective. To this end, we initially conducted

an analysis of the testing components of five LCDPs, to figure

out what is offered by successful commercial platforms. They are

selected based on the recent reports of Forrester [26] and Magic

Quad Quadrant [37] in the low-code context. According to the

reports, these LCDPs are known successful since they have a good

level of market presence and are called leaders in the low-code

community.

3.1 Mendix

Mendix LCDP is introduced for application development on the

web, mobile, and IoT platforms. It includes two IDEs to support

both no-code and low-code. The former is a drag & drop web-based

studio providing pre-built reusable components, while the latter is

an IDE for experienced developers to integrate models (e. g., data

models, UI models, and microflow models) with manually written

code [34].

Testing in Mendix: Quality assurance in Mendix is performed

using several tools and services, some of which are for testing while

the others help to enhance the quality of the application.

Unit TestingModule is aMendix-dedicatedmodule for unit testing

of the application’s logic (i. e., microflow models). The unit tests can

be created using microflows and JUnit operations without writing

any code [33]. For supporting other kinds of testing, Mendix recom-

mends the use of commercial tools such as SoapUI1 for automated

integration and API testing, Selenium IDE2 for browser-based UI

and acceptance testing, and TestNG [3] for scripting automated

tests in Java language [33].

Moreover, there are three quality add-ons provided by Mendix

which are not testing tools, but their usage improves the quality of

the application: 1) Application Test Suite (ATS): ATS is a set of tools

built on top of Selenium [29] for embedding test into application

lifecycle; 2) Application Quality Monitor (AQM): By this service, the

application models are analyzed statically and the technical quality

of the application is calculated based on a subset of features of

software maintainability derived from ISO 25010 [7]. The features

1https://smartbear.com/product/ready-api/soapui/overview/
2https://www.selenium.dev/selenium-ide/

Challenges & Opportunities in Low-Code Testing MODELS ’20 Companion, October 18ś23, 2020, Virtual Event, Canada

are analyzability, modifiability, testability, modularity, and reusabil-

ity; 3) Application Performance Diagnostics (APD): This is a cloud

service responsible for performance monitoring. It contains a set

of tools including the Trap tool that records all levels of logging

and stores them when an error occurs, the Statistics tool which

identifies trends from application performance statistics, the Perfor-

mance tool that analyzes individual functions and visualizes where

improvement is possible, and the Measurements tool for CPU and

Memory monitoring [32].

3.2 Power Apps

Microsoft introduced Power Apps LCDP as a service, for rapid ap-

plication development across web and mobile, using a suite of apps,

services, connectors, and data platforms. The design approach in

Powerapps is twofold: 1) Canvas-based: By drag & drop elements

into a canvas, the application can be designed. Excel-like expres-

sions are used for logic definition, and business data can be inte-

grated from different resources either Microsoft or third-parties;

2) Model-driven: This is a component framework usable for profes-

sional developers to create custom components, and use them for

application development [22].

Testing in Power Apps: This platform offers different testing

tools for its different design approaches. A test studio is introduced

specifically to support automated end-to-end UI testing of an appli-

cation designed based on canvas. The test cases can be manually

written using Power Apps expressions or automatically generated

using record and replay technique [18]. For the model-driven design

approach, the automated UI testing framework, Easy Repro3, that is

built for testing Dynamics 365 implementations, can be used. In this

tool, UI tests can be defined with no need to parse HTML elements,

so the tests became resilient to changes of those. For the server-side

testing, Power Apps support integration with existing testing tools

such as Fake Xrm Easy4 which is a .NET mocking framework and

can be combined with other .NET testing frameworks if needed.

3.3 Lightning

Salesforce published its own LCDP named Lightning which is

mainly focused on Customer Relationship Management (CRM).

External systems such as Enterprise Resource Planning (ERP) or

data from a connected device can be integrated into the processes

defined in the platform. High-level support for blockchain and AI

are the outstanding features of this LCDP. Another novel feature

of Lightning is its Object Creator tool which enables any employee

to turn spreadsheets such as Excel and .csv files into modern cloud-

based applications [27].

Testing in Lightning: There are many testing tools built by

Salesforce that can be used in Lightning as well, such as Salesforce

CLI5 and Apex test execution6. The main shortcoming of which is

the need for technical knowledge and low-level of automation [28].

To overcome these drawbacks, integration with Selenium [29] and

AccelQ testing platform [15] is provided to support UI, API, and

End-to-End automated testing. In AccelQ, the tester uses English

3https://github.com/Microsoft/EasyRepro
4https://github.com/jordimontana82/fake-xrm-easy
5https://developer.salesforce.com/tools/sfdxcli
6https://developer.salesforce.com/docs/atlas.enus.apexcode.meta/apexcode/apex_testing.htm

natural language to write test cases and Selenium is used for test

execution.

3.4 Temenos Quantum

Temenos Quantum LCDP owned by Kony is designed to build

mission-critical applications. It leverages novel technologies such as

intelligent chatbots, conversational applications, augmented reality,

and AI to build modern web and mobile applications [16].

Testing in Temenos Quantum: Automated testing of multi-

channel applications is supported by Quantum Testing Framework

(QTF) that is integrated with TestNG [3] and Jasmine7. TestNG is

a Java testing framework inspired by JUnit and NUnit which uses

Selenium server for test execution, while Jasmine is an open-source

JavaScript testing framework that follows the Behavior-Driven De-

velopment (BDD) technique [23] and introduces new syntax for

writing unit tests. QTF allows test case creation through recording

the user activity on the application and also manual coding [36].

3.5 OutSystems

OutSystems LCDP is well-known for building enterprise solutions

as it provides many services for the context of case management,

business process management, legacy modernization, and business

operations [25]. In this platform, data models, business logic, work-

flow processes, and UIs had to be defined by models to build the

final product.

Testing inOutSystems: Quality assurance inOutSystems LCDP

is regarded as it offers several tools and techniques for it. The most

important of which are: 1) OutSystems Test Framework: It is com-

posed of three frameworks to support software testing at different

levels (i. e., unit, integration, system, etc). One of which is a BDD

framework that offers a no-code test environment to create unit and

API test cases in BDD style [23]. The other one is the Unit Testing

Framework which enables testers to define unit tests on the logic

of the system without any dependency on the UI. Ghost Inspector8

automated testing tool is also integrated with the framework to sup-

port automated UI testing. Besides the mentioned tools, if further

features are required for testing a system in OutSystems LCDP, it is

possible to integrate other testing tools within the framework [24];

2) Performance analyzer : By capturing real-time data (e. g., fast, fair,

or slow response time distribution), it provides detailed reports to

help application performance monitoring during its usage growth;

3) Automated UI testing with Selenium: By Selenium IDE, UI test

steps can be defined by recording user interaction with UI pages,

using reusable scripts with some adjustments if needed, or manual

scripting, while Selenium WebDriver enables writing complex test

scenarios by common OO languages like Java, JS, and so on [29].

4 FEATURES OF LOW-CODE TESTING

Characterizing low-code testing is essential for performing a sys-

tematic comparison between the testing components of commercial

LCDPs, and consequently for finding the gaps in the state-of-the-art

to enable researchers to work on them.

In this section, we propose a set of 16 features customized for

low-code testing. They are defined based on the low-code principles

7https://jasmine.github.io/
8https://ghostinspector.com/

MODELS ’20 Companion, October 18ś23, 2020, Virtual Event, Canada Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé

as well as the capabilities and deficiencies of the testing compo-

nents of commercial LCDPs. These features are indeed the decisions

necessary to be made for building a low-code testing component.

To this end, we also provide possible (may not complete) values

for them to help with this decision making process. At the end of

this section, the result of our analysis of the testing components of

commercial LCDPs is also presented based on the proposed feature

list.

4.1 Description of the Features

Table 1 demonstrates the features, classified in 5 categories, with

the possible values for them. Some of the features are general, while

the rest are related to different testing activities i. e., test design,

test generation, test execution, and test evaluation.

General: This category specifies the high-level features of the

test component of an LCDP. Generally, a Testing Framework has

to be used for building a test component. If the LCDP is going

to have such a component, it should be discussed whether a new

Low-Code Testing Framework (LCTF) has to be implemented or

an existing one, which is not necessarily for the low-code domain,

is preferable. In both cases, the Supported Testing Scale and the

Verification Support features have to be determined. The former

defines in which levels (unit, integration, system, UI, API, and End-

to-End) the behavior of the system can be tested, while the latter

specifies the characteristics (functional and non-functional) of the

system that can be verified, such as functionality, performance,

security, and so on.

The last feature of this category is Openness to third-party test-

ing tools. It is a good practice to enable the test component to

integrate with other testing tools since it allows reusing the exist-

ing resources. Therefore, the technique and the scale of openness

should be specified. The integration could be closed, partially open

through import/export techniques to reuse testing artifacts of other

sources, or completely open via web-technologies.

Test Design: The features of this category are defined by consid-

ering the tasks of the citizen developer role in the testing activities.

Several roles can be supported in the test design phase and The Role

of Test Designer feature aimed at defining them. The citizen devel-

oper is the expert of the system functionalities which are used for

deriving tests. Therefore, in addition to IT developers and technical

testers, she should be involved in the test design activity. However,

special techniques and tools should be used for supporting Col-

laboration on Test Design to enable multiple people from different

backgrounds to collaborate on the testing of the same application.

The Test Design Technique affects the collaboration since it de-

fines the method of test case definition; If the technique is too

technical, the citizen developer cannot collaborate in test design.

According to our investigation on commercial LCDPs, the follow-

ing techniques are some potential options for low-code testing,

each of which able to resolve specific needs: Model-Based Testing

(MBT) for supporting abstraction and automation in different levels

of testing, Visual/Graphical modeling for designing test cases as

graphical test models, Record and Replay for automated UI testing,

Artificial Intelligence (AI) for recommending potential test cases,

Keyword-driven for writing tests in natural languages such as Eng-

lish, Data-Driven Testing (DDT) for separating test data from test

cases and consequently offering reusability, and Behavior-Driven

Development (BDD) or Test-Driven Development (TDD) for pro-

viding traceability from system requirements to test cases, from the

initial steps of the application development lifecycle. This should

be noted that the approach used for designing the tests has a direct

impact on the quality of the test suites and their adequacy. Addi-

tionally, in some approaches such as MBT, there are techniques to

evaluate these features automatically.

Usually, various artifacts can be used or will be produced dur-

ing test design. The next feature, named Used/Produced Artifacts

in Test Design, is prescribed to define them. For instance, system

requirements and/or system models can be used to derive tests di-

rectly from them or to be linked to the test cases (e. g., in BDD/TDD

method). Thereupon, when a test case fails, it is easy to identify

which system requirement or specification is not realized. Besides,

in some test design methods, the definition of test-specific artifacts

is required, such as test specifications, test models (e. g., in MBT

method), and test data (e. g., in DDT method).

LCDPs claim to have faster release time by offering various fea-

tures, one of which is reusability. This principle should also be

regarded in the testing phase to maintain the pace, so we consid-

ered Reusability as a feature for low-code testing. This feature can

be offered by low-code testing component in different ways. For

example by providing the possibility of reusing test data/test cases

of other sources, offering reusable test cases from a pre-defined

repository, supporting the definition of reusable test cases for test-

ing of an application built in an LCDP, which could be reused in

the testing of other applications built in the same LCDP, and also

supporting the possibility of defining reusable test cases compatible

with various LCDPs, which means they can be used in the testing

of several applications developed in various LCDPs.

Test Generation: The LCDPs are supposed to provide as much

automation as possible in all activities, especially those technical,

including test generation. Automation of Test Generation feature

specifies the level of provided automation in generating tests which

could be High, meaning most of the steps are automated and only

simple tasks have to be done manually, Medium which means some

tasks are automated but some others have to be performedmanually

(e. g., definition of test data), and Low that refers to no support for

automation.

In different levels of automation, especially medium and low,

manual scripting is required, e. g., to implement the test cases that

are not auto-generated. Test Script Language feature is considered

since it should be defined which language is supported by low-code

testing component for scripting tests. Various languages can be

used, such as test-specific DSLs defined by the LCDPs, test-specific

languages such as Testing and Test Control Notation version 3

(TTCN-3)9, and programming languages (e. g., Java).

Test Execution: Automation, distribution, and cloud are the

main concerns of the features of this category. LCDPs are cloud-

based, they support the development of cloud-based and distributed

applications, and they tend to be more scalable. Therefore, the low-

code test component needs to support distributed test execution

over the cloud, and also to perform this activity in an automated

manner.

9http://www.ttcn-3.org/

Challenges & Opportunities in Low-Code Testing MODELS ’20 Companion, October 18ś23, 2020, Virtual Event, Canada

Table 1: Features of low-code testing with some possible values for them

Category Feature Possible Values

(1) Testing Framework No support,

New Low-Code Testing Framework (LCTF) dedicated to LCDP,

Leveraging third-party frameworks (e. g., Selenium, TestNG).

(2) Supported Testing Scale Unit, Integration, System, UI, API, End-to-End (E2E).

(3) Verification Support Functionality, Performance, Security, Usability, Compatibility, Reliability, etc.
General

(4) Openness to other testing tools Closed,

Import/Export of test models, test script, or test data,

Integrate via web-technologies (e. g., REST).

(5) The Role of Test Designer Citizen developer (i. e., non-technical tester), IT developer, Technical tester.

(6) Collaboration on Test Design No support, Collaborative test design, Continuous feedback mechanism.

(7) Test Design Technique Model-Based Testing (MBT): Modeling the System based on a DSL and auto-

generating the executable test cases from it,

Visual/Graphical modeling of the test cases,

Record and Replay for automated UI testing,

Artificial Intelligence (AI): Automatic recognition of test cases,

Keyword-driven: Using natural languages such as English,

Data-Driven Testing (DDT): Separating test data from test cases,

Behavior-Driven Development (BDD)/Test-Driven Development (TDD).

(8) Used/Produced Artifacts in Test De-

sign

None,

System requirements,

System models (e. g., Data models, Logic models, UI pages),

Test specification, Test models, Test data.

Test

Design

(9) Reusability Reusing test data/test cases of other sources,

Reusable test cases provided by the testing component,

The possibility to define new test cases that can be reused in a specific LCDP,

The possibility to define new test cases that can be reused in various LCDPs.

(10) Automation of Test Generation High (support no-code), Medium (support low-code), Low (manual coding).Test

Generation (11) Test Script Language New executable DSLs defined by the platform (e. g., PowerApps expressions),

Existing test-specific languages such as TTCN-3,

Programming languages (e. g., Java).

(12) Automation of Test Configuration High (support no-code), Medium (support low-code), Low (manual coding).

(13) Distribution Not supported, Distributed test execution.

(14) Test Execution Tool/Service New tools provided by LCDP, Third-party tools such as Selenium server.

Test

Execution
(15) Test Execution Platform Provider cloud, Public cloud, On-premises, Standalone.

Test

Evaluation

(16) Test Result Evaluation Technique Monitoring, Comparison, Visual/textual reporting, Analyzing execution

traces.

Automation of Test Configuration feature investigates the level of

automation provided by the testing component for performing test

configuration. We mentioned earlier that the more automation the

LCDP provides, especially for technical tasks, the less time and cost

spent on releasing the final application. Therefore, it is required to

provide automation for test configuration as well.

Distribution refers to the capability of the low-code test com-

ponent in distributed test execution. Distributed architectures are

highly-used for developing systems, and they are supported in most

LCDPs, so the LCDP’s test component should be able to test the sys-

tems under such architectures. Moreover, the cloud-native of LCDPs

provides the infrastructure for executing tests in a distributed man-

ner by leveraging the cloud. Therefore, offering this feature by the

low-code test component results in its more functionality.

Test Execution Tool/Service feature defines which tool or service is

used in the test component for running executable test cases. LCDPs

could propose new tools, however, our analysis on commercial

LCDPs demonstrates that integrating third-party tools such as the

Selenium server is preferable, even if the LCDP has its own LCTF.

The last feature that we identified in the test execution cate-

gory is Test Execution Platform. It specifies on which platforms

the tests can be run. According to our investigation of commercial

LCDPs, provider cloud, public cloud, on-premises, and standalone

are the possible options of system deployment that are provided

by LCDPs. These options could also be supported as a platform for

test execution.

Test Evaluation: The low-code test results should be generated

in a way to be understandable for all the roles involved in the testing

phase. Therefore, several techniques should be used to demonstrate

abstract/non-technical results to citizen developers, while presents

concrete/technical results to the IT developers and the technical

MODELS ’20 Companion, October 18ś23, 2020, Virtual Event, Canada Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé

testers. Test Result Evaluation Technique feature is defined to specify

which techniques are used for evaluating test results.

4.2 The Status of the Testing Component of
Commercial LCDPs

Section 3 presented an overview of the testing facilities, provided by

the selected LCDPs. Generally, most of the testing activities are sup-

ported by their integrated third-party testing tools such as Selenium,

SoapUI, AccelQ, TestNG, GhostInspector, Jasmine, and EasyRepro.

In this subsection, we organized our analysis result based on the

proposed feature list, to specify the status of commercial LCDPs in

providing testing facilities.

(1) Four LCPDs, except Quantum, propose a new Low-Code Test-

ing Framework (LCTF) but with limited capabilities. Conse-

quently, they all provide integration with third-party testing

tools to have reasonable coverage of all testing activities.

(2) In general, all testing scales are supported in LCDPs, but

mainly by their integrated third-party testing tools. Partic-

ularly, the LCTF of Mendix is designed for unit testing, the

LCTF of PowerApps for UI and E2E testing, the LCTF of

Lightning for unit testing, and the LCTF of OutSystems for

unit and API testing.

(3) Functionality and Performance are the features that are

continuously tested in all LCDPs, and testing of other non-

functional requirements is neglected.

(4) Except for Powerapps, the other LCDPs use web technolo-

gies to integrate with third-party testing tools. Test data

import/export is also supported by Mendix LCTF.

(5) Technical testers and/or developers are in charge of per-

forming tests using the third-party tools integrated with the

LCDPs. The citizen developer is only involved in the testing

activities supported by LCTFs and also when Automated UI

testing is provided by recording tools.

(6) Collaboration is considered in all LCDPs but mainly between

technical developers and testers. Nevertheless, Mendix is the

only LCDP which offers an easy to use feedback mechanism

for collaboration of non-technical developers.

(7) Among different test design techniques, the LCTF of Mendix

and OutSystems follows the MBT approach for performing

unit tests (and API tests in OutSystems’ LCTF) based on the

DSLs they use for logic modeling augmented with testing

elements, Record and Replay technique is supported by all

LCDPs for automated UI testing, mainly through integration

with Selenium IDE, AI is only supported by AccelQ third-

party testing tool which is integrated with Lightning LCDP,

Mendix, PowerApps, and Lightning follow Keyword-driven

and DDT techniques, and Quantum and OutSystems use the

BDD style.

(8) Among the various artifacts, Mendix and Lightning use sys-

tem requirements to explicitly map them to the test cases,

UI pages are used in all LCDPs for performing UI tests by

capturing UI test specifications through recording tools, Out-

Systems and Mendix use system models, such as microflows

and data flows, in their testing process, and they produces

test models since they use graphical modeling for designing

unit tests.

(9) Mendix’s LCTF and AccelQ in Lightning LCDP offer reusable

test case templates, importing test data from external files,

and definition of reusable test cases to be used in testing of

other applications built using the same platform. Besides,

reusing of repetitive interactions is supported in OutSystems.

(10) A medium level of automation for test generation is provided

in all LCDPs, but mostly by their integrated third-party test-

ing tools.

(11) The final executable test cases are generated in different

programming languages such as Java and C#.

(12) The test configuration is automated at a medium level since

manual efforts are still needed in some cases.

(13) Distributed test execution is considered in all LCDPs, but

mainly in their integrated third-party testing tools. For in-

stance, Mendix and OutSystems leverage Selenium Grid for

this purpose.

(14) All LCDPs, except PowerApps, use Selenium Server as their

test execution tool; PowerApps uses Microsoft Dynamics

365.

(15) Provider cloud and on-premises are the supported test exe-

cution platform in all LCDPs.

(16) Monitoring and visual and textual reporting are provided in

all LCDPs. Mendix and OutSystems also analyze the execu-

tion traces and offer notes for improvement.

In conclusion, the results of our evaluation reveales that there

are specific features for low-code testing that should always be

considered and cannot be neglected in the testing component of

LCDPs. They are the role of citizen developer and the side effects of

her non-programming knowledge in her involvement in testing, the

need for high-level automation, and leveraging the cloud. According

to them, the next section rephrases the deficiencies in low-code

testing in a research-centric approach through providing related

work in academy, and proposing opportunities based on them for

future work in this area.

5 CHALLENGES AND OPPORTUNITIES

There is a community of people ś LCDP developers ś who aim at

building new low-code development platforms because there are

new application domains, features, technologies, customers, and

consequently new requirements for the development of new LCDPs.

As depicted in Figure 1, these platforms have two main editors in a

nutshell, one for building a software system and another for testing

that system. Potentially, the citizen developer (i. e., the user of the

platform) works with both editors to design the system and the test

cases, for example through visual modeling.

The problematic from the testing point of view is that there is no

general framework, to be used by LCDP developers, for building the

testing component of their intended LCDPs which fully supports

low-code testing features. Lack of such framework resulted in the

high-dependency of existing LCDPs to technical third-party testing

tools which are not usable for citizen developers. Additionally,

although some commercial LCDPs propose new low-code testing

frameworks, they do not fulfill all low-code testing features, they are

not reusable for other LCDPs, and their resources are not accessible

publicly.

Challenges & Opportunities in Low-Code Testing MODELS ’20 Companion, October 18ś23, 2020, Virtual Event, Canada

LCDP

Test Editor

Citizen
Developer

Develop the
LCDP

Low-code Testing
Framework

Design the system

Design the tests

LCDP
Developers

System Editor

Generate

Sample System
Model

Sample Test Model

Use

?

Figure 1: An overview of the main challenges in low-code

testing (The model instances are derived from [19])

In the following subsections, we expound the problematic un-

der several challenges, categorized based on the most important

features of the low-code context: the role of citizen developer, the

need for automation, and the effects of the cloud. Meanwhile, the

previous attempts and the potential opportunities to overcome the

challenges are also expressed.

5.1 The Role of Citizen Developer in Testing

In a low-code development platform, the citizen developer is re-

sponsible for the definition of requirements since she is the expert

of the system functionalities. As test cases are mainly derived from

the requirements, so she is in charge to define test cases and also to

evaluate test results. Therefore, her full involvement in the testing

activities, from design to evaluation, is essential for low-code testing

but her low-level of technical knowledge causes many challenges,

hence new techniques are required.

We previously outlined in Section 2 that LCDPs are built based

on specific DSLs. When a citizen developer designs a system in an

LCDP, she actually creates instances of the underlying DSL. As she

is the domain expert, she can instantiate models from the DSL with

low training. If the test cases can be written in the same language

as the software (i. e., the same DSL), the citizen developer can de-

sign tests with no additional training, so the efficiency increases.

An example of this is depicted in Figure 1. The citizen developer

designed an elevator by instantiating from a specific DSL. The ele-

vator has one Door, three Floor buttons, two Up buttons, and two

Down buttons, and it can stop in three Floors. By using the same

DSL augmented with test-specific elements, she designed a test

case model to verify the following requirement [19] that we stated

in BDD style:

GIVEN the elevator on the first floor with the Up button

pressed,

WHEN the elevator’s door is closedAND the Floor button

is pressed on the second floor,

THEN the elevator stays on the first floor AND its door

becomes open.

Despite the benefits of using the same language for designing

software and its tests, especially in the low-code domain, it is rarely

used in LCDPs as its implementation resources are limited or are

dedicated to specific DSLs and are not reusable. BDD framework

of OutSystems LCDP is a successful case of the implementation of

such an approach in the real-world. It extends the platform’s DSL

with testing elements such as Assertions to enable automated Unit

and API testing. The test cases are firstly defined textually using

Given-When-Then clauses and then each clause is modeled in the

same approach as system modeled [24]. As previously described

in section 2, OutSystems LCDP uses code generation engines to

produce executable code. Consequently, the test models are trans-

formed into Java or C# code to be executed against the system

under test.

5.1.1 PreviousAttempts. Thementioned technique i. e., in detail

DSL extension with further properties (e. g., testing features) is a

language engineering issue that is investigated in several papers.

In [20, 21], a framework, named ProMoBox, is introduced that

enables DSL engineers to auto-integrate five sub-languages to a

given DSL, to support specification and verification of temporal

properties of a system modeled using the given DSL. It uses Linear

Temporal Logic (LTL) to specify properties and offers a model

checking engine plug-able to DSL environments to run and evaluate

them.

The ProMoBox framework is restricted to the DSLs whose seman-

tics are described as a rule-based transformation; by this semantics,

the system behavior is captured through state changes. Moreover,

it is limited to the verification of LTL-based properties. Totally rely-

ing on the model checking technique causes the framework’s low

performance due to high memory usage.

The main issues with the ProMoBox framework were inherited

in using model checking. In [19], the framework is adapted to test

case generation techniques as it is a valuable alternative to model

checking. It proposes an automatic approach to augment a given

DSL with testing elements derived from a specific test DSL so that

modelers can model functional unit tests in the same language as

system models. The model instances in Figure 1 are taken from the

running example of this paper.

The testing support of the ProMoBox framework is also restricted

to DSLs with rule-based semantics. In addition, it does not support

real-time models, other testing scales such as API testing, and dis-

tributed test execution since the testing DSL that is used, involves

only basic testing elements while there are other testing DSLs cov-

ering those of complex. For example, Test Description Language

(TDL) is a DSL for high-level test specification that is defined to

smooth the transition from system requirements to executable test

cases written in TTCN-3; it is itself a test-specific DSL for black-box

testing of distributed systems [17].

MODELS ’20 Companion, October 18ś23, 2020, Virtual Event, Canada Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé

5.1.2 Opportunities. Among numerous amount of DSLs, there

are many, specific for the testing domain. They can be distinguished

based on their support for different testing scale (e. g., Unit, Integra-

tion, API), testing type (e. g., Performance, Security, Compatibility),

application domain (e. g., mobile, web, IoT), and application de-

ployment (e. g., on-premises, cloud, embedded). One solution to

the described shortcomings of the state-of-the-art is the support

for other testing DSLs (e. g., TDL) in the DSL extension process.

Another opportunity that can be taken into account is proposing a

generic DSL extension technique that can support different kinds

of DSLs (not just DSLs with rule-based semantics). Nevertheless,

this generalization reveals specific challenges since the semantics

of DSLs could be defined in different ways (i. e., Interpretation and

Compilation), and consequently, for the generation of executable

test cases and the interpretation of test failures in the model level,

various approaches should be followed.

In addition to the DSL-based opportunities, the research areas

such as assistant chatbots and recommendation systems are also

topics of interest in the alleviation of the challenges related to

the role of citizen developer in testing. In other words, as citizen

developers do not have the technical knowledge of testing, even

if they can model the test cases in the same language as system

models, they need to be assisted on how to correctly use test-specific

elements during designing of the test models.

5.2 The Need for High-level Test Automation

Many efforts on test automation are conducted so far, as it saves

significant time and effort. Test automation enables continuous

quality assessment at a reasonable cost, and this is essential for

DevOps. Automation is possible on different kinds of tests such as

unit, API, and UI functional tests, as well as load and performance

non-functional tests.

The upward tendency towards building multi-experience appli-

cations also increases the need for the evolution of test automation.

LCDPs are specialists for the development of such applications,

consequently, test automation is vital in these platforms. Especially,

automated API testing is essential in LCDPs as low-code applica-

tions use many integrations to other services using APIs. If these

integrations are not continuously tested, the application breaks

easily.

In low-code testing, a high-level of automation should be pro-

vided alongside a low dependency on technical knowledge. Despite

that most of the automated testing tools are very technical and they

use manual scripting for writing tests, there are some trends fol-

lowed by them to facilitate this task. To identify the techniques they

use, we made an investigation on some of them, selected from [13].

Briefly, the results of this query along with the information gath-

ered in section 3 revealed that the most popular testing techniques

aimed at simplicity alongside automation, areData-Driven,Model-

Based, and Record and Replay which are used almost together.

The data-driven testing technique provides reusability of test data

through its separation from test scripts, while in record and replay

technique UI tests are automated by recording user interactions

with UI pages. The Model-Based Testing (MBT) technique is appli-

cable for automating tests on any scale, so it is the most comprehen-

sive approach compared to others. Abstraction and automation are

its basic objectives and are offered by visual modeling and transfor-

mation engines, respectively. It is especially useful when a test run

on several deployment options is imperative, which is a consider-

ably important requirement in low-code testing since LCDPs are

supposed to auto-generate applications on several platforms from

a single system specification.

The first step in usingMBT for testing applications in a particular

domain is choosing a modeling language based on that domain i. e.,

indeed a Domain-Specific Modeling Language (DSML), to model

the System Under Test (SUT). In the next step, system models are

transformed to the test cases, test scripts, and test data, using several

transformation engines. These engines are the pivotal elements in

providing automation for test implementation, configuration, and

execution on several, yet totally different, platforms. As much as

automation the engines provide, the efficiency of MBT increases.

The crucial role of transformation engines proves the obligation

of tool support in MBT. There are numerous MBT languages and

tools, each of which adapted to specific domains (and consequently

specific DSLs), testing methods, and coverage criteria. Therefore,

MBT tool selection is a challenging task [1].

5.2.1 Previous Attempts. MBT is a growing research field and

many papers in this domain are published each year. The latest

mapping study on MBT performed by Bernardino et al. illustrates

that from 2006 to 2016, approximately 70 MBT supporting tools

are proposed by business and academy while some of which are

open source [1]. This significant number of tools promotes the

opportunity to create a repository of existing MBT tools which can

be analyzed for different purposes, but there is no repository so far.

5.2.2 Opportunities. The model-based testing is addressed in

many papers, but it is not specialized for the low-code context. As

wementioned earlier, low-code development platforms are based on

particular DSLs and system modeling is inherent in these platforms.

Therefore, for the application of MBT in LCDPs, the first step (i. e.,

selection of amodeling language) is strictly imposed by the platform.

Accordingly, for using MBT in the testing component of LCDPs,

two modes exist:

(1) If MBT is already applied to the LCDP’s underlying DSL and

associated tools exist, an appropriate tool has to be selected

from the existing pool.

(2) Otherwise, implementation of new MBT tools adapted to the

DSL is required.

Both mentioned modes promote new challenges and thereupon

opportunities, since there is neither a pool of existing MBT tools

nor a technique or tool to enable the development of newMBT tools

for a given DSL. Discovery and retrieval of appropriate MBT tools

based on a set of input features (e. g., application domain, input DSL,

testing scale), comparison between different tools based on their

features for the same testing scale, and composition of compatible

MBT tools especially when they are service-oriented, are a few of

use cases of the implementation of such opportunities.

5.3 Cloud Testing

Cloud testing can be defined in three aspects: 1) Testing of the

Cloud, meaning functional and non-functional testing of cloud-

based applications; 2) Testing in the Cloud refers to leveraging

Challenges & Opportunities in Low-Code Testing MODELS ’20 Companion, October 18ś23, 2020, Virtual Event, Canada

Figure 2: The trends of the areas in cloud testing by year

(Taken from [2])

scalable cloud infrastructure, tools, techniques, and computing re-

sources for testing non-cloud applications; and 3) the combination

of both which is testing the applications deployed in the cloud by

using cloud resources [2].

In 2019, Bertolino et al. performed a systematic review of the

cloud testing area [2]. The result of their investigation on 147 papers

demonstrated that almost two-third of the state-of-the-art targets

the challenges in testing in the cloud, while approximately one-

quarter of them target those of in testing of the cloud. Additionally,

as can be seen in Figure 2 taken from [2], test design and execution

are the most notable areas in cloud testing.

The existing LCDPs are all cloud-based and they support the

development of cloud-based applications. Meanwhile, there is an

upward trend in low-code context to support the development of

large-scale applications, especially for the domains of mobile, web,

and Service-Oriented Architectures (SOA) such as Microservices.

Overall, as the cloud offers development and maintenance of scal-

able test infrastructures, and configuration of on-demand scalable

resources through cloud virtualization [2], all three aspects of cloud

testing have to be provided by LCDPs, especially in those of scalable.

5.3.1 Previous Attempts. Besides the existing challenges and

issues described in [2] for the cloud testing in general, the spe-

cific features of low-code introduces new ones. As we described in

section 5.2, MBT is the most compatible approach with low-code

testing. The challenge is how the three paradigms of cloud testing

can be provided by MBT techniques and tools.

By MBT, given an abstract picture of the SUT, it is possible to

generate many test cases to be executed on the cloud [2]. Several

cloud-based MBT frameworks are proposed so far, each of which

specialized in different application domains and testing levels.

MIDAS is a cloud-based MBT testing platform for Software-

Oriented Architectures (SOA). It supports functional, usage-based,

and security testing of individual web services and also their or-

chestration in SOA applications. Therefore, it provides the third

aspect of cloud testing that is testing of the cloud in the cloud. In the

MIDAS framework, a new DSL is used for system modeling which

is based on the Unified Modeling Language (UML) and the UML

Testing Profile (UTP) augmented with SOA-specific features and

conditions. Several cloud-based services for test case generation

are deployed in MIDAS, each of them uses a distinct test scenario as

a basis. Indeed, each service receives a MIDAS DSL model as input

and generates test cases for the input model, based on its own test

scenario. There are also other services for test case prioritization,

scheduling, transformation to the TTCN-3 test code, execution, and

arbitration [4, 9ś12, 14].

TheMIDAS framework only supports testing of SOA applications

which are manually modeled using the MIDAS DSL, and which can

communicate only via Soap APIs. Besides, the resources for their

DSL and the TTCN-3 code generation service are not accessible.

These shortcomings lead to its low-level of usage.

5.3.2 Opportunities. We propose the opportunities for cloud-

based low-code testing focused on supporting cloud in MBT, ac-

cording to the opportunities described above for other aspects.

The approach introduced by MIDAS i. e, model-based testing as

a service and providing cloud-based services for different testing

activities, is very interesting to be continued for other testing DSLs.

One considerable opportunity could be the generation of a compre-

hensive framework that auto-generates test-specific services for a

given DSL. In that case, the opportunities written in the previous

sections can be seen as different parts of this framework which in

total leads to a cloud-based low-code testing framework.

6 CONCLUSION

Due to the high trend toward low-code domain and limited aca-

demic resources for low-code testing, we performed several anal-

yses in this article. We initially discovered the testing facilities

embedded in five well-known commercial LCDPs. Afterward, we

proposed a set of 16 features for low-code testing which can be

used as criteria for comparing several low-code testing components,

and as a guideline for LCDP developers in building new ones. Ac-

cordingly, we organized the result of our analysis on the testing

component of selected LCDPs based on the proposed feature list.

Our investigations lead us to the identification of existing chal-

lenges in low-code testing. We redefined them from a research

point of view by providing the state-of-the-art in three main cat-

egories including, the role of citizen developer and her low-level

technical knowledge in the testing activities, the importance and

consequently the challenges in offering high-level test automation,

and leveraging the cloud for executing tests alongside supporting

testing of cloud-based applications.

For each category, we also propose opportunities for future re-

search in low-code testing, such as DSL extension with testing

elements, customization of MBT for low-code testing, and support-

ing the cloud in MBT approaches.

As our futurework, wewill initially work on the challenges of the

first category. At the moment, we are defining a running example

to show how the DSL extension algorithm would work in practice

and how different kinds of DSLs (i. e., interpreted and compiled)

could be supported. Afterwards, we will implement the generic

extension algorithm, so different system DSLs can be extended

MODELS ’20 Companion, October 18ś23, 2020, Virtual Event, Canada Faezeh Khorram, Jean-Marie Mottu, Gerson Sunyé

with various test DSLs. Finally, supporting the cloud, and building

tools for generating cloud-based low-code testing component for a

given LCDP, are in our future research plan.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Hori-

zon 2020 research and innovation programunder theMarie Skłodowska

Curie grant agreement No 813884.

REFERENCES
[1] Maicon Bernardino, Elder M Rodrigues, Avelino F Zorzo, and Luciano Marchezan.

2017. Systematic mapping study on MBT: tools and models. IET Software 11, 4
(2017), 141ś155.

[2] Antonia Bertolino, Guglielmo De Angelis, Micael Gallego, Boni García, Francisco
Gortázar, Francesca Lonetti, and Eda Marchetti. 2019. A Systematic Review on
Cloud Testing. Comput. Surveys 52, 5 (2019), 1ś42.

[3] Cédric Beust and Hani Suleiman. 2007. Next generation Java testing: TestNG and
advanced concepts. Pearson Education.

[4] Steffen BHerbold and Andreas Hoffmann. 2017. Model-based testing as a service.
International Journal on Software Tools for Technology Transfer 19, 3 (2017), 271ś
279.

[5] Jason Bloomberg. 2018. Low-Code/No-Code? HPaPaaS? Hereś What Every-
body Is Missing. Retrieved July 21, 2020 from https://www.forbes.com/
sites/jasonbloomberg/2018/07/30/low-codeno-code-hpapaas-heres-what-
everybody-is-missing

[6] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-driven software
engineering in practice. Synthesis lectures on software engineering 3, 1 (2017),
1ś207.

[7] International Organization for Standardization. 2011. ISO/IEC 25010:2011-
Systems and software engineering- Systems and software Quality Require-
ments and Evaluation (SQuaRE)- System and software quality models. https:
//iso25000.com/index.php/en/iso-25000-standards/iso-25010 Available in elec-
tronic form for online purchase at https://www.iso.org/standard/35733.html.

[8] Martin Fowler. 2010. Domain-specific languages. Pearson Education.
[9] A. D. Francesco, C. D. Napoli, M. Giordano, G. Ottaviano, R. Perego, and N.

Tonellotto. 2014. A SOATesting Platform on the Cloud: TheMIDAS Experience. In
2014 International Conference on Intelligent Networking and Collaborative Systems.
659ś664.

[10] Alberto De Francesco, Claudia Di Napoli, Maurizio Giordano, Giuseppe Ottaviano,
Raffaele Perego, and Nicola Tonellotto. 2015. MIDAS: a cloud platform for SOA
testing as a service. International Journal of High Performance Computing and
Networking 8, 3 (2015), 285ś300.

[11] S. Herbold, A. De Francesco, J. Grabowski, P. Harms, L. M. Hillah, F. Kordon, A.
Maesano, L. Maesano, C. Di Napoli, F. De Rosa, M. A. Schneider, N. Tonellotto, M.
Wendland, and P. Wuillemin. 2015. The MIDAS Cloud Platform for Testing SOA
Applications. In IEEE 8th International Conference on Software Testing, Verification
and Validation (ICST). 1ś8.

[12] Steffen Herbold, Patrick Harms, and Jens Grabowski. 2017. Combining usage-
based and model-based testing for service-oriented architectures in the industrial
practice. International Journal on Software Tools for Technology Transfer 19, 3
(2017), 309ś324.

[13] Joachim Herschmann, Thomas Murphy, and Jim Scheibmeir. 2019. Magic Quad-
rant for Software Test Automation. Technical Report.

[14] LomMessan Hillah, Ariele-Paolo Maesano, Fabio De Rosa, Fabrice Kordon, Pierre-
Henri Wuillemin, Riccardo Fontanelli, Sergio Di Bona, Davide Guerri, and Libero
Maesano. 2017. Automation and intelligent scheduling of distributed system
functional testing. International Journal on Software Tools for Technology Transfer
19, 3 (2017), 281ś308.

[15] AccelQ Inc. 2020. ACCELQ is on Salesforce App Exchange. Retrieved July 21, 2020
from https://www.accelq.com/Salesforce-Test-Automation

[16] Kony Inc. 2020. Leading Multi Experience Development Platform. Retrieved July
21, 2020 from https://www.kony.com/

[17] Philip Makedonski, Gusztáv Adamis, Martti Käärik, Finn Kristoffersen, Michele
Carignani, Andreas Ulrich, and Jens Grabowski. 2019. Test descriptions with
ETSI TDL. Software Quality Journal 27, 2 (2019), 885ś917.

[18] Tapan Maniar et al. 2020. Test Studio. Retrieved July 21, 2020 from https:
//docs.microsoft.com/en-us/powerapps/maker/canvas-apps/test-studio

[19] Bart Meyers, Joachim Denil, István Dávid, and Hans Vangheluwe. 2016. Au-
tomated testing support for reactive domain-specific modelling languages. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Software Lan-
guage Engineering. Association for Computing Machinery, 181ś194.

[20] Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans Vangheluwe,
and Manuel Wimmer. 2014. ProMoBox: a framework for generating domain-
specific property languages. In International Conference on Software Language
Engineering. Springer, 1ś20.

[21] B. Meyers, H. Vangheluwe, J. Denil, and R. Salay. 2020. A Framework for Temporal
Verification Support in Domain-Specific Modelling. IEEE Transactions on Software
Engineering 46, 4 (2020), 362ś404.

[22] Microsoft. 2020. The world needs great solutions, Build yours faster. Retrieved
July 21, 2020 from https://powerapps.microsoft.com/

[23] Dan North et al. 2006. Introducing bdd. Better Software Magazine (2006).
[24] Outsystems. 2020. How to Automate Unit Testing and API Testing. Retrieved July

21, 2020 from https://success.outsystems.com/Documentation/How-to_Guides/
DevOps/How_to_Automate_Unit_Testing_and_API_Testing

[25] Outsystems. 2020. Innovate with No Limits. Retrieved July 21, 2020 from https:
//www.outsystems.com/

[26] John R Rymer and Rob Koplowitz. 2019. The Forrester Wave™: Low-Code Devel-
opment Platforms For AD&D Professionals. Technical Report.

[27] Salesforce. 2020. Build apps on the Customer 360 Platform with no-code tools
and take your CRM to the next level. Retrieved July 21, 2020 from https://www.
salesforce.com/products/platform/lightning/

[28] Salesforce. 2020. Testing Apex. Retrieved July 21, 2020 from
https://developer.salesforce.com/docs/atlas.en-us.226.0.apexcode.meta/
apexcode/apex_testing.htm

[29] Selenium. 2020. Selenium automates browsers. That’s it! Retrieved July 21, 2020
from https://www.selenium.dev/

[30] Mary Shaw. 2002. What makes good research in software engineering? Interna-
tional Journal on Software Tools for Technology Transfer 4, 1 (2002), 1ś7.

[31] Mendix Technology. 2020. Microflows. Retrieved July 21, 2020 from https:
//docs.mendix.com/refguide/microflows

[32] Mendix Technology. 2020. Quality Add-ons Guide. Retrieved July 21, 2020 from
https://docs.mendix.com/addons/

[33] Mendix Technology. 2020. Testing. Retrieved July 21, 2020 from https://docs.
mendix.com/howto/testing/

[34] Mendix Technology. 2020. Where Thinkers become Makers. Retrieved July 21,
2020 from https://www.mendix.com/

[35] Massimo Tisi, Jean-Marie Mottu, Dimitrios S. Kolovos, Juan De Lara, Esther M
Guerra, Davide Di Ruscio, Alfonso Pierantonio, and Manuel Wimmer. 2019.
Lowcomote: Training the Next Generation of Experts in Scalable Low-Code
Engineering Platforms. In STAF 2019 Co-Located Events Joint Proceedings: 1st
Junior Researcher Community Event, 2nd International Workshop on Model-Driven
Engineering for Design-Runtime Interaction in Complex Systems, and 1st Research
Project Showcase Workshop co-located with Software Technologies: Applications and
Foundations (STAF 2019) (CEURWorkshop Proceedings (CEUR-WS.org)). Eindhoven,
Netherlands. https://hal.archives-ouvertes.fr/hal-02363416

[36] Matt Trevathan. 2020. Introducing Quantum Testing Framework. Retrieved July 21,
2020 from https://basecamp.temenos.com/s/article-detail/a042K00001GieQ9QAJ/
introducing-quantum-testing-framework

[37] Paul Vincent, Kimihiko Lijima, Mark Driver, Jason Wong, and Yefim Natis. 2019.
Magic Quadrant for Enterprise Low-Code Application Platforms. Technical Report.

https://www.forbes.com/sites/jasonbloomberg/2018/07/30/low-codeno-code-hpapaas-heres-what-everybody-is-missing
https://www.forbes.com/sites/jasonbloomberg/2018/07/30/low-codeno-code-hpapaas-heres-what-everybody-is-missing
https://www.forbes.com/sites/jasonbloomberg/2018/07/30/low-codeno-code-hpapaas-heres-what-everybody-is-missing
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.iso.org/standard/35733.html
https://www.accelq.com/Salesforce-Test-Automation
https://www.kony.com/
https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/test-studio
https://docs.microsoft.com/en-us/powerapps/maker/canvas-apps/test-studio
https://powerapps.microsoft.com/
https://success.outsystems.com/Documentation/How-to_Guides/DevOps/How_to_Automate_Unit_Testing_and_API_Testing
https://success.outsystems.com/Documentation/How-to_Guides/DevOps/How_to_Automate_Unit_Testing_and_API_Testing
https://www.outsystems.com/
https://www.outsystems.com/
https://www.salesforce.com/products/platform/lightning/
https://www.salesforce.com/products/platform/lightning/
https://developer.salesforce.com/docs/atlas.en-us.226.0.apexcode.meta/apexcode/apex_testing.htm
https://developer.salesforce.com/docs/atlas.en-us.226.0.apexcode.meta/apexcode/apex_testing.htm
https://www.selenium.dev/
https://docs.mendix.com/refguide/microflows
https://docs.mendix.com/refguide/microflows
https://docs.mendix.com/addons/
https://docs.mendix.com/howto/testing/
https://docs.mendix.com/howto/testing/
https://www.mendix.com/
https://hal.archives-ouvertes.fr/hal-02363416
https://basecamp.temenos.com/s/article-detail/a042K00001GieQ9QAJ/introducing-quantum-testing-framework
https://basecamp.temenos.com/s/article-detail/a042K00001GieQ9QAJ/introducing-quantum-testing-framework

