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Abstract The importance of crack propagation in the

structural behaviour of concrete and masonry struc-

tures has led to the development of a wide range of

finite element methods for crack simulation. A common

standpoint in many of them is the use of tracking al-

gorithms, which identify and designate the location of
cracks within the analysed structure. In this way, the
crack modelling techniques, smeared or discrete, are ap-

plied only to a restricted part of the discretized domain.

This paper presents a review of finite element ap-

proaches to cracking focusing on the development and
use of tracking algorithms. These are presented in four
categories according to the information necessary for

the definition and storage of the crack-path. In addi-

tion to that, the most utilised criteria for the selection

of the crack propagation direction are summarized.

The various algorithmic issues involved in the devel-

opment of a tracking algorithm are discussed through

the presentation of a local tracking algorithm based on
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the smeared crack approach. Challenges such as the

modelling of arbitrary and multiple cracks propagat-
ing towards more than one direction, as well as multi-
directional and intersecting cracking, are detailed. The
presented numerical model is applied to the analysis of

small- and large-scale masonry and concrete structures

under monotonic and cyclic loading.

Keywords Computational failure mechanics · Strain

localization · Tracking algorithms · Quasi-brittle

materials · Monotonic and cyclic loading

1 Introduction

Strain localization refers to the development of narrow

bands within a loaded structure where material degra-

dation and deformation concentrates, while the areas

outside these bands tend to unload elastically. In struc-

tures made of quasi-brittle materials, the evolution of

these strain localization bands, called hereafter cracks,

can have a detrimental effect on the global structural

behaviour. Especially when reinforcement is lacking, as

in the case of unreinforced masonry structures, the de-

velopment of the collapse mechanism depends on the

relative location and propagation of dominant cracks
within the structure.

Due to the high importance of cracking phenomena

in the structural capacity and response, the engineer-
ing community has shown an earnest interest during the
last century in their understanding and realistic predic-

tion, to such an extent that two new engineering fields

have emerged: Fracture Mechanics and Computational

Failure Mechanics. In the first the mathematical and

physical bases associated with the initiation and prop-

agation of cracking are set, while in the latter these

https://doi.org/10.1007/s11831-018-9274-3
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principles are applied and further developed within a

numerical framework.
This paper focuses on the advances in the compu-

tational modelling of cracking during the last decades

and in particular on the use of tracking algorithms in

strain localization analysis. These numerical procedures

are used to define the zones within the structure where

cracking is expected to occur. In this way, the numeri-
cal approach used for the simulation of cracking is only
applied to these designated zones rather than in the

whole structure.

The paper is structured in the following way. The

next section presents a brief historical overview of finite
element approaches used for the simulation of cracking.

Section 3 focuses on the development and use of track-

ing algorithms, the encountered challenges and the var-

ious solutions proposed in the literature. Then, the rest

of the paper discusses the algorithmic issues and the

application of tracking algorithms through the presen-

tation of a local tracking technique developed by the

authors for the analysis of both concrete and masonry

structures. Section 4 outlines the simulation of mono-

tonic loading cases, and two applications are presented

in Section 5. The modelling of cyclic loading is ad-

dressed in Section 6 and Section 7 includes a relative

case-study. Section 8 presents a large-scale application
of the local tracking algorithm to an existing unrein-

forced masonry structure. The paper closes with the
conclusions and some considerations for future research.

2 Finite element approaches to cracking

2.1 Classical crack representations

The advance of digital computers and the development

of the Finite Element Method (FEM) between the 1950s

and 1960s offered to engineers a powerful tool for ap-

plying and testing the fracture mechanics theories de-

veloped in the first half of the 20th century (for a his-
torical synopsis see Felippa [1]). Since then, a plethora

of numerical methods have been developed focusing on

the simulation of propagating cracks in solids. This sec-

tion presents an outline of the most important of these

methods adopting a categorization on the basis of the

crack representation at discrete level into: the Discrete

or Discontinuous Crack Approach and the Smeared or
Continuous Crack Approach.

In the Discrete Crack Approach (DCA), a crack

is simulated as an actual displacement discontinuity

(called hereafter a strong discontinuity) within a sin-

gle element or along the boundary of adjacent ele-

ments (see Fig. 1a). Upon crack initiation, the displace-

ment field across a crack presents a discrete jump w

and the associated, fictitious, strain field becomes un-

bounded, shown in Fig. 1c. This is achieved through
the proper enrichment of the displacement field with

discontinuous functions. Alternatively, in the Smeared

Crack Approach (SCA), cracks are represented in a con-

tinuous setting, and their effect (in the displacement

and strains) is smeared over a certain region of the
discretized domain, called the localization-band, with

width h including one or more elements, as illustrated

in Fig. 1b. The first case (Fig. 1d) corresponds to the

local smeared crack approach, in which the displace-

ment jump presents two weak discontinuities between

the element within the localization-band and the ad-

jacent ones, while the associated strains show a defi-

nite jump. The second case (Fig. 1e) refers to the regu-

larised smeared crack approach, where the use of more

elements for representing the effect of the crack results

in a smoother variation of the displacement and strain

fields over the selected localization band h. A discrete

crack is interpreted as the limit case of a smeared one
having a localization-band with vanishing width, and

conversely, a smeared crack is the regularization of a
discrete crack over a certain width h.

Despite their substantial differences, discrete and

smeared crack approaches define the relationship be-

tween stress and deformation embarking from the same

starting point; the cohesive-zone model. The cohesive-
zone model, introduced by Barenblatt [2] for brittle

fracture and Dugdale [3] for ductile one, defines the
relationship between traction forces and displacements

at the surface of the crack. In 1976, Hillerborg et al.

[4] adopted the cohesive-zone concept in their fictitious

crack model for representing discontinuous cracking in

quasi-brittle materials with the finite element method.
In this fictitious crack model, the loss of cohesion in the

forming crack was directly related to the experimentally

measured fracture energy of the material. The same

concept was formulated later in 1983 in the context

of the smeared crack approach by Bažant and Oh [5].

Today, the bibliography riddles with constitutive mod-
els based on these predecessors, which have been devel-
oped within the framework of plasticity (e.g. [6, 7, 8, 9]),

damage (e.g. [10, 11, 12, 13, 14]), a combination of plas-

ticity and damage (e.g. [15, 16, 17, 18, 19]) and smeared

cracking (e.g. [20, 21]).

2.2 The problem of directional mesh-bias dependency

Discrete and smeared crack approaches have seen many

variations since their first applications during the 1960s,

the former by Ngo and Skordelis [22] and Nilson [23]

and the latter by Rashid [24]. The main motivation be-

hind these developments has been the wide range of
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Fig. 1. (a) Discrete crack approach: the crack (shown with the red dashed curve S) is simulated either in the interior or
across the boundaries of the finite elements. (b) Smeared crack approach: the effect of the crack is simulated within a zone of
width h (bounded by the red dashed curves W1,W2) including one or more finite elements. Displacements and strains within
the localization band of a (c) discrete crack approach, (d) local smeared crack approach and (e) regularised smeared crack
approach.

engineering applications concerned with fracture sim-

ulation, varying from large-scale structures with arbi-

trary and multiple cracking to small-scale ones with

few dominating cracks. The first cases need numeri-

cal tools that offer a balance between computational

efficiency and correct crack localization. In the latter

cases, the increasing importance of the accurate crack

representation necessitates the elaboration of numerical

approaches that can capture rigorously the crack prop-

agation and the associated opening/closing kinematics.

Another equally important driving force for the de-

velopment of various numerical methods has been the
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Fig. 2. Illustration of directional mesh-bias dependency in a
mode I crack opening. Top: two meshes with different orien-
tation of the finite elements’ sides. Bottom: deformation and
strain localization band (in grey) induced by a traction force
applied at the top right end. The dependency of the localiza-
tion band to the structure of the mesh is known as directional
mesh-bias dependency.

unexpected numerical difficulties encountered in the

simulation of cracks. Probably, the most significant of

them is the observation that in a finite element anal-

ysis cracks have the tendency to propagate following

the orientation of the finite elements’ sides (see Fig. 2).

This phenomenon became known as directional mesh-
bias dependency/sensitivity and its underlying causes

have been historically a matter of controversy. In par-

ticular, the origin of this pathology has been sought in

the three ingredients of a computational failure model:

(i) the underlying continuum theory, (ii) the constitu-

tive model setting the linear and non-linear response

of the material, and (iii) the spatial discretization pro-
cedure turning the continuum problem into a discrete
one.

Early interpretations of the problem considered

directional mesh-bias dependency as the result of
mathematical features associated with the continuum
model (e.g. [25, 26, 27]). Strain softening involves
negative slope on the local stress-strain (or traction-

displacement) relationship, usually represented by the

use of a negative material tangent modulus. Due to the

latter, the incremental equations of the Boundary Value

Problem (BVP) lose ellipticity in quasi-static problems

or hyperbolicity in dynamic ones. The alteration of the

elliptic/hyperbolic character of the BVP results in the

loss of uniqueness of the solution. As we will present

later, efforts to recover the well-posedness of the BVP

have been possible through modifications on the con-

tinuum or the constitutive model.

Along a different line, mesh-bias dependency has

been considered to be the consequence of the approxi-

mation error involved in the discrete representation of

the continuum differential equations [29, 30, 31]. The

finite element method aims to approximate the solu-
tion of a continuum problem through its discretiza-
tion into finite parts, i.e. the finite elements. The dis-
cretization procedure induces approximation errors in

the pre- and post-peak range of the localization process.

In the linear range, the discretization error originates

from the differentiation process for obtaining the strains

(and the stresses) from the known displacements. In
the post-peak range, the discretization error is induced
by the limited capacity of standard finite elements to
reproduce separation modes in an adequate manner

[32, 33]. Evidently, efforts to overcome these problems

have pointed to the enhancement of the finite element
method accuracy in the pre- and post-localization reg-

iments.

Finally, a third apprehension of the problem con-

siders the constitutive model as the possible flaw to the

mesh-bias dependency of the numerical solution [34]. In

this sense, the mesh-bias independency of the numerical

solution can be alleviated through the proper definition

of the constitutive model and the failure condition.

In the following we present an overview, without

claiming completeness, of discrete and smeared crack

approaches aiming to the mesh independent simulation

of cracking within the context of the Finite Element

Method (FEM). Other methodologies outside the FEM

field, such as meshfree approaches, boundary element

methods or discrete element methods will not be cov-

ered here. For a general review the reader is also referred

to Rabczuk et al. [35].

2.3 Discrete crack approaches

The Discrete Crack Approach (DCA) represents closely

the condition induced by an open crack, provoking dis-

placement discontinuities within the fractured solid.

The concept is based on the long tradition of Fracture
Mechanics that, naturally, have defined the criteria for
crack initiation and propagation in discrete crack ap-
proaches.

The DCA was preferred in the first endeavours

for crack simulation with the finite element method

[22, 36]. In these applications, cracks were modelled by
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Discrete (DCA) and Smeared (SCA) crack approaches for the representation of a curved crack. (a) DCA: Inter-element
crack approaches with nodal separation or introduction of cohesive interface elements at the sides of the finite elements,
(b) DCA: Remeshing, (c) DCA: Nodal enrichment in partition of unity methods, (d) DCA-SCA: elements with embedded
discontinuities. (e) SCA: local weak discontinuities, (f) Remeshing and local SCA. (Image adapted from Cervera and Chiumenti
[28]).

means of separating elements, upon satisfying a failure

condition. The crack geometry was represented by the

element edges and an additional set of nodes was intro-

duced so that the interpolation across the element edges

could be discontinuous. A subsequent alternative was
the use of discrete interface elements along the crack
boundaries [37, 4]. These strategies became known as

inter-element crack approaches or discrete-interface ap-

proaches.

Inter-element crack approaches have an obvious lim-
itation; cracks can develop only across the element

boundaries and therefore the crack geometry depends

on the mesh topology (Fig. 3a). To overcome this prob-

lem, two solutions have been proposed. The first one

is to use a mesh with predefined element orientations

aligned with crack-paths that are a priori known, esti-

mated (through preliminary analyses) [38, 39, 40] (Fig.

4) or coincide with weak zones of the simulated mate-

rial, as the mortar-unit interface in masonry structures

[41, 42, 43, 44, 45, 46] (Fig. 5). The second choice is

the use of a crack propagation criterion and the con-
tinuous adaptation of the mesh topology, so that the
crack direction coincides with the finite elements’ sides

(Fig. 3b). The crack could be then simulated either by

introducing a discrete interface or an additional set of

nodes [47, 48, 49, 50, 51, 52, 53] (see Fig. 6). These ap-

proaches are based on graphic-aided design algorithms

and became known as remeshing techniques. Remeshing

Fig. 4. Simulation of crack propagation in a four-point shear
test on a single-edge notched concrete beam, with predefined
crack-path using discrete interfaces in Rots [38].

Fig. 5. Modelling of masonry with discrete interfaces in Ma-
corini and Izzuddin [45].

is still an important part of several strain localization
techniques (e.g. [54, 55, 56]).

The increased computational cost due to the addi-
tion of nodes and the increase of the bandwidth of the
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Fig. 6. Remeshing in the simulation of a propagating crack
within a lug in Saouma and Zatz [47].

Fig. 7. Simulation of crack propagation in a four-point shear
test on a single-edge notched concrete beam with the Discrete
Strong Discontinuity Approach in Dias-da-Costa et al. [67].

stiffness matrix, as well as the intrinsic errors due to

the projections of the variable fields from the old to the

new mesh, make remeshing methods cumbersome for

the simulation of evolving cracks. The answer to this

was to simulate the effect of a crack within an element

so that remeshing and nodal addition are not necessary.
This concept led to the development of the Embedded

Finite Element Method (E-FEM) in which crack discon-

tinuities are embedded within a finite element. An early
effort towards this direction can be traced in the work
of Johnson and Scott [57]. Some years later, Dvorkin et
al. [58] set the basis for the introduction of a strong dis-

continuity within a finite element. The approach raised
much interest in the following years and different ver-
sions of elements with embedded strong discontinuities

were developed (e.g. [59, 60, 61, 62, 63, 64, 65, 66])

(Fig. 3d). The Discrete Strong Discontinuity Approach

is based on the same concepts of E-FEM but, as im-

plied by its name, represents the cracks as actual dis-
continuities by introducing global nodes in the elements
crossed by the crack-path [67] (Fig. 7). Early reviews of

the different variations of embedded strong discontinu-

ity methods are given by Jirásek [68] and Oliver et al.

[69].

In the end of the 20th century, Belytschko and Black
[70] and Möes et al. [71] proposed the eXtended Finite

Element Method (X-FEM) as an alternative to the ex-

isting approaches for crack simulation. In X-FEM, the

displacement discontinuities are captured through the

Fig. 8. Nodal enrichment of elements crossed by a crack and
surrounding the crack-tip in the eXtended Finite Element
Method (X-FEM). (Image from Dumstorff and Meschke [90]).

kinematic enrichment of the nodes at elements crossed

by a crack, based on the partition of unity concept

[72, 73] (Fig. 3c). Additional enrichments are applied
to the nodes surrounding the crack-tip within a certain

area (see Fig. 8), which are used for the computation
of the near-tip stress intensity factors and, thus, of the

stress field. The method became very popular, since it

avoids the use of remeshing algorithms, and saw many

variations in the following years such as the Hansbo

method (or Phantom node method) [74, 75, 76] and the
Generalised Finite Element Method [77, 78, 79, 80, 81].

Reviews of the different versions of the X-FEM can be
found in [82, 83, 84, 85, 86], while comparisons between

E-FEM and X-FEM in [87, 88, 89].

A common characteristic for many of the aforemen-

tioned strong discontinuity approaches is the use of de-

vices that define the crack propagation direction and

ensure crack-path continuity, the so-called tracking al-
gorithms. Through them, the potential location of the

crack, and thus the elements or nodes that require the

kinematic enrichment can be identified. It should be

noted here that the use of tracking algorithms is, in

principle, not essential in E-FEM [65, 91, 92]. However,

potential misalignment of the embedded discontinuities

across neighbouring elements provokes spurious stress

locking [93] and mesh-dependent results [94, 95]. For

this reason, tracking algorithms are commonly adopted

by E-FEM approaches.

To overcome the necessity of crack-path continuity

through tracking algorithms, Remmers et al. [96, 97] de-

veloped the cohesive segments method. Here, the crack

is represented in a piecewise linear way, as shown in

Fig. 9, with a collection of overlapping cohesive seg-
ments that extend through three consecutive finite el-

ements. Displacement discontinuities are captured ex-

ploiting the partition of unity method by nodal enrich-

ment and their magnitude is governed by cohesive rela-

tionships. The cracking node method by Song and Be-

lytschko [98] is a similar approach in which crack seg-
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Fig. 9. Representation of a crack increment in the cohesive
segments method by Remmers et al. [96]. A crack is intro-
duced at the integration point when the failure criterion is
satisfied and extends through three elements. Nodes in black
are enhanced according to the partition of unity method to
represent the displacement jump (Image from Remmers et al.
[97]).

Fig. 10. Representation of a crack in the cracking node
method by Song and Belytschko [98]. Nodes in black are en-
hanced according to the partition of unity method to repre-
sent the displacement jump. The dashed line represents the
crack-path approximation. (Image from Song and Belytschko
[98]).

ments are introduced to nodes and cross two adjacent

elements (see Fig. 10).

During the last years, efforts to unify the design and

the structural analysis resulted in the development of

the isogeometric analysis. Fracture propagation using

isogeometric analysis is still at its infancy, with the first

approaches exploring the potential of the method using

the partition of unity concept for modelling the cracks

using the discrete crack approach [99, 100].

The above enriching approaches, either at elemen-

tal or nodal level, aim to capture strong discontinuities

upon crack initiation by improving the kinematics of

the finite elements. In this sense, they can be inter-

preted as a way to limit the discretization error in the

non-linear range. In addition to that, directional mesh-

bias independency is improved in many of these ap-

proaches through the use of tracking algorithms, which

define explicitly the location of a propagating crack

within the structure.

2.4 Smeared crack approaches

The Smeared Crack Approach (SCA) is the numerical
counterpart of continuum solid mechanics. Contrary to

discrete crack approaches, the effect of a crack is rep-

resented as smeared over a part of the finite element

mesh, where the stress is reducing for an increasing

strain according to a defined constitutive law (see Fig.
3e). This smeared representation of the material degra-
dation matches well the diffused damage in reinforced

concrete structures, and unsurprisingly the first appli-

cation by Rashid [24] dealt with simulation of cracking

in prestressed concrete vessels.

In the years following Rashid’s work, smeared crack

approaches almost monopolized the simulation of crack-

ing in quasi-brittle materials. The reason for this are

two important practical advantages of the methodol-

ogy compared to discrete crack approaches. Firstly, the

fact that a crack is smeared within one or more el-
ements poses no restriction on the orientation of the
crack planes with respect to the directionality of the el-

ements’ sides. Secondly, their implementation in a con-

ventional finite element code merely requires a subrou-

tine with a constitutive model.

The popularity of the method dropped when it was

realised that the dissipated energy was directly asso-

ciated with the size of the used finite elements (e.g.

[101, 102]). In the following years particular efforts

were made to address the problem [103], leading to the

crack-band approach by Bažant and Oh [5]. According
to this, the traction-displacement relationship of the

cohesive-zone model is adjusted to a stress-strain re-

lationship considering equivalence of the dissipated en-

ergy. The regularization of the stress-strain relationship

is possible considering the band over which the crack is

smeared, h in Figs. 1b, 1d. In local smeared crack ap-

proaches this band is associated to the width of a single
finite element (Fig. 3e). Constitutive models based on

the local SCA are today part of almost every commer-
cial finite element code, and are still the most favoured
approach used by practitioners for crack propagation
analysis in large- and small-scale structures.

As soon as the problem of the mesh-size dependency

was successfully overcome, the trust over local smeared
crack approaches was once more lessened due to the
directional mesh-bias dependency. Considering the fact

that well-aligned meshes, referring to meshes with the
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Fig. 11. Crack propagation analysis in a double-edge notched concrete specimen under four-point bending using meshes with
increasing refinement from left to right. Analysis with an isotropic local damage model and a tracking algorithm (top) and
without a tracking algorithm (bottom). (Image from Cervera and Chiumenti [28]).

element sides aligned to the crack propagation, pro-

duced good results, the first endeavoured remedy was

once again the use of remeshing algorithms [104, 105]

(Fig. 3f).

Along a different line, specific finite element formu-

lations have been developed, within the context of local

SCA, aiming to overcome the directional mesh-bias de-

pendency through the limitation of the discretization

error. To this aim, Ortiz et al. [106] and Belytschko et

al. [107] proposed the enrichment of the strain field for

the simulation of kinematic modes induced by a crack.

This methodology was further elaborated by Simo et

al. [108, 109] and resulted in the class of Enhanced As-

sumed Strain (EAS) finite elements (Fig. 3d). A more

recent application of such an elemental enrichment in
a smeared cracking context is the mesh-corrected or-

thotropic damage model [110, 111], being the smeared
counterpart of the previously presented E-FEM.

The beneficial use of tracking algorithms in discrete
crack approaches did not go unnoticed, and during the

last decade tracking algorithms have also been used as

an auxiliary device in local smeared crack approaches

aiming to improve the directional mesh-bias indepen-

dency. This strategy was introduced in a smeared crack-

ing context by Cervera and Chiumenti [30, 28] aiming to

define the location of cracks and restrict their evolution
within a single row of finite elements (Fig. 11). Differ-

ent formulations of tracking algorithms within smeared

crack approaches have been presented in the last years

in references [32, 112, 113, 114, 115, 116].

Mixed FE methods, introduced in the mid 1960s

[118], offer another possibility for reducing the dis-
cretization error. The approach considers additional

variables (such as the pressure, the stresses or the

strains) to the nodal displacements as the primary un-

knowns of the boundary value problem under question.

After their long use in computational fluid dynamics,

due to their good performance in incompressible situ-

ations, mixed formulations were introduced during the
last decade of the 20th century in strain localization
problems by Zienkiewicz et al. [105] and Pastor et al.

[119, 120]. In the last years, several mixed methods

have been developed and applied to strain localiza-

tion problems, including mixed pressure-displacement

[121, 122, 29, 123, 124], stress-displacement [125, 31]

and strain-displacement [125, 126, 127, 117, 128] finite
elements (Fig. 12).

2.5 Regularized smeared crack approaches

In the 1990s, academic efforts focused on the develop-

ment of new formulations that aimed to recover the

well-posedness of the boundary value problem. The

fruit of these efforts have been the so-called regu-

larised smeared crack approaches, including micropo-

lar, non-local, gradient-enhanced and phase-field mod-

els. In micro-polar or Cosserat models the underly-
ing continuum description is enriched by adding rota-

tional degrees-of-freedom to the conventional transla-

tional degrees-of-freedom [129, 26]. In non-local models
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Fig. 12. Comparison between numerically obtained crack pattern using a mixed strain/displacement formulation by Benedetti
et al. [117] and the experimental result of a pull-out test on a concrete specimen. (Image from Benedetti et al. [117]).

the local stress does not depend on the local strain but

on an averaged strain computed over a defined area

[130, 131]. A similar approach is followed in gradient-

enhanced models, in which non-locality is considered by

introducing higher order deformation gradients in the
constitutive relationship [132, 133, 134]. For a compar-

ison between non-local and gradient-enhanced models

see Peerlings et al. [135] and between non-local mod-

els and X-FEM see Bobiński and Tejchman [136]. In

the last years, Griffith’s variational approach to frac-

ture has been revived through the phase-field models

[137, 138, 139, 140] (Fig. 13) (for a review see Ambati
et al. [141]). Despite their different origin, de Borst and

Verhoosel [142, 143] have presented recently the close

mathematical relationship between gradient-enhanced

and phase-field models. A common standpoint of the

above models is the use of an internal characteristic

length of physical nature, which acts as a localization

limiter, as well as the use of highly refined meshes

within this length to capture the material degradation

[33].
Finally, strain-rate dependent viscous-regularised

models [25, 144] have been considered as an alterna-

tive solution that recovers the well-posedness of the

boundary value problem through the addition of vis-

cous effects in the constitutive relationship. Obviously,

the regularization effect vanishes with reducing viscos-

ity.

2.6 Hybrid crack approaches

Apart from representing a crack exclusively with either

a discrete or a smeared crack approach, there is also

the possibility to combine both as shown in Fig. 14. In

these hybrid strategies initial micro-cracking is simu-
lated with the use of a smeared crack approach. At a

second stage, in which material degradation has reached

a defined threshold, the crack formation is simulated

through the introduction of a strong discontinuity.

In the majority of these hybrid crack approaches,

smeared cracking is simulated with a different kind of

a regularised SCA model such as non-local [93, 145],

viscous-regularised [146], or gradient-enhanced [147].

The use of a strong discontinuity at a later stage of

damage evolution allows for the localized representation

of cracking, which otherwise is smeared over a defined,
and usually highly refined, region of the mesh due to the
non-local definition (Fig. 14). An alternative approach

to the use of regularised models for the smeared crack

representation was adopted by Belytschko et al. [148],

in which a transition between a local damage model
and an X-FEM with cohesive enrichment is applied for

the simulation of dynamic cracks. Aiming to a better
estimation of the stress field prior to the introduction of
a strong discontinuity, Oliver et al. [149] and Lloberas-

Valls et al. [150] have recently proposed the use of mixed

strain-displacement and enhanced assumed strains for-

mulations, respectively.

3 Tracking algorithms

Tracking algorithms are an important part of many fi-
nite element approaches for the simulation of cracking.

Their role is to identify the direction of the crack prop-
agation, and designate the consolidated and extended
crack-path within the discretized domain during the nu-

merical simulation. According to the selected crack rep-

resentation, a smeared or discrete crack approach is ap-

plied to the elements within the crack-path to simulate

the effect of the crack in the material, while the rest
of the elements outside the crack are usually prevented
from failing.

Tracking algorithms can benefit the numerical so-

lution at least in three ways [32]. Firstly, they aid the

identification of the expected solution by minimizing
the number of the potential ones. This is done through
the use of a crack propagation criterion that defines the

crack direction. Secondly, they result in a more realistic

crack representation, especially in the case of mixed-

mode problems with curved cracks. Finally, they mini-

mize or limit the energy dissipation outside of the crack
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Fig. 13. (a) Single edge notched pure shear test setup, (b) used mesh, and (c) phase-field simulation by de Borst and Verhoosel
[142]. (Collection of images from de Borst and Verhoosel [142]).

Fig. 14. Representation of a crack in a wedge splitting test
combing a non-local damage model with X-FEM by Comi
et al. [145]. D represents the value of the non-local damage
variable. (Image from Comi et al. [145]).

band. The significance of the latter is to be emphasized

since the stress-strain law in local smeared crack ap-

proaches is commonly regularised considering that each

crack propagates within a single row of finite elements.

The long tradition of tracking algorithms in Discrete
Crack Approaches (DCA) is justified for two more rea-

sons. Firstly, they avoid numerical instabilities, since
the kinematic enrichment is applied only to a narrow
band within the mesh where the crack is expected to
develop. Indiscriminate enrichment may not provide

stable results. Secondly, they guarantee the crack-path

continuity, improving in this way the robustness of the

method. As discussed, crack-path continuity of the in-

troduced strong discontinuities in discrete crack ap-
proaches is important to ensure compatibility between
the deformation modes of adjacent elements, which if

not guaranteed may result in spurious stress locking

and mesh-dependent results [93, 95, 94].

The successful application of tracking algorithms

in discrete crack approaches pointed to their potential

benefits in a smeared cracking context, an approach
which was introduced in [28, 30]. In the Smeared Crack

Approach (SCA), tracking algorithms identify the ele-
ments crossed by the crack-path allowing them to dam-
age according to the selected constitutive law, while
preventing the ones outside of it from failing.

The following of this section outlines commonly

used tracking algorithms in the available literature.

First, a categorization of tracking algorithms is per-

formed in terms of the information necessary for the

definition and storage of the crack-path. According to

this, four categories are defined and presented includ-

ing: (i) local, (ii) global, (ii) partial domain tracking

algorithms and (iv) tracking algorithms based on an un-

derlying damage-related field. Following that, the crack

propagation criteria, which can be used for most of the

tracking algorithms independently of their category, are

summarized.

3.1 Local algorithms

Local tracking algorithms identify the location of a

crack within the mesh in an element-by-element man-

ner. The crack propagation direction is computed lo-

cally, using information available at element level or

within a restricted area surrounding it. Using this di-

rection, the new crack segment within an element can

be defined, as well as the locus of the crack edges in

neighbouring elements. The same strategy is followed

for each crack that may exist in the analysed struc-
ture, starting from the first element of the crack (called
hereafter as crack-root) or the last element at the crack-

front (called as crack-tip in two-dimensions or crack-

face in three-dimensions).

The above general procedure, which is followed by

a local tracking algorithm for constructing the crack-
path, is illustrated in Fig. 15. The necessary ingredients
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A

n

B

crack-path

crack-tip

Fig. 15. Crack propagation in a part of the mesh using local
tracking algorithms.

are the crack propagation direction n and the crack-

entry coordinates. Starting from the crack-entry point

(Point A in Fig. 15), the exit point of the crack at the

crack-tip element is easily identified as the intersection
between the extension of the vector n and one of the

element’s sides (Point B in Fig. 15). The shared side

with one of the neighbouring elements and the inter-

section point define the next crack-tip element and the

position of its crack-entry point, respectively.

Owing to their quite simple strategy, local track-
ing algorithms have been used in various discrete and

smeared crack approaches. Their implementation is

likewise straightforward, needing a strategy for the cal-

culation of the crack propagation direction, as in all

tracking algorithms, and a side-connectivity array indi-

cating the elements sharing a side with a given one. On

the one hand, the latter can be easily constructed at the
beginning of the analysis and stored for the rest of it
(provided that no remeshing is used). The propagation

direction, on the other hand, is continuously updated

at the crack-tip element of each crack.

Despite the intrinsic simplicity of the above proce-

dure, the literature riddles with diverse formulations

of local tracking algorithms. The reason for this lies

on their strong dependence on the finite element tech-

nology used. As it will be shown in the following, the

crack propagation path within an element may vary
depending to the interpolation strategy used, while the
procedure followed for identifying the crack-entry/exit
points depends on the shape of the used finite elements

(triangles, quadrilaterals, tetrahedra, hexahedra etc.).

Local tracking algorithms were the first used for the

simulation of propagating cracks in finite element ap-

plications. Their role was to define the direction and

length of a new crack segment, which was then sim-

ulated through remeshing and nodal separation tech-

niques [151, 47] or later with the introduction of cohe-
sive interface elements [48].

Fig. 16. C1 continuous crack-path in the local tracking al-
gorithm proposed by Slobbe et al. [112]. Si denotes the crack
propagation direction entry from the preceding element i.
(Image from Slobbe et al. [112]).

A common characteristic of local tracking algo-

rithms is the construction of a continuous crack-path
(see Fig. 15). This intrinsic crack-path continuity of

the method is a key feature for the limitation of stress

locking in approaches with embedded strong disconti-

nuities. In that sense, local tracking algorithms blend

very well with E-FEM and numerous implementations

exist in the literature [152, 153, 154, 67, 155, 156]. The

first applications of X-FEM employed, likewise, local
tracking algorithms for recognizing the crack-path and

enriching accordingly the nodes of the elements crossed
by it [70, 71]. It is noted that in X-FEM the crack-tip

can be located at any point within the element, con-

trary to E-FEM in which the actual location is usually

not defined within the element.

Complementary to their long tradition in discrete
crack approaches, the use of local tracking algorithms

in a smeared cracking context was proposed relatively

recently in [157, 158, 159, 32]. In those applications, ma-

terial degradation was simulated in the elements within

the crack-path through the use of local continuum dam-

age mechanics models, while the rest maintained a lin-

ear elastic stress-strain behaviour. Pelá et al. [160, 161]

extended this tracking algorithm for the simulation of

cracking in orthotropic materials such as masonry and

wood.

In most local tracking algorithms, the crack prop-

agation direction is updated at each new element and

kept fixed during its propagation through it. This choice

naturally gives a C0 continuous crack-path constructed

by piecewise linear segments. Slobbe et al. [112, 162]

have recently proposed a local tracking algorithm in a

SCA context, which can provide C1 crack continuity

among elements (see Fig. 16). This is achieved by con-

structing the crack propagation field within a crack-tip
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Fig. 17. Local tracking algorithm for the definition of a new
crack surface in Areias and Belytschko [163]. n denotes the
defined crack propagation direction according to the propaga-
tion criterion and nm the modified one computed respecting
pre-existing crack faces in adjacent elements. (Image from
Areias and Belytschko [163]).

element considering the propagation directions at its in-

tegration points and the crack-entry direction from the

previous element. The method needs the assignment

of crack propagation directions at the corner nodes

through a weighted linear least squares approximation

using the known propagation directions at the crack-

entry point and the integration points. Then the crack-

path field can be interpolated at any location within

the element using its shape functions.

In the case of planar cracks the extension of local

tracking algorithms to three dimensions is straightfor-

ward (see [164]). Difficulties, however, may arise for rep-
resenting the crack surface in non-planar cracks and an

adequate strategy is necessary to ensure crack-path con-
tinuity. To this aim, several approaches have been pro-
posed. In Areias and Belytschko [163], the new crack

surface in the crack-tip element is defined consider-

ing a modified crack propagation direction. This de-

pends on the local crack direction computed at element

level and the pre-existing crack faces (i.e. the intersect-

ing facets of neighbouring cracks with the current el-

ement) in neighbouring elements (see Fig. 17). Jäger

et al. [165] report that it may be impossible using the

above approach to construct a new crack plane in the

case that the crack faces of adjacent elements do not

Fig. 18. Local tracking algorithm for the definition of a new
crack surface (shown by the dashed triangles) in Gasser and
Holzapfel [163]. N denotes the defined crack propagation di-
rection according to the propagation criterion, N⋆ the modi-
fied one and P a point used for the definition of the new crack
surface. (a) Existing non-smooth crack surface and crack-
front, (b) prediction of the new crack surface using N and
P , (c) correction of the new crack surface using N⋆ and P ,
(d) patch of elements used for the definition of N⋆. (Image
from Gasser and Holzapfel [167]).

lie within one plane at the crack-tip element. Gasser

and Holzapfel proposed two alternatives to overcome

the above problem by relaxing the requirement of a

crack-path continuity among the different crack faces.
In their first proposal [166], a new crack surface can

be uniquely defined by its normal vector and a single

point located at the crack. The first is computed con-

sidering the underlying stress field, while the definition

of the latter depends on the adjacent crack-edges. The

authors, however, observed that in some cases this ap-

proach may result in very irregular crack surfaces which
may lead to (unphysical) crack bifurcations [167]. As a

solution to this shortcoming, they proposed the addi-

tion of a corrector phase that follows the first prediction

of the crack surface with the above procedure [167]. The

corrector phase adjusts the predicted crack plane to fit

the neighbouring cracks surfaces such that patch-wise

linear or quadratic crack representations are possible

(see Fig. 18). Jäger et al. [165] present a comparison

between the tracking algorithm proposed by Areias and

Belytschko [163] and the one by Gasser and Holzapfel

[167].

3.2 Global algorithms

Contrary to local methods, global tracking algorithms

compute simultaneously all the potential crack-paths

at each step of the analysis. This is achieved through

the solution of a linear boundary value problem defined

in the whole analysed domain. The approach was pro-
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Fig. 19. The heat conduction problem used for the compu-
tation of the thermal isolines representing potential crack-
paths in the global tracking algorithm proposed by Oliver et
al. [168, 169]. (Image from Oliver and Huespe [169]).

posed by Oliver and co-workers [168, 169] and since

then has been applied in various contexts for the prop-

agation of two-dimensional (2D) and three-dimensional

(3D) cracks.

The basic idea of the global tracking algorithm is to
construct a scalar function θ whose isolines represent

the crack propagation directions within the analysed

structure. The procedure is presented in the following

keeping the notation used in [168, 169] to facilitate the

comparison with Fig. 19.

The scalar function θ, used for the definition of the

potential crack-paths, is computed through the solution
of an anisotropic heat conduction-like boundary value

problem which can be defined as

∇ · q = 0 in Ω (1a)

q = −K · ∇ θ = −T
∂θ

∂T
−

[

S
∂θ

∂S

]

in Ω (1b)

q · v = −(v ·T)
∂θ

∂T
−

[

(v · S)
∂θ

∂S

]

= 0 on ∂Ω. (1c)

In the above equations q is the heat flux, v is the

outnormal to the boundary ∂Ω, S and T are arbitrary
unit vectors having the direction of the failure plane. K

is an anisotropic conductivity-like tensor defined as

K = T⊗T+ [S⊗ S] + ε I. (2)

where I represents the unit tensor and ε is a small

perturbation parameter introduced to avoid the sin-
gularity of K. The effect of this perturbation param-

eter was studied in [170]. In the above equations, the

terms within the brackets are necessary for the use of

the tracking algorithm in 3D problems and have to be

considered null in 2D ones.

Adopting a finite element discretization, the above

boundary value problem is solved through a system of
linear algebraic equations

[K] {θ} = {0} (3)

with [K] being the stiffness matrix of the heat

conduction-like finite element problem and {θ} the vec-
tor of temperature-like nodal unknowns [168]. The solu-

tion of the problem needs the definition of the T and S

vectors. If a vector N represents the crack propagation

direction, computed according to the selected propaga-

tion criterion, the T and S are selected as orthogonal

to N. Finally, in order to provide a non-uniform field
for θ, two arbitrary values for θ need to be prescribed,

at least, in two nodes.

As soon as the failure condition is reached at an el-

ement i, its corresponding value θi = θ0 is computed.
The crack-path can then be identified by constructing

the isoline corresponding to this value θi, starting from

the centroid of the crack root element. Fracture is sim-

ulated by applying the chosen crack representation ap-

proach at the elements crossed by the θi isoline. In the

original approach by Oliver et al. [168, 169] this was
done by introducing strong discontinuities. Later, Hue-

spe et al. [171, 172] followed the same approach for

the simulation of ductile failure, whereas Dumstorff and

Meschke [90] used this global tracking algorithm in the

context of X-FEM. Cervera and Chiumenti [28, 30] im-

plemented the same algorithm in a smeared cracking

context, and cracks were simulated through the use of

an isotropic continuum damage model in the elements

crossed by the crack-path.

Recently, Riccardi et al. [173] have further elabo-
rated the global tracking algorithm by proposing an

alternative mathematical formulation for the construc-
tion of the θ scalar field. The motivation behind their

work is the eradication of the user-defined perturba-

tion parameter used for the definition of K in Eq. (2).

This approach has shown to increase the stability of the

global tracking algorithm, albeit the precision seems to

reduce for coarse meshes [173] compared to the original

one. In the same work, the authors propose the update
of the crack-root at each numerical step and to con-
struct the isoline of an existing crack considering the

θ value of the crack-tip. This strategy seems to alle-

viate problems associated with the loss of crack-path

continuity.

Global tracking algorithms are in general more de-

manding from the computational point of view [165]

and more code invasive compared to local ones [32, 149].

This is because the tangent field to the crack T (and S

in 3D) is computed for the whole domain, even at loca-
tions away from cracks and the global problem needs to

be solved for each step. An additional limitation rises

from their inability to handle merging, intersecting or

branching cracks. Contrarily, one important advantage,

evidenced from Eqs. (3), is the straightforward exten-

sion to 3D problems as shown in Oliver et al. [168],
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Chaves [174] and Jäger et al. [175]. In addition to that,

there is no strong dependence on the finite element tech-
nology, as with local tracking algorithms.

3.3 Partial-domain algorithms

Partial-domain tracking algorithms are a compromise

between local and global ones. In these approaches, the

crack is tracked through the solution of a boundary

value problem at each numerical step within a sub-

domain rather than in the whole structure.

The most famous partial-domain tracking algorithm
is the level set method. Originally, it was proposed by

Osher and Sethian [176] for the representation of the
motion of interfaces as the zero of a function, called the

level set function. Much later, Belytschko et al. [177]

and Stolarska et al. [178] introduced the use of level set

methods for crack representation within the context of
X-FEM.

A level set function is any continuous function divid-

ing a domain into two parts and taking negative values
in one, and positive in the other. The zero level set
of this function defines the location of the interface of
interest. Contrary to the original approach [176, 179],

which focused on the motion of closed interfaces, cracks

are open ones. Consequently, their representation neces-

sitates one level set for representing the signed distance

to the crack surface, and an additional one for each

crack-tip representing the signed distance from it (see

Fig. 20).

The necessary components for the tracking of cracks

with the level set method are: (i) the level set func-

tions for each crack, (ii) an update algorithm for these

level set functions, (iii) the crack propagation direc-

tion, which normally is based on local criteria and the

computation of the stress intensity factors and (iv)
the crack propagation velocity or crack increment size
which is used for the extension of the crack during one

step and can be defined according to mechanical laws

(e.g. [177, 180, 181, 182]) or explicitly by the user (e.g.

[183, 184]).

At the beginning of the numerical analysis, a crack

is introduced and a function ψ is constructed using the

signed distance function from the crack

ψ(x, t = 0) = ±min ||x− xγ0
|| (4)

while the additional functions for each crack-tip ϕ1,2

are defined as

ϕi(x, t = 0) = (x− xi) · t̂i. (5)

In the above equations, x represents the location of a

point within the structure, xγ0
is the location of a point

belonging to the initially defined crack γ0, xi is the lo-

cation of the ith crack-tip and t̂i is a unit vector tangent

to the crack at its tip i. The sign of the minimum dis-
tance in Eq. (4) depends on which side of the crack a

point x is located. As can be seen in Fig. 20 with these

definitions the crack locus can be defined as

γt = {x : ψ(x, t) = 0 ∩ ϕ(x, t) ≤ 0)} (6)

where

ϕ(x, t) = max
i

(ϕi). (7)

In the level set method, the crack is represented in

an implicit way. The location of the crack is identified

through interpolation of the level set values, which are

stored at the nodes, using the same shape functions of

the displacements. Hence, the crack representation de-
pends on the interpolation strategy of the chosen finite
elements. Aiming to reduce the high computational cost

and storage requirements, a partial domain around the

crack is usually considered for the computation, update

and storage of the level sets at the nodes of elements

within it [178].

Having defined the initial level set functions for each

crack, its location and propagation is monitored with
the update of its level sets during the numerical anal-

ysis. To this end, several proposals exist to update the
level set functions, which can be defined through geo-
metrical evolutions and non-differential equations [178,

181, 183, 185], fast marching algorithms [186, 187, 188],

Fig. 20. Level set functions for the representation of a crack
in Stolarska et al. [178]. ψ is the signed distance function from
the crack and ϕ1,2 are the signed distances from the normal
to each crack-tip. (Image from Stolarska et al. [178]).
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partial differential equations [180] or mixed approaches

based on both geometrical and differential equation ap-
proaches [189, 182]. Fries and Baydoun [184] proposed

an alternative approach for the crack extension. In their

work, cracks are represented by level set functions but

the crack extension is made with the use of a local

tracking procedure starting from the crack-tip. When

the crack-extension is identified, then the level sets are
updated to include the new crack-path. Similar ap-
proaches have been recently presented by Holl et al.

[190] and Sadeghirad et al. [191].

The proper update of the level set functions is very

important for the accuracy of the numerical solution in

X-FEM. This is due to the multiple roles that level sets
have within X-FEM methods, the most important of
which is the proper identification of the crack propa-

gation and, thus, the nodal enrichment of the elements

that are crossed by the crack, as well as those surround-

ing the crack-tip. Additionally, level sets are important

for the calculation of auxiliary variables, such as the

near-tip displacement and stress field and the stress-

intensity factors, which in turn define the propagation

direction. Duflot [189] gives an excellent review of dif-

ferent level set update methods and their role within

X-FEM. The generality of some of the update schemes

as well of the definitions for the level set functions allows

their almost straightforward extension to 3D problems

(e.g. [192, 193, 185, 194, 195]).

In finite element crack modelling, level set methods

have been used almost exclusively in X-FEM applica-
tions. This is due to the fact that the propagation de-
pends heavily on the crack-tip stresses, which can be ac-

curately computed with the use of the enrichment func-

tions. Contrariwise, in E-FEM the stresses can be far

from accurate in the crack-tip because a crack propa-

gates from one element to the other [66]. For this reason,

level set methods cannot be applied in E-FEM without
important elaboration at the crack-tip stress field [66],

with recent developments in this direction presented in
[196].

Another partial-domain tracking algorithm can be

considered the one presented by Feist and Hofstetter

[94, 197]. This approach is based on the global tracking

algorithm presented in the previous Section 3.2, with

the main difference that the scalar field θ is constructed
only within a partial domain of the whole structure.

This domain is occupied by elements already or poten-

tially crossed by the crack. The approach is, similarly

to the global tracking algorithm, easily extended to 3D

cases [198], see also [199]. A comparison of the partial-
domain and the global tracking algorithms is available

in [94].

3.4 Algorithms based on an underlying

damage-related field

In the last years a new class of tracking algorithms has

emerged, in which the crack-path is identified consid-

ering an underlying scalar field representing material

degradation in a smeared manner. These tracking al-

gorithms are used in hybrid discontinuity approaches,
presented in Section 2.6, and their aim is to monitor the

evolution of the material degradation modelled with a

smeared crack approach, and define the location where

a strong discontinuity will be inserted to simulate the

localized jump of the displacements. The use of track-

ing algorithms within these approaches aims to enhance

the localization process and the correct representation
of the crack kinematics rather than the enhancement
of the mesh-objectivity, which was essentially the pur-

pose of the algorithms presented in the previous sec-

tions. The latter is achieved, as discussed in Section
2.6, through the use of alternative smeared crack ap-
proaches such as regularised models, mixed formula-

tions or finite elements with embedded weak disconti-
nuities.

One of the first tracking algorithms in this category

can be found in the work of Comi et al. [145], where
a non-local damage model is used as the underlying

field for the tracking of the crack. In this approach, the
tracking algorithm monitors the non-local damage at
the elements ahead of the crack-tip. As soon as this ex-
ceeds a defined threshold, a cohesive crack is inserted

to the element directly connected to the crack-tip. The

initial direction of the crack is set as equal to the direc-

tion of the already formed damage band of the non-local

damage field.

The recently proposed crack-path-field tracking al-

gorithm by Dias et al. [201, 202] and Oliver et al. [149]

determines the position of a discrete crack considering

a diffuse strain localization field αh (see Fig. 21), which
is obtained by non-linear local constitutive models with

strain softening. The crack-path-field is defined as the
location where the selected scalar field αh takes its max-

imum value. The procedure for defining the crack-path

is composed of four steps including the computation

of: (i) the smooth continuous approximation of vari-

able αh denoted as ψh, (ii) its directional derivative
∂ψh/∂x, (iii) a smooth continuous approximation of

this directional derivative µh and (iv) its zero level set
Γ . The above fields are illustrated in Fig. 21 for an

one-dimensional case. The crack-path-field algorithm

is used in the last part of a kinematic enhancement

series employed for the mesh-objective localization of

fracture. The first kinematic enhancement is applied to

elements in which material bifurcation is about to occur
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Fig. 21. One dimensional illustration of the strain localization field αh and its directional derivative ψh (left) and the crack-
path-field Γ as the zero level of µh, which is the continuous approximation of ψh (right). (Image from Dias et al. [200]).

Fig. 22. Damage gradient vectors and an orthoradial vector
eθ at the crack-tip of a potential crack in the marching ridges
algorithm of Feld-Payet et al. [55]. (Image from Feld-Payet et
al. [55]).

[150] or has already occurred [149, 200]. This enhance-

ment provides a better approximation of field αh in

potential locations of strain localization. Then, at an a-

priori defined stage of the localisation process, a strong

discontinuity is inserted at the aforementioned elements

that are already enhanced in a weak manner and are

crossed by the zero level set of the crack-path-field Γ .

The algorithm has been used in two-dimensional simu-

lations of quasi-static [149, 203, 200] and dynamic crack

propagation [150].

Feld-Payet et al. [55] recently proposed a tracking

algorithm to similar the crack-path-field. The so-called
marching ridges tracking algorithm is based on the

identification of the crack-path as the zero level set of

a scalar product involving the gradient of a regularised

degradation-related field and an orthoradial vector eθ
defined on a polar grid centred on the crack-tip or crack

origin (see Fig. 22). The algorithm has been used for

both 2D and 3D problems.

Fig. 23. Geometrical tracking algorithm proposed by
Tamayo-Mas and Rodríquez-Ferran [204] for the calculation
of the crack-path as the simplified medial axis (θ-SMA) of bi-
tangent interior circles to a regularised damage field. (Image
from Tamayo-Mas and Rodríquez-Ferran [204]).

In the continuous-discontinuous approach of

Tamayo-Mas and Rodríguez-Ferran [205, 206] the
transition between regularised and discrete damage

is through the use of a geometrical tracking algo-
rithm. The crack-path is constructed as the simplified
medial axis (denoted as θ-SMA in Fig. 23) of an

area where regularised damage overpasses a defined

damage threshold. The θ-SMA is the loci of centres
of bi-tangent interior circles to the aforementioned

damaged area (see Fig. 23). In 3D, a damaged volume

is considered instead of an area and the crack is

defined in a similar way by its medial surface. The

algorithm has been used as a transition between a

gradient-enhanced damage model and traction-free

cracks in [204] or cohesive cracks in [206].
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3.5 Crack propagation direction in tracking algorithms

The crack propagation criterion is a vital part of a

tracking algorithm. This criterion is usually based on

the theory of Fracture Mechanics, empirical or physical

considerations. In the following, a summary of the most

used propagation criteria within tracking algorithms is

given. Comparative studies between different propaga-

tion criteria used in tracking algorithms have been pre-

sented by Bouchard et al. [207], Dumstorff and Meschke

[90] and Unger et al. [208].

3.5.1 Linear Elastic Fracture Mechanics criteria

Linear Elastic Fracture Mechanics (LEFM) provides

three criteria with significant use in tracking algo-
rithms: (i) the maximum circumferential (or maximum
hoop/tangential) stress, (ii) the minimum strain energy
density, and (iii) the maximum energy release criteria.

The maximum circumferential stress criterion, pro-

posed by Erdogan and Sih [209], states that a crack

propagates from its tip at a polar angle θc in which the

circumferential stress σθθ reaches its maximum. As the

circumferential stress in the crack propagation direction
is a principal stress, the angle θc can be determined an-

alytically by equating the shear circumferential stress

σrθ to zero

σrθ =
1

2π r
cos(θ/2)
(

1

2
KI sin θ +

1

2
KII(3 cos θ − 1)

)

= 0 (8)

where θ and r are the local polar coordinates at the

crack-tip and KI , KII are the stress intensity factors
under mode I and mode II loading, respectively. The

solution of the above equation gives

θc = 2 arctan

[

1

4

(

KI/KII ±
√

(KI/KII)2 + 8
)

]

. (9)

The crack propagation angle θc is the one correspond-
ing to the maximum σθθ between the two possible ones

given by Eq. (9). The extension of the maximum cir-

cumferential stress criterion to 3D has been presented

by Shöllmann et al. [210].

Instead of considering stresses, the coeval minimum

strain energy density criterion [211, 212, 213] looks at

the strain energy density distribution around the crack-

tip for the definition of the crack propagation direction.

Here, crack propagation takes place when the strain-

energy density factor S reaches a critical value Sc (as-
sumed to be a material property) at a neighbourhood

of the crack-tip and in a direction defined by the angle

θc corresponding to the local minimum of S

∂S

∂θ

∣

∣

∣

θ=θc
= 0 (10a)

∂2S

∂θ2

∣

∣

∣

θ=θc
≥ 0. (10b)

The strain energy density is defined as [211, 212, 213]

S = α11K
2
I + 2α12KI KII + α22K

2
II + α33K

2
III (11)

where

α11 =
1

16G
[(κ− cos θ)(1 + cos θ)] (12)

α12 =
1

16G
sin θ [2 cos θ − (κ− 1)] (13)

α22 =
1

16G

[(κ+ 1)(1− cos θ) + (1 + cos θ)(3 cos θ − 1)] (14)

α33 =
1

4G
(15)

with ν being the Poisson ratio andG the shear modulus.
Finally, κ is defined as

κ =

{

3− 4 ν for plane strain

(3− ν)/(1 + ν) for plane stress.
(16)

As can be seen from Eqs. (9) and (11), the use of the
maximum stress and the minimum strain energy den-

sity criteria necessitates the computation of the stress

intensity factors. In the first applications of these lo-

cal propagation criteria [151, 214, 47], the stress in-

tensity factors were computed with the use of spe-

cial singular finite elements around the crack-tip (e.g.

[215, 216, 217]). An alternative to these elements was
the use of isoparametric quadratic elements with sim-

ple modifications on the position of the internal nodes

[218, 219], such that the singular stress fields near a

crack-tip could be reproduced [220]. Considering recent

applications, the maximum circumferential stress crite-

rion is very popular within the X-FEM. In this con-

text, the stress intensity factors are calculated using

domain forms of the interaction integrals over a se-

lected area circumscribed by a radius rd, which is nor-

mally defined as a factor of the finite element charac-

teristic length (see Fig. 24). Applications of the max-

imum circumferential stress criterion in the context

of the partition of unity methods can be found in

[70, 71, 221, 222, 223, 185, 224] among others.

The maximum release energy criterion stems from

the original Griffith’s energy release theory concept

[225, 226] and was later reconsidered in [209, 227, 228].

Contrary to the above criteria, which depend on a local
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Fig. 24. Selected elements surrounding the crack-tip for the
calculation of the interaction integral in the computation of
the crack propagation direction within X-FEM. (Image from
Moës et al. [71]).

near-tip variable (i.e. the stress or strain energy den-
sity), the maximum release energy criterion depends
on a global energy state. In particular, a crack prop-

agates from the crack-tip along a direction defined by

the polar angle θc, which maximizes the global released

energy of the structure Ge. This can be stated by the

following conditions

∂Ge

∂θ

∣

∣

∣

θ=θc
= 0 (17a)

∂2Ge

∂θ2

∣

∣

∣

θ=θc
≤ 0. (17b)

Propagation is initiated when the released energy Ge

reaches a critical value Gc, which is a material property.

Early applications of the maximum energy release

criterion in the context of the finite element method
can be found in [151, 229]. Much later, Meschke and

Dumstorff [230, 90] used the maximum energy release

criterion in the context of X-FEM. In their formulation,

the crack propagation direction as well as its extension

length are introduced as global unknowns to the prob-

lem, which is then solved enforcing a minimization of

the total energy of the body. Similar criteria have been
used afterwards by Unger et al. [208] and Zhang et al.

[66]. In the latter approaches, an iterative procedure

is used and the global energy of the structure is com-

puted for different angles and crack extensions. The an-

gle minimizing the global energy is finally selected for

the new increment. This iterative procedure increases

importantly the computational cost of these methods

[208].

In their first applications in the context of FEM the

above LEFM criteria were commonly implemented in

the same code and used for comparative studies using

remeshing and nodal separation methods (see for in-

stance [151, 48]). The same procedure was followed later

by Bouchard et al. [207]. A common outcome of these

studies was the similar performance of the maximum
circumferential stress and the maximum release energy
criteria, while the use of the minimum strain energy

density criterion yielded less accurate results regarding

the expected crack propagation [151, 207].

3.5.2 Maximum Principal Stress criterion

When resisting forces are assumed to apply at the crack

surfaces, either through a cohesive-traction separation

law or from a stress-strain continuum model, the singu-

larity at the crack-tip considered in linear elastic frac-

ture mechanics disappears [222]. In such cases, the use
of the presented propagation criteria of LEFM need

some further modifications. One very common modifi-

cation concerns the maximum circumferential stress cri-

terion, which turns into the maximum principal stress

criterion.

The maximum principal stress criterion states that

a crack will propagate in a direction orthogonal to

the maximum principal stresses. Due to its straight-

forward implementation, as well as the good accuracy

for straight and slightly curved cracks, this criterion has

been one of the most used for crack propagation in both

discrete [51, 39, 231, 232, 233, 234] and smeared crack
approaches [158, 32, 161, 112, 115, 113].

A common practice used for the improvement of

the reliability of the stresses in the vicinity of the
crack is to use an average stress tensor, which is com-
puted using smoothing/averaging techniques around

the crack-tip (e.g. [235, 231, 236, 198, 97, 67]) or non-

local stress/strain tensors [93] (see Fig. 25).

Fig. 25. Computation of the crack propagation considering
an averaged value of stresses of the crack-tip and neighbour-
ing elements through Gaussian weight function in Dumstorff
and Meschke [90].
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3.5.3 Discontinuous material bifurcation analysis

Discontinuous material bifurcation analysis is fre-
quently used for the computation of the propagation

direction. The method dates back to the work of Hill

[237] who associated the strong ellipticity character

of the acoustic (or localization) tensor Q to the ex-

istence of discontinuous acceleration waves. In subse-

quent works the loss of the elliptic (or hyperbolic in dy-
namics) character of the governing equations was linked
likewise to the strain localization in an elastic-plastic

[238, 239, 240] or a softening solid [60, 241, 242].

The criterion for loss of the material stability and

therefore onset of strain localization can be defined as

det [Q(n)] ≤ 0 (18)

where the acoustic/localization tensor Q is a function
of the constitutive tangent matrix C and the normal

vector to the material discontinuity n

Q = n ·C · n. (19)

The above equations define that the material loses its

stability (or, in other words, the material bifurcates)

when the determinant of the acoustic tensors ceases to

be positive in a direction defined by a vector n. In-

versely, the crack propagation direction can be com-
puted by finding the normal vector n which gives the

minimum determinant of Q and checking whether the

inequality of Eq. (18) is satisfied.

For simple cases, analytical derivations are possi-

ble for the discontinuous material bifurcation analysis

[237, 243, 244, 245, 169], while more general cases ne-

cessitate the numerical solution of the problem with
proper algorithms [106, 246, 247]. Recent contributions

on analytical strain localization analyses have been pre-

sented by Wu and Cervera [248, 19] for constitutive

models based on associative plasticity and damage for-

mulations.

The solution of the local analytical problem nor-

mally gives two possible directions for material bifur-

cation [249, 247, 35, 250]. In these cases, the selection

of the propagation direction necessitates the use of an

additional criterion. Rabczuk and Belytschko chose the

propagation plane as the one with the normal closest to

the direction of the principal tensile stress [251] or the

direction corresponding to the maximum displacement
gradient in the localization direction [252]. Similar cri-

teria considering the gradient of the instantaneous (or

the rate of the) displacement field have been consid-

ered by Oliver et al. [33] and Weed et al. [253]. In [114]

an energetic approach is used to selecting among the

two potential crack planes given by the Mohr Coulomb

theory of fracture. According to this, the selected crack

plane is the one that maximizes the energy release. This

direction is selected as the one along which the accu-
mulated strain energy density before crack propagation
is higher.

3.5.4 Crack branching

Crack branching refers to the splitting of a crack at its

crack-tip into two or more cracks (branches) during its

propagation within a solid. The phenomenon commonly

occurs under dynamic loading, although crack branch-

ing has been observed also under quasi-static loading.

The simulation of crack branching with tracking al-

gorithms is not a trivial task, as it necessitates two ad-

ditional criteria that specify the moment of the crack-

branching and the direction of the new branches. To-

day, a robust predictive theory that can give answers to

the above conditions is missing. As a consequence, the

criteria used in tracking algorithms for the definition

of crack branching are heuristic or empirical based on

experimental evidence.

Belytschko et al. [148] allow a crack to branch when

the propagation directions at elements ahead of the

crack-tip, obtained with a discontinuous material bi-

furcation analysis, are no longer constant but present

a significant variation among them. The same criterion
was used by Song et al. [75], with the difference that in

this case the crack propagation directions are computed

with a maximum principal stress criterion. A similar

criterion was used later by Song and Belytschko [98]

in the context of the cracking nodes method, allowing
new cracks to initiate next to existing ones when their

propagation direction makes an angle with the existing
crack direction greater than a defined threshold.

In Linder and Armero [154] (see also [254]) the crack

branching is associated with the Rayleigh wave speed.

In particular, a crack is allowed to branch as soon as

the propagation velocity at the crack tip reaches a crit-

ical value, expressed as a fraction of the Rayleigh wave

speed. The approach is implemented in quadrilateral
elements and as soon as the branching criterion is sat-
isfied the two elements that fall out of the crack propa-

gation direction at the crack-tip are selected as the new

crack-tips (see Fig. 26). From them, the crack propa-

gates following the direction of the maximum principal

stress.

Fig. 26 demonstrates another implication that needs
to be considered in the modelling of crack branching

with strong discontinuity methods. This is the special

construction of the branching elements, which is nec-

essary to ensure compatibility of the kinematics of dis-

continuities in the neighbouring elements at the crack

branches. Implementations of these elements in the con-
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Fig. 26. Branching of a crack in Linder and Armero [154] and different strategies for the branching element: element deletion
(left), element with a single discontinuity (middle) and element with embedded branching (right). (Image from Linder and
Armero [154]).

text of the partition of unity methods can be found in

[255, 256], and for embedded strong discontinuities in

[154, 150].

4 Local tracking algorithm - Monotonic loading

This section focuses on the different aspects involved

in the development of tracking algorithms for the sim-

ulation of propagating cracks under monotonic load-

ing. To this aim, a local tracking algorithm [32, 114,

115, 257, 116] is outlined, focusing on the methodology

used for the crack initiation and propagation, as well
as crack-path continuity, in a smeared damage frame-
work. The presented tracking algorithm is implemented

within the finite element program COMET [258] devel-

oped at the International Centre for Numerical Meth-

ods in Engineering (CIMNE), in Barcelona, and is used

for all the numerical analysis of Sections 5,7,8. Pre- and

post-processing is carried-out with GiD [259] also devel-
oped in CIMNE.

As discussed in Section 3, the purpose of a tracking
algorithm is to limit the strain localization to crack-

paths composed of a series of consecutive finite ele-

ments. This is performed through the execution of a

sequence of tasks at each solution step including the

identification of new cracks and the definition of their

propagation, in addition to the propagation of existing

ones that have consolidated in previous steps.

As soon as the crack paths are defined, a labelling

system is used to categorize the elements falling within

or outside of them. In this work, the elements within

a crack respond according to the constitutive law pre-
sented in [260] and summarized in Appendix A. The

rest of the elements maintain a linear elastic stress-

strain relationship.

The presented tracking algorithm is devised for tri-

angular constant strain finite elements. Despite their

known limitations, these elements ensure a straightfor-

ward implementation in any finite element code and al-

low for the easier meshing of irregular geometries. The

extension of this approach to other element typologies

is possible as in [112, 113].

4.1 Crack nucleation - Fixed-directional tracking

4.1.1 Crack-roots

The first task of a tracking algorithm is to define where

and when new cracks appear, which is done through

the use of a crack nucleation criterion. This criterion

commonly coincides with the satisfaction of a failure

condition under tensile or shear stress states. An excep-

tion to this strategy are tracking algorithms based on
an underlying damage-related field, as those presented
in Section 3.4.

In the following, the nucleation of a new crack at

a new numerical step n + 1 is associated with the sat-
isfaction of the tensile failure criterion of a continuum

damage model (see Appendix A). This criterion has the

form

Φ+
n+1 = τ+n+1 − r+n+1 = 0 (20)

where τ+ is a norm termed as the equivalent stress and

r+ is the stress threshold. The simulation of arbitrary

cracking from any location of the analysed structure,
without their a-priori definition by the analyst, implies

that the crack nucleation criterion should be checked all
over the simulated domain. Therefore, this condition is
checked for all the existing undamaged elements of the

mesh, and the ones fulfilling it are temporarily labelled

as potential crack-root elements.

The control of the damage dispersion over a small

part of the discretized domain, and thus the simula-

tion of separate and individual cracks, is possible with

the use of an exclusion radius criterion. This criterion,

introduced in [157, 158], states that a new crack can

originate at an element which is located in an area in
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r excl
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crack

Fig. 27. Illustration of some basic elements of the presented
local tracking algorithm. Crack-roots are the origin elements
of the cracks, crack-tips are the last elements at the propa-
gating front and crack-origins refer to the location within an
element where a crack begins.

which no other cracks exist. This area is circumscribed
by the exclusion radius rexcl, which is defined by the

user (see Fig. 27). The definition of an exclusion radius
averts the initiation of secondary spurious cracking sur-

rounding existing cracks, a pathology that may spoil

the correct damage localization in later steps of the

simulation [168, 98]. Similar criteria have been used by

Oliver et al. [168] and Song & Belytschko [98], where
the equivalent exclusion area (named as shielding zone

in [168]) is defined as a multiple of the finite element
size. Note that the exclusion radius here controls only

the nucleation of new cracks at a certain distance to

existing ones and does not preclude the propagation of

cracks close to others as in [168]. A similar use of the

exclusion radius to the one presented in this work is
possible in the tracking algorithm proposed by Slobbe

et al. [112], whereas in Alfaiate et al. [153] the exclusion
radius prevents the initiation of new cracks only around

the crack-tip.

Apart from its aforementioned numerical purpose,

the exclusion radius has a second functionality when

a composite material, such as masonry, is simulated.

More specifically, rexcl can be defined according to the

average distance between the weak zones of the com-

posite, heterogeneous material. For many masonry ty-

pologies, the weak zones are the interfaces between the

mortar and the units due to the contact of two different

materials, or the mortar joints themselves, and conse-
quently the distance between cracks is determined by
the size of the brick or stone units [261, 262]. In such

cases, the staggering of the masonry can be considered

using an exclusion radius equivalent to the unit’s size.

With the above definitions, a potential crack-root

element without any existing crack within the area cir-

cumscribed by the exclusion radius is defined as a crack-

root element. Crack-root elements with one or more

sides on the boundary of the mesh are referred to as

boundary crack-root elements, while those with no sides

on the boundary of the mesh are internal crack-root el-
ements. If more than one finite elements are defined

as potential crack-roots at the same increment, and the
distance between them is less than the exclusion radius,
the one with the highest value of the tensile equiva-

lent stress τ+ (see Eq. (A.6) in Appendix A) is selected

as a crack-root. A similar approach for selecting the

crack-root among many elements satisfying the crack

initiation criterion in the same analysis step has been
recently used by Wu et al. [156]. Figure 27 presents an

example of boundary and internal crack-roots.

4.2 Crack-origin coordinates

Following the identification of the new crack-roots, the

coordinates of the crack-origin points are defined and

stored. For cracks initiating at corner or at internal ele-

ments, the centroid of the triangular element is selected

as the crack-origin. In case of cracks initiating at an el-

ement with one side over the boundary, the midpoint

of this side is selected as the crack-origin. Figure 27

presents examples for crack-origins at corner, bound-
ary and internal elements.

4.3 Crack propagation

The propagation of new and existing cracks at each step

of the numerical analysis starts from the crack-root and

crack-tip elements, respectively. A crack-tip is the last

damaged element at the propagating front of a crack
that has already formed in a previous step of the anal-

ysis (see Fig. 27). The possibility of simulating crack
propagation along one or two directions depending on

the position of the crack-root element is considered.

Cracks originating from elements at the boundary (i.e.

boundary crack-roots) can propagate along one direc-

tion, while those originating from an internal element

(i.e. internal crack-roots) can propagate along two op-

posite directions. The procedure for each case is pre-
sented in the following.

4.3.1 Propagation along one direction

The crack propagation from boundary crack-root and

crack-tip elements is illustrated in Fig. 28. For each
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Fig. 28. Procedure for crack propagation from a crack-tip or from a boundary crack-root (picture adapted from [159]).

boundary crack-root element, a vector is defined, start-
ing from the crack-origin location, with a direction or-

thogonal to the one given by the maximum principal ef-
fective stress. This direction is calculated using a stress
tensor constructed from the average values of the ef-
fective stresses at the nodes of each element. The use

of smoothed values of stresses is a common practice in

local tracking algorithms aiming to increase the relia-

bility of the stress directions at the crack-tip (see for

instance [231, 236, 232, 97, 67]). The intersection of
this vector with the neighbouring element defines the

exit point and the next potential element of the crack

(Fig. 28a). Similarly, starting from this point the follow-

ing potential elements of the crack are recognised (Fig.
28b). The same procedure is followed for identifying the
propagation path of consolidated cracks from the crack-

tip elements. In this case the crack-origin point is the
exit point of the crack at the previous cracked element.

4.3.2 Propagation along two directions

Contrary to cracking starting from the boundary, other

cracks, such as shear ones, initiate from the interior and

propagate along two opposite directions. The numerical

procedure for modelling internal crack propagation is

presented in Fig. 29 and is detailed in the following.

Starting from the crack-origin of the internal crack-
root element, two vectors (ve,1) and (ve,2) are defined,

having a direction orthogonal to that of the maximum

principal effective stress but opposing orientations (Fig.

29a). Following this, the crack path is recognized in
two stages. First, the elements pertaining to the path

defined by the orientation of vector (ve,1) are identi-

fied starting from the crack-origin point and following

the same process as described above for the boundary

crack-root and crack-tip elements (Fig. 29b). Upon con-

cluding the labelling towards that side of the crack, the

elements lying at the opposite face can be recognised

starting again from the crack-origin point of the inter-

nal crack-root, but using the orientation of vector (ve,2)
(Fig. 29c).

4.4 End of the labelling procedure

The labelling procedure for a crack stops at a numeri-
cal step when at least one of the following criteria are
satisfied:

(i) Boundary criterion: a crack reaches the mesh

boundary and at least one of the elements in the
wake of the crack with a distance from the crack-

tip smaller than the exclusion radius does not have
sides or nodes on the boundary of the mesh.

(ii) Stress-threshold criterion: the stress-state of a po-

tential element is lower than a pre-defined thresh-

old. This threshold can be conveniently defined in
terms of the tensile equivalent stress and previ-
ous works [157, 159, 32, 160] have demonstrated

that labelling can be completed when the inequality
τ+ < 0.75f+ holds, where f+ is the tensile strength.

This is a common strategy in tracking algorithms

that limits the computational cost, since it allows

the termination of the labelling procedure during a

numerical step before the crack meets the boundary.

A common local mechanism of unreinforced ma-

sonry structures is the rocking of piers due to the for-

mation of flexural cracks at their supports. A similar

case is illustrated in Fig. 30a, where cracks originate

from the corners and propagate towards the interior of
a masonry wall analysed under horizontal loading at its

top. A close-up of the principal stress directions at the
region of the crack-tip during the loading, shown in Fig.

31, reveals that these are not parallel to the boundary.

This is due to the adopted boundary conditions at the

top and bottom of the wall. Under these conditions,
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Fig. 29. Simulation of internal cracking with the tracking algorithm: (a) internal crack-root element with the two opposite
vectors (ve,1 and ve,2) of the crack propagation, (b) labelling of the potential crack elements towards the first side of the crack,
(c) labelling of the potential crack elements towards the second side of the crack.

it is possible that the crack originating from the cor-

ner of the wall (element A in Fig. 31) exits the mesh
at its lower boundary (element B in Fig. 31). The pre-

sented definition of boundary criterion, addresses this
unrealistic end of the crack propagation. In this way, if

a crack reaches the boundary but condition (i) is not

fulfilled, the crack direction is corrected and defined as

parallel to the boundary of the mesh where the crack

exits. The labelling process in this case ends when this

crack reaches again another boundary of the mesh, as

for instance the vertical end of the wall for the case of

Fig. 30. As will be shown through the structural ap-

plications included in this paper, the above definition

succeeds in identifying correctly complete or incomplete

cracks that propagate across the boundary of the anal-

ysed structure. Instead, the improper definition of the

boundary criterion would lead to the result of Fig. 30b,

where the two cracks stop as soon as the crack fronts
reach the boundary of the mesh, resulting in an im-
proper identification of the collapse mechanism and the

load capacity.

4.5 Element labelling and crack-path continuity

4.5.1 Element labelling

As soon as the propagation of all the cracks has been

defined, each element of the mesh is labelled with a

flag representing its element-state for the current step

of the analysis. The following three element-states are

defined:

(a) (b)

Fig. 30. Flexural crack propagation on top and bottom of a
shear wall for a top displacement of δ = 2mm: (a) with and
(b) without proper definition of the boundary criterion.

Fig. 31. Flexural crack at the bottom of a shear wall exiting
the mesh.

– Intact element, outside a crack : element outside of a

crack-path. Its stress-strain relationship will remain

linear elastic for the current analysis step.
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A A

B

(b)

(c)

(a)

A

C
B

(d)

A

C
B

Crack Element

Potential crack element

Intact element, outside a crack

A: Crack-tip at step n

C: Crack-tip at step n+1

B: Potential Crack-tip at step n+1

Fig. 32. Assigned flags to the elements of the mesh for a
propagating crack: (a) consolidated crack prior to crack prop-
agation at the end of step n, (b) potential crack path at step
n+ 1, (c) consolidated crack after convergence of step n+ 1,
(d) labelling element-state at the end of step n+ 1.

– Potential crack element : undamaged element falling

within a crack-path. If it satisfies the damage cri-

terion, its stress-strain relationship will be defined

according to the selected continuum damage model

(Appendix A).

– Crack element : element that is a part of a consoli-
dated crack and has experienced damage at a pre-

vious analysis step. Its stress-strain relationship is

characterized by the selected constitutive model.

The above categorization of elements can be visu-

alised in Fig. 32, which illustrates the propagation of
a crack and the labelling procedure during a step of

the numerical analysis. Figure 32a presents the consol-
idated part of the crack, which has propagated up to

element A in the previous analysis step n. In the new

step n + 1, the tracking algorithm identifies that the

crack can potentially propagate up to element B (see
Fig. 32b), which is the last one satisfying the stress

threshold criterion presented in Section 4.4. A flag is

assigned to all the elements between A and B categoriz-

ing them as potential crack elements. This flag activates

the selected non-linear constitutive law for these poten-

tial crack elements, while the rest will maintain a linear

elastic stress-strain relationship. Fig. 32c shows the up-

dated labelling of the elements in the crack at the end

of the iterations of step n+ 1, when convergence is at-
tained. All the elements up to element C have damaged,

while the rest potential elements did not satisfy the fail-

ure criterion and therefore remained linear elastic. Be-

fore proceeding to the new analysis step, the tracking

algorithm is called to update the element-state for a last

time. The element-state of all potential elements that

remained intact is initialized to Intact element, outside
a crack as shown in Fig. 32d. This ensures that during

the next analysis step, the crack will propagate start-

ing from element C, with a crack propagation direction

according to the new converged stress state.

4.5.2 Crack path continuity

Let us now consider the same case of the single prop-

agating crack, but assuming that two elements D and
E, prior to element C, have not damaged after conver-

gence of the analysis at step n+1 even if they had been

identified as potential crack elements at the beginning

of the step (see Fig. 33a). If no further consideration is

made, the element-state of elements D and E would be

set to intact element, outside a crack at the end of the

step, and the crack loses its continuity breaking in more
than one parts. This is avoided with the implementa-

tion of a crack path continuity procedure. According to

this, the damage state of all the elements of the crack

is inspected after convergence starting from the poten-

tial crack-tip elements and going backwards towards the

crack-tip at the beginning of the step. For the current

example, this means starting from element B and go-
ing backwards up to element A. As soon as, a damaged

element is found, in this case element C, the rest of the

status of all the preceding elements is changed to Crack

element (Fig. 33b). The procedure continues up to the

crack-tip element at the beginning of the current step,

which is element A in Fig. 33.
The above procedure implies that the algorithm

stores for each crack the crack-tip of the consolidated

crack (e.g. element A in Fig. 33) and the potential

crack-tip at the end of the labelling procedure (e.g. ele-

ment B in Fig. 33). Additionally, each element is asso-

ciated with the crack(s) it belongs to. In this way, the

crack-path of each crack can be recovered at any mo-

ment, starting from the (potential) crack-tip and going

backwards considering elements belonging to the same

crack.

4.6 Maximum curvature criterion

The definition of the crack nucleation and propagation,

considering the stress/strain values at a restricted area
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Crack Element

Potential crack element

Intact element, outside a crack

(a)

A

C
B

(b)

A: Crack-tip at step n

C: Crack-tip at step n+1

A

C
B

D

E

D

E

B: Potential Crack-tip at step n+1

D, E : Undamaged elements labelled as Crack elements to ensure

crack path continuity

Fig. 33. Assigned flags to the elements of the mesh for a
propagating crack (a) before and (b) after the application of
the crack path continuity procedure.

around each element, justifies the “local” nature of the

presented tracking algorithm. This choice is very con-

venient for handling cases with multiple cracks and in

terms of computational efficiency compared to global

tracking algorithms [32]. Nevertheless, local tracking al-
gorithms can encounter some difficulties under bending

stress states, when the local calculation of the princi-

pal stress directions at the crack-tip may be relatively

poor due to high stress-gradients, resulting in spurious

changes in the crack direction.

To avoid such non-realistic result, Clemente et al.

[157, 158, 32] proposed the enhancement of the track-

ing algorithm with a procedure for the apropos correc-

tion of the crack propagation. This procedure, termed

as maximum curvature criterion, is activated at each
element at the propagating front of the crack (i.e. the

crack-tip elements) before the selection of the next po-

tential element. The idea is to compare the crack prop-

agation direction defined at the crack-tip element (ve),

with the vector sum of the crack directions (vc) of both
the potential and the damaged elements within a neigh-

bourhood of radius rneigh (see Fig. 34). If the relative
angle among them is greater than a threshold angle

αmax, the vector vc is used for the definition of the crack

direction instead of the vector ve. This is formalised as

|vc ·ve|

{

≥ cos(αmax) crack propagates using ve

< cos(αmax) crack propagates using vc
(21)

The parameters involved in the use of the maximum

curvature criterion are the rneigh radius and the αmax

angle. As presented in [159, 32], the proper choice of

the radius rneigh, and thus the selection of the number

of elements considered in the definition of the vectorial

vc α
αmax ve

*
*

*

*
*

r
neigh

Damaged elements

Potential crack elements

Maximum  principal stress

Crack propagation direction

FE  centroid*

Crack origin point

Maximum allowed crack deviation

Vector sum of crack propagation directions

*

*
*

*

*

α Angle between ve  and vc

αmax Maximum allowed angle between ve and vc

Fig. 34. Illustration of the maximum curvature criterion
used for the correction of the crack propagation direction dur-
ing the propagation of an internal crack.

sum vc, is important in cases with curved cracks. Con-

trariwise, the effect of rneigh is limited for cracks which

are straight or exhibit small curvature.

The use of similar criteria for preventing sudden

turns in propagating cracks is common in tracking al-

gorithms. For instance, Jäger et al. [165] use the same

criterion in a 3D local tracking algorithm and allow a

deviation angle of a new crack segment between π/6

and π/4. In Zhang et al. [66] the new crack direction

in the crack-tip is defined using the consolidated crack
direction at the previous element and the mean value of

the crack directions of the following two new crack ele-
ments. This smoothing strategy alleviates sudden turns
in the crack direction (see [263, 66]).

An alternative to the explicit control of the crack

diverging angle has been presented by Slobbe et al.

[112, 162] also in the context of local tracking algo-

rithms. The main concept is to postpone the crack path

fixation up to the moment that a certain level of dam-

age is reached at an element crossed by a potential

crack (denoted as the damage path). The idea resem-

bles closely the strategy used by Jirásek and Zimmer-

man [93] and Sancho et al. [65, 91] for the adaptation

of embedded strong discontinuities until a certain crack

width is reached, which is usually defined according to

the material parameters. Similar assumptions are com-

mon also in continuous-discontinuous models, in which
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a strong discontinuity is inserted, at a later stage of

damage localization, to represent the displacement dis-

continuity of the crack (e.g. [206, 55]). Despite the po-

tentiality of this method demonstrated in the context

of an embedded crack model [65, 91, 264, 234], Slobbe

et al. [112, 162] show that delayed crack path fixation
may provide ambiguous results concerning the appear-

ance of spurious crack tortuosity, while the criteria for
the proper definition of the parameter controlling the
moment of crack path fixation (damage/crack-width

limit) are still under research. In Slobbe et al. [112, 162],

the preclusion of the crack overturning is also achieved

by adopting a C1 continuous crack representation, in
which the crack-entry direction is considered in the def-

inition of the new propagation direction at a new ele-

ment of the crack.

5 Applications of the tracking algorithm under

monotonic loading

This section includes two applications of the presented

tracking algorithm to the simulation of cracking in con-

crete and masonry structures under monotonic loading.

The first case considers the tensile splitting test on con-

crete cylinders. This is used as a benchmark test for the

simulation of a dominant internal crack, starting from

the interior of the discretized domain and propagating

towards two directions. The second application consid-

ers a real-scale masonry frame under in-plane horizon-

tal loading. This case assesses the capacity of the pre-

sented tracking algorithm to model multiple internal

and boundary cracking.

5.1 Internal cracking - Tensile splitting test

The tensile splitting strength of geomaterials, such as
concrete and rocks, is experimentally obtained with a

standardized test method carried-out on cylinder speci-
mens [265, 266]. The test consists in applying diametric

compressive loading along the two sides of the tested

specimen, as shown in Fig. 35. This loading results

in the failure of the cylinder due to cracking, which

starts from the interior and propagates vertically to-

wards the locations of the applied load. The tensile

splitting strength fsp of the tested material is obtained

through the following expression [265, 266]

fsp =
2F

πDL
(22)

where F is the maximum measured load, L is the length

of the cylinder and D its diameter (see Fig. 35).

Load application 

supports

L

D

F/L 

Fig. 35. Geometry and load configuration for the tensile
splitting test.

The numerical simulation considers an experimental

test carried-out by Malárics et al. [267, 268] on a cylin-

drical concrete specimen with diameter D = 150mm

and length L = 300mm. The compressive load was
applied through two steel plates of 10mm width and

length equal to the specimen’s length.

Figure 36 presents the crack propagation for one

of the tested high strength gravel concrete specimens,

measured with the use of a series of conducting silver

plates denoted with LS1-7. For a detailed description

of the experimental set-up and results the reader is re-

ferred to Malárics et al. [268, 267].

The numerical model was prepared based on the

material properties reported in [267] for the tested

specimen HK-1 made of high strength gravel concrete.

These are E = 36.4GPa, v = 0.20, f+ = 5.6MPa,

f− = 78.5MPa, G+
f = 151.7 J/m2, ρ = 2400 kg/m2.

The failure criterion is the one proposed by Lubliner

et al. [15] and is obtained by setting κ1 = 1.0 in Eq.

(A.10). The value of the compressive fracture energy

was not given in [267] and has been defined equal to

G−

f = 250G+
f = 37925 J/m2 according to [269, 270].

It is noted that the sensitivity of the strength capacity

of the specimen to the compressive fracture energy is

minimal. The numerical parameters used in the track-

ing algorithm are rexcl = 50mm, αmax = π/4 and

rneigh = 50mm.

The experiment has been simulated by applying
a vertical displacement at the top of the specimen

through a steel plate of 10mm width. The horizontal

displacement at both top and bottom supports is re-

strained. At each step of the analysis, the corresponding

non-linear equations are solved with the use of a secant

(Picard’s) method along with a line-search procedure.
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Fig. 36. Cracking sequence in the splitting tensile test of a high strength gravel concrete specimen tested by Malárics [268].
(Image from Malárics [268]).

Fig. 37. First row: labelling of the tracking algorithm with elements in black representing crack origins or crack-tips. Second
row: tensile damage contour. Vertical displacement at the top equal to: (a) −0.115mm, (b) −0.120mm, (c) −0.130mm.

Fig. 38. (a) Finite element meshes and maximum principal strains (b) with and (c) without the tracking algorithm. First
row: Mesh A. Second row: Mesh B.

Convergence of an increment is attained when the ratio

between the iterative residual forces and the norm of

the total external forces is lower than 10−3 (0.1%).

Fig. 37 shows the results of the analysis using an

unstructured mesh of 2856 constant strain triangles

(1525 nodes) under plane strain conditions. The first
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Fig. 39. (a) Geometry (values in mm) and load configuration of the experiment on a real scale unreinforced masonry frame.
Cracking at the end of the experiment of (b) the whole frame and (c) the spandrel. (Picture adapted from Augenti et al. [271]).

row presents the labelling of the tracking system, while

the second one the tensile damage contour. For a verti-

cal displacement of 0.115mm an internal crack, start-

ing at around the 2/3 of the specimens height, prop-

agated very fast towards the two load supports (Fig.
37a). Damage initially concentrated at the two tips of

the crack, and for increasing displacement extended to
its central part (Fig. 37b). The final capacity of the

specimen was determined by the propagation of this

crack up to the boundaries of the specimen. As soon

as that happened, some additional cracking appeared

around the locations of the load application and the

external boundaries. The numerically predicted split-

ting strength of the specimen, measured with Eq. (22),
was 5.18 MPa. This value is almost identical to the

mean of the experimentally predicted from the various

tested specimens of the same concrete typology, which

was measured equal to 5.20 MPa with a coefficient of

variation of 0.10.

The directional mesh-bias dependency of the nu-
merical solution is investigated in Fig. 38, where the

results obtained with two different meshes with and

without the tracking algorithm are presented in terms

of maximum principal strains. Mesh A is the unstruc-

tured mesh used for the results shown in Fig. 37. Mesh
B is composed of 2530 constant strain triangles (1356

nodes), and its central part is discretized with a struc-
tured pattern that is slanted by 13◦ with respect to the

vertical axis. The obtained results illustrate the way
that tracking algorithms can improve the directional

mesh-bias dependency of the classical smeared crack

approach. As can be seen in the middle row of Fig. 37,
the use of the tracking algorithm results in a vertical

crack for both meshes, and no sensitivity on the used

mesh is observed. On the contrary, when the tracking

algorithm is not used a different strain localization is

obtained, which depends strongly on the directionality

of the mesh.

5.2 Multiple internal and boundary cracking -

Masonry frame

An important challenge of tracking algorithms is the

simulation of multiple arbitrary cracking. This is a

common pathology of unreinforced masonry structures,

with flexural cracks starting at the boundaries of open-

ings, and shear internal cracks affecting wall and span-

drel elements. The capacity of tracking algorithms to

simulate such failure patterns was investigated by the

authors in [115, 272] and is outlined in the following.

This structural application considers a real-scale

masonry frame with a door opening, with its geome-

try presented in Fig. 39a. The structure was tested by

Augenti et al. [271] under in-plane horizontal mono-

tonic loading applied at the top left corner. A vertical
load of 200 kN was maintained constant during the ex-

periment at the top of the piers, simulating the gravita-
tional effect of additional floors. Figures 39b-c illustrate

the obtained damage pattern at the end of the exper-

iment. The spandrel above the timber lintel was the

most damaged element, with flexural vertical cracks at

its two ends, and a shear crack crossing it diagonally

through its whole length. Regarding the piers, two hor-

izontal flexural cracks formed at their lower ends (Fig.
39b).

The structure was analysed under plane stress con-

ditions using an unstructured mesh composed of 20728
constant-strain triangles (10678 nodes). Three different
materials, presented in Table 1 were used for simulat-

ing the masonry, the timber lintel above the door and

the interface between these two. Non-linear behaviour

was assumed for the masonry and for the interface be-

tween masonry and the lintel, while elastic properties

have been attributed to the timber lintel. The selection

of the properties and their influence on the numerical

result are discussed in [272, 260]. The numerical param-

eters for the tracking algorithm are rexcl = 300 mm
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(equal to the length of the bricks), αmax = π/4 and

rneigh = 200 mm.

The experimental test was simulated by applying a

horizontal displacement d at the left top part of the
structure for a constant vertical force of V = 200 kN at

the top of the piers (see Fig. 39a). Similar to the split-
ting tensile test, a secant (Picard’s) method has been

used for solving the non-linear equilibrium equations

at each numerical step of the analysis along with a line

search procedure. Convergence of a numerical step is

attained when the ratio between the iterative residual

forces and the norm of the total external forces is lower

than 10−2 (1%).

Figure 40 shows the evolution of the tensile damage
at five stages of the analysis. The first damage affect-

ing the structure are two vertical cracks at the corners

of the spandrel (Fig. 40a). With increasing horizontal

displacement two horizontal cracks form at the base

of the piers (Fig. 40b), facilitating a rocking behaviour.
Following this, internal cracking starts to appear within

the spandrel (Fig. 40c-d). For a horizontal displacement

Fig. 40. Tensile damage contour for an horizontal displace-
ment of: (a) d = 1.5 mm, (b) d = 3.3 mm, (c) d = 12.3 mm,
(d) d = 17.3 mm, (e) d = 20.7 mm. (f) Maximum principal
strains contour for d = 20.7 mm.

around 21 mm, this crack rapidly extends through the

whole length of the spandrel, inducing secondary flexu-
ral cracks at the top and bottom of the spandrel (Fig.
40e). The formation of this diagonal crack results in

the sudden drop of the structural capacity, similarly to

the experimental result, as can be appreciated in the

numerical and experimental graphs presented in Fig.

41.

A comparison between the experimentally obtained

damage (Figs. 39b-c) and the open cracks at the end of

the analysis, presented in Fig. 40f with the contour of
the maximum principal strains, shows that the numer-

ical model could resemble very closely the experimen-

tally obtained damage pattern. Moreover, the simula-

tion of the changes in the structural capacity due to the

evolution of different cracks within the structure, shown

in the graph of Fig. 41, demonstrates the ability of the
numerical model to account for the sudden changes in

the stress distribution within the structure following the

appearance of each crack. This is an important aspect

for assessing the stability and displacement capacity of

existing masonry structures.
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Fig. 41. Load-displacement graph of the experimental test
and the numerical analysis of the masonry frame.

Cracking in masonry structures commonly appears

in the weakest zones, which are the brick-mortar inter-

face or the mortar joints in case of low strength his-

torical mortars. The studied experiment presents an

analogous behaviour. The flexural cracks start at the

joints, before splitting the bricks met along their ver-

tical propagation, while similarly the diagonal crack

in the spandrel propagates mostly through the ma-

sonry joints. The higher fragility of the brick-mortar

interface makes the size of the bricks as the determi-

nant parameter for defining the distance between the

cracks. This role is played by the exclusion radius in



30 Savvas Saloustros et al.

Table 1. Material parameters adopted in the simulation of the masonry frame wall.

Material f+ f− G+

f G−

f E ρ v

[MPa] [MPa] [J/m2] [J/m2] [GPa] [kg/m3] [−]

Masonry 0.13 3.9 15 35000 1.54 1200 0.2
Interface 0.01 3.9 5 35000 0.02 1200 0.2
Timber - - - - 15 500 0.2

Fig. 42. Contour of tensile damage (left) and maximum prin-
cipal strains (right): (a) rexcl = 100 mm, (b) rexcl = 200
mm, (c) rexcl = 300 mm, (d) rexcl = 500 mm (horizontal
displacement d = 0.21 m).

the presented numerical model. This can be visualised

in Fig. 42 presenting the tensile damage distribution ob-

tained for four different values of the exclusion radius

rexcl = 100mm; 200mm; 300mm; 500mm. A value of

the exclusion radius equal to 100mm does not take into
account the internal micro-structure of masonry defined

by the size of the brick (i.e. 150 × 300 × 100mm3),
resulting in a denser cracking at the two corners of

the spandrel, which did not occur in the experiment.

This flexural cracking affects the structural response, as

can be appreciated in the respective load vs displace-

ment graph of Fig. 43, where for rexcl = 100 mm the
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Fig. 43. Load-displacement graphs obtained from the simu-
lation of the masonry frame with different values of rexcl.

typical graph for a rocking failure mode is obtained,

without the drop in the capacity associated with the

shear damage in the spandrel. Contrariwise, for values

of the exclusion radius of 200mm and above, the nu-

merical model reproduces the experimentally obtained

structural response in terms of cracking (Fig. 42b-d),

strength and ductility (Fig. 43).

6 Local tracking algorithm - Cyclic loading

Despite their substantial differences in crack representa-

tion, crack propagation and nucleation criteria, a com-

mon standpoint of many algorithms in the literature

(e.g. [153, 168, 32, 112, 113, 156]) is the assumption that
the propagation of a crack stops when it meets another

one. The various successful applications of these track-

ing algorithms show that this choice can be valid, or a

least not detrimental, for structural applications under

monotonic loading. Contrariwise, the experience of past

earthquakes demonstrates that cyclic loading of con-

crete and masonry structures may cause complex crack-

ing and situations including crack opening and closing

as well as crack intersection. This section deals with the

application of tracking algorithms to cases with cyclic

loads, and outlines the algorithmic issues that have to

be addressed for modelling the aforementioned cracking

phenomena.
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Fig. 44. Illustration of a case (a) prior and (b) after the intersection of two cracks as modelled by the local tracking algorithm.

6.1 Crack intersection

The modelling of cracking using the smeared crack ap-
proach allows the straightforward extension of the crack
propagation strategy presented in Section 6.1 for sim-

ulatings crack intersection. The procedure is presented

in Fig. 44, where a propagating crack (in red) starting

from the crack-tip element “i ” meets an existing crack

(in blue) towards its propagation. As shown in Fig. 44a,

the crack propagation direction at the current crack-
tip element “j ”, which is a part of the existing crack,

is defined in the same way as for intact elements. Note
that the crack propagation direction is computed con-
sidering the values of the effective stresses, which makes
possible its definition even if the common element is

completely damaged. In the same manner, the crack

continues its propagation through the existing crack as

shown in Fig. 44b, with the elements “j ” and “k ” being

common crack elements now.

As it can be seen from the above procedure, the

modelling of crack intersection can be easily pursued
in the context of a smeared crack approach. On the
contrary, in discrete crack approaches the simulation of
crack intersection requires changes at nodal or elemen-

tal level (see [255, 154]) to enable the modelling of the

different kinematics induced by the intersecting cracks.
Another challenge in discrete crack approaches concerns

the proper calculation of the stress intensity factors

and, consequently, the computation of the propagation

direction, which may necessitate the mesh refinement

in the crack-tip zone [86]. Nevertheless, it should be

noted that in smeared crack approaches the correct
crack propagation relies on the accurate strain local-
ization, which depends strongly on the kinematics of

the chosen finite elements. In the presented tracking

algorithm, local errors in the crack propagation direc-

tion can be potentially corrected through the maximum

curvature criterion (see Section 4.6).

As soon as cracks can intersect, an element may be-

long to more than one crack, implying that it will have

as many crack-entry points as the number of the cracks

crossing it. It is recalled that the storage of the crack-

entry point is necessary for three functions. The first

one is when the element is the crack-tip of a crack and

thus the crack-entry coordinates are necessary to iden-

tify the starting point for the crack propagation. The

second one is to check crack path continuity (Section

4.5.2), while the third function concerns the use of the
maximum curvature criterion (Section 4.6). In the max-

imum curvature criterion, the crack-entry points at el-

ements on the wake of the crack-tip are recovered in

order to opportunely correct the propagation of the

crack. To this aim, a proper matrix is implemented

to save the potential crack-entry coordinates for each

side of the element. In the case that more than one
cracks enter from the same side, two options are possi-
ble: (i) to add elements in the matrix corresponding to

each new crack-entry coordinates, (ii) to use an average

crack-entry point for that side. The first choice favours

accuracy, but increases the numerical cost since there

is the need for dynamically allocating memory, as well

as the use of additional arrays to associate the crack-

entry point with the number of each crack. Due to the

above, the second choice has been selected in this work

in favour of computer memory usage and robustness,

which are necessary for the analysis of structures with

a large number of cracks.

6.2 Crack nucleation - Multi-directional tracking

The criteria for crack initiation, presented in Section

4.1, define that new cracks can start at a certain dis-

tance from existing ones, which is determined by the

exclusion radius rexcl. As shown in Section 5, this pro-

cedure is robust for structural cases with monotonic
loading, where the crack directions do not show sudden

changes during the loading history (see also other appli-
cations in [32, 160, 273, 274, 114, 275]). However, cyclic

loading (e.g. due to earthquakes) may induce multi-

directional cracking with cracks initiating at the same

region of existing cracks but with a different propagat-
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Fig. 45. Example of cracking under the shear loading of a
wall: (a) opening of a crack during the loading towards the
left, (b) closing of the crack when returning to the initial
configuration and (c) opening of a second crack, diagonal to
the first during the reverse loading.

ing direction. This phenomenon is illustrated in Fig.

45, showing a masonry wall under the effect of cyclic

shear loading at its top (restraining the rotation). The
top displacement towards the left produces a diagonal

shear crack, starting from the middle of the wall and

propagating towards its two opposite corners (Fig. 45a).

Unloading finds the wall at its initial configuration with
the crack closed, illustrated in Fig. 45b. Loading to-

wards the right results in the opening of a new crack
at the centre of the wall that propagates diagonally
producing the common X-crack pattern of unreinforced

masonry walls (Fig. 45c).

The simulation of such cases needs a different ap-

proach for crack initiation compared to the one pre-

sented in Section 4.1. For instance, in the specific case

of the shear wall of Fig. 45, the crack initiation criterion
should allow the initiation of the second crack at the fi-

nite element that satisfies the failure criterion after the
reversal of the loading cycle, without considering if this
lies within the exclusion radius area of the first crack.

For the simulation of cases involving the nucleation

of cracks due to different stress-states at a region of

existing cracks, the authors have proposed the catego-

rization of cracks into active and inactive [116]. To this

aim, two versors are used:

– Crack direction (v̂cr): is a versor denoting the av-
erage direction of a consolidated crack. The crack

direction of a crack is calculated using the co-
ordinates of its two ends. These are the coordi-
nates of the crack origin and the crack-tip for
single-direction propagating cracks (with a bound-

ary crack-root), and the coordinates of the two

crack-tips for double-direction propagating cracks

(with an internal crack-root).

– Crack closure direction (v̂cl): is a versor denoting

the average direction orthogonal to the maximum

principal effective stress (or strains) of all the ele-

ments within the crack. It is equivalent to an av-

erage crack propagation direction obtained consid-

ering the effective stress state of all the elements

within a crack.

The crack direction and crack closure direction ver-
sors are updated at the end of each analysis step for all

the consolidated cracks. A crack i is defined as active if
the angle between its crack direction versor v̂icr and its

crack closure direction versor v̂icl is lower than a prede-

fined limit angle αlim. The crack status can be formally

expressed through the use of the following function

Hi[|v̂icr · v̂
i
cl| − cos(αlim)] =

{

0 : Inactive crack

1 : Active crack
(23)

where (·) is the dot product, the subscript i = 1, Ncr is

used to denote the versor values for each crack of the
total existing cracks Ncr and H[•] is the Heaviside step

function

H[x] =

{

0 for x < 0

1 for x ≥ 0
(24)

Following the above, an element is a crack-root when
all of the following criteria are satisfied:

(i) The failure condition, as defined by the constitutive
model (Eq. 20), is satisfied.

(ii) There is no active crack within an area defined by

the exclusion radius rexcl.

(iii) There is no crack within an area defined by the ex-

clusion radius rexcl with a crack direction making

an angle with the crack propagation direction of the

crack-root lower than the limit angle αlim.

The first two conditions imply that new cracks

can initiate at locations where the current stress-state

has resulted in the closing of the pre-existing cracks.

The third one prevents the presence of spurious crack-

ing with similar direction to consolidated neighbouring
cracks.

To illustrate this, Fig. 46 presents how the algorithm

models the two shear cracks at the middle of the wall for

the example of Fig. 45. Fig. 46a shows the stress-state
within the crack at the moment of the opening of the

crack during the movement towards the left. The two

versors of the crack (v̂cr and v̂cl, shown in one of the two

crack-tips of the crack) coincide, as the crack direction

has been defined according to the crack-propagation di-

rection of each element within it. The crack is active and

can continue its propagation. Figure 46b presents the
stress state for a step during the reversal of the cycle.

The wall now is deforming towards the right and the

existing crack is closed. This can be seen looking at the

directions of the principal stresses which have rotated

compared to when the crack was open. The crack clo-

sure (v̂cr) and crack direction versors (v̂cl) form an angle
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Fig. 46. Crack propagation in the middle of a shear wall: (a) propagation of a shear crack for the loading towards the left,
(b) deactivation of the crack due to the change in the stress state, (c) initiation and propagation of a second crack next to the
inactive one.

which is greater than the limit angle αlim. The existing

crack is therefore identified as inactive, and new cracks

are allowed to open. This happens at a later instance,

shown in Fig. 46c, when a crack initiates very close to

the existing crack and propagates thereafter.
The use of a limit angle as a way to identify the

closure of existing cracks and the possibility of new

ones to open, was introduced at constitutive level in the

smeared crack models by de Borst & Nauta [20]. Sim-

ilarly, Song & Belytschko employed a threshold angle
for allowing the initiation of crack branching in propa-

gating cracks [98] under dynamic fracture.

7 Structural application under cyclic loading

This section presents an application (detailed in [116,

260]) of the presented tracking algorithm to a case with

intersecting cracking under cyclic loading. This an un-
reinforced masonry wall that was tested under quasi-

static in-plane cyclic shear loading by Anthoine et al.
[276, 277].

The experimental set-up is presented in Fig. 47.

The wall was built in an English bond pattern with

unit dimensions of 55 × 120 × 250 mm3 and 10 mm

mortar joint thickness, resulting in a specimen with
width of d = 1.00m, height h = 1.35m and thickness

w = 0.25m. The effect of an earthquake action on the

wall was investigated through the application of a hor-
izontal displacement at the top in a cyclic fashion with

increasing magnitude. During the whole experiment a

constant vertical load of 150 kN was applied at the top

of the wall, while proper boundary conditions were used

to avoid its top and bottom rotation.

The wall is discretized using 5470 constant strain

triangles (2836 nodes) and analysed under plane stress

conditions. The material parameters are presented in

Table 2 and have been selected according to the avail-

able experimental data on stack bond prisms reported

in [278, 279]. The not available data have been defined

according to the discussion presented in [116, 260] for
calibrating the shear response of the model. Regard-

ing the tracking parameters, the exclusion radius has
been set equal to rexcl = 200mm, which is a value be-

tween the length and the width of the bricks, while the
parameters for the maximum curvature criterion are

αmax = 25◦, rneigh = 600 mm. The limit angle used

for the activation-deactivation of the cracks under the
cyclic loading is αlim = 40◦.

Figure 48 presents the numerical results in terms of

tensile and compressive damage, as well as the maxi-
mum principal strains at the end of the analysis. The

contour of the tensile damage in Fig. 48a reveals that

important cracking has affected the structure during

the loading history, with horizontal cracks at the bot-

tom and top ends and the left and right sides of the

wall, and diagonal shear cracks in the middle. Never-

theless, the compressive damage and maximum prin-

cipal strains contours (Figs. 48b,c) reveal that the
main degradation of the wall is due to a X-crack pat-

tern, which typically characterizes unreinforced ma-

sonry walls under seismic loading. This dominating

shear failure is depicted in the force-displacement graph
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Fig. 47. Experimental set-up of the tested masonry wall. (Image from Anthoine [277]).

Table 2. Material parameters adopted in the simulation of the masonry shear wall.

f+ f− G+

f G−

f E ρ v β κ1

[MPa] [MPa] [J/m2] [J/m2] [MPa] [kg/m3] [−] [−] [−]

0.15 6.2 80.0 14000 1490 1750 0.2 0.95 0.15

Fig. 48. Contours of: (a) tensile damage d+, (b) compressive damage d−, and (c) the maximum principal strains at the end
of the analysis.

of Fig. 49. The structural response is characterized by
a softening behaviour with appreciable energy dissipa-

tion after reaching the maximum capacity for a dis-

placement of 3 mm.

The performance of the proposed approach for the

crack-activation and deactivation can be appreciated in
Figs. 50, 51, which present the crack state and the dam-

age pattern at different instances of the loading history.

During the first cycle, shown in Fig. 50, the loading to-

wards the right produces three cracks, one at the top

right and lower left corners and an internal crack start-

ing from the middle of the wall. These cracks progres-

sively close during the load reversal, and are recognized

as inactive by the tracking algorithm. Their deactiva-

tion allows new ones to appear at the boundaries and

centre of the wall. Fig. 51 shows the crack state and the

cracking of the wall for the cycle with ±3.0mm max-

imum top displacement. Despite the important crack-

ing, the tracking algorithm can capture correctly the
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Fig. 49. Force against horizontal displacement graphs for the
masonry shear wall obtained through the numerical analysis.

changes in the stress state within the wall and recog-
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Fig. 50. (a) Tensile damage contour d+ and (b) crack state
during the first loading cycle for the maximum displacement
towards the right (left column) and the maximum displace-
ment towards the left (right column) (deformed mesh ×100).

nize correctly the active and inactive cracks according

to the loading direction and their open or close con-

figuration respectively. During this cycle, the diagonal

shear cracking at the middle of the wall reaches the

top and bottom ends, and results in the drop in the

structural capacity as shown in Fig. 49.

8 Large-Scale structural application

Large-scale problems with extensive cracking are a big

challenge for tracking algorithms. Such cases necessitate

numerical models that are capable of handling multiple

and arbitrary crack initiation and propagation, allow-

ing for crack intersection and showing the necessary ro-

bustness and efficiency. This section outlines a relative
application of the tracking algorithm to a large-scale
structure presented in [257].

The structural application deals with the pushover

analysis of an interior structural wall of an unreinforced

masonry building situated in Via Martoglio, Catania

Italy [280]. This is a well-known case study in the

literature, analysed with diverse numerical tools ori-

ented to the simulation of masonry structures (e.g.

[280, 281, 282]).

Figure 52 illustrates the geometry of the analysed

structure and the distinguishing structural elements.

Fig. 51. (a) Tensile damage contour d+ and (b) crack state
for a maximum displacement of +3.00mm (left column) and
−3.00mm (right column) (deformed mesh ×50).
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Fig. 52. Geometry (in cm) and material distribution of the
analysed wall.

Table 3. Materials assigned to the different structural ele-
ments of Model-A and Model-B.

Material Model A Model B

A Walls & Floors Walls

B Lintel Floors & Lintel

The floors are constructed with clay brick vaults sup-

ported on concrete girders, while the roof is a timber

structure. Since no information is available regarding
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Fig. 53. Tensile damage (first row) and maximum principal
strains (second row) at the end of the analysis for (a) Model
A and (b) Model B.

the floor’s rigidity, two models are considered with dif-

ferent material properties for the floors (see Table 3).

The first one (denoted hereafter as Model A) adopts

the existence of a flexible diaphragm and is prepared

using the same material parameters for both masonry

walls and floors (Material A in Table 4). The second

model (denoted hereafter as Model B) intents to sim-
ulate the effect of a stiff diaphragm and the floors are

modelled as linear elastic having the double stiffness of
masonry’s one (Material B in Table 4). In both mod-

els the concrete lintel above the central opening at the

ground floor has been simulated also as linear elastic.

A value of 0.45 is assigned to κ1 parameter resulting

in a shear strength of 0.15 MPa, which is the value
used in [280, 281]. As the previous case study (Section

5), the exclusion radius is defined equal to the bricks
length rexcl = 250mm, while the rest of the track-

ing parameters are αmax = π/4 and rneigh = 500mm.

Multi-directional crack initiation is not considered for

this case, due to the monotonic nature of the applied

loading.

The structure is discretized using an unstructured

mesh with 51052 constant strain triangles (26538

nodes) and plane stress conditions are adopted. The

effect of an earthquake is simulated by means of a
non-linear equivalent static analysis (pushover analy-
sis), which is carried-out in two stages. In the first one,

the self-weight of the walls and floors is applied, as well

as the live load as defined in [280]. In the second stage,

horizontal forces are applied at the level of each floor.

This loading pattern is proportional to the height and

the vertical loading of each floor as suggested in [283].

Figure 53 shows the results obtained with the two

models in terms of tensile damage (first row) and max-
imum principal strains (second row). The different as-
sumptions regarding the floor parameters result in dis-

tinct structural responses by the two models. In Model

A, the spandrels above the openings are the most

severely damaged elements, exhibiting important ver-

tical cracking. The absence of the consolidating action

from a stiff diaphragm allows the free rotation of the

piers as soon as the cracks in the spandrels are com-

pletely open. As a result, the last three vertical piers

of the right side rotate as cantilevers around their base

with almost no interaction among them. Failure of the

structure is eventually determined by the collapse of

the right side, as shown in the second row of Fig. 53a.
Contrary to Model A, the modelling of a stiff linear

elastic floor in Model B mobilises the shear response

of both spandrels and walls. This is demonstrated by

the diagonal cracking experienced by these elements in
Fig. 53b (first row). Collapse in this case is due to the

shear failure of the piers at the base of the structure

(see second row of Fig 53b).

The above results illustrate the capacity of tracking

algorithms to handle cases with an extensive number of
cracks. The numerical stability can be appreciated in
Fig. 54, which presents the obtained base shear against

horizontal displacement graphs for Model A and B. In

both cases, the complete loading history with an im-

portant part of the post-peak response could be repro-

duced. Moreover, the numerical model is capable of re-

producing the change in structural response according

to the adopted assumption on the floors rigidity of the

two models.
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Table 4. Material parameters adopted in the numerical simulations of the large-scale structural wall.

Material f+ f− G+

f G−

f E ρ v

[MPa] [MPa] [J/m2] [J/m2] [GPa] [kg/m3] [−]

A 0.10 3.0 100 50000 2.5 1700 0.2
B [-] [-] [-] [-] 5.0 1700 0.2

The effect of directional mesh-bias dependency is

also investigated in this large-scale application. To this

aim Model A is analysed with two different mesh ty-

pologies, presented in Fig. 55. The results without and

with the tracking algorithm are shown in Fig. 56 and

Fig. 57, respectively. It can be appreciated in Fig.

56 that the solutions without the tracking algorithm

are severely biased by the mesh-directionality. For the

structured mesh vertical cracking affects the spandrel,

while for the unstructured one the cracks in the span-

drels are mainly diagonal. The tracking algorithm alle-

viates significantly the mesh-bias dependency as can be

appreciated in Fig. 57. For both cases, the same vertical
flexural cracking is predicted in the spandrels, which is

the expected damage due to the absence of a stiff di-

aphragm. This effect is also shown in the graphs of Fig.

58. The mesh-bias dependency in the analyses without

the tracking algorithm gives an important difference in

the capacity and post-peak response. On the contrary,

the analyses performed using the tracking algorithm are

consistent among them.

Fig. 55. Close-up of the two meshes used for the analysis of
Model A: (a) structured, (b) unstructured.

9 Conclusions

Finite element modelling of cracking in quasi-brittle

materials counts almost six decades of applications.

During this period, a wide range of numerical strate-

gies have been proposed with different levels of accuracy

Fig. 56. Simulation of Model A using the classical smeared
crack approach without the tracking algorithm. Tensile dam-
age (first row) and maximum principal strains (second row).
(a) Unstructured mesh for a horizontal displacement of 15.4
mm (Point A in Fig. 58). (b) Structured mesh for a horizontal
displacement of 15.5 mm (Point B in Fig. 58).

Fig. 57. Simulation of Model A using the proposed tracking
algorithm. Tensile damage (first row) and maximum principal
strains (second row). (a) Unstructured mesh for a horizontal
displacement of 20.9 mm (Point C in Fig. 58). (b) Structured
mesh for a horizontal displacement of 21.2 mm (Point D in
Fig. 58).

in crack representation and associated computational



38 Savvas Saloustros et al.

 0

 100

 200

 300

 400

 500

 600

 700

 0  5  10  15  20  25  30  35  40

B
as

e 
S

h
ea

r 
[k

N
]

Horizontal Displacement [mm]

C

D

A

B

Tracking Unstructured Mesh
Tracking Structured Mesh
No-Tracking Unstructured Mesh
No-Tracking Structured Mesh

Fig. 58. Base shear versus horizontal displacement at the
top right corner of the structure using two different meshes
(structured and unstructured), with and without the pro-
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cost. Despite the obtained experience, the realistic sim-

ulation of cracking is still a challenging issue.

Today there exist both numerical and physical chal-

lenges that need to be addressed for the finite element

simulation of propagating cracks. On the one hand,

probably the most important numerical challenge is the
overcoming of the directional mesh-bias sensitivity of
finite element solutions. This pathology has been the

driving force behind the development of different strain

localization techniques during the last three decades.

In addition to this, an important issue is the limita-

tion of the computational cost such that the developed

numerical strategy can be used by both researchers
and practitioners for the analysis of large-scale struc-
tures with multiple cracks. On the other hand, physical

challenges include, among others, the understanding of

phenomena associated with multiple crack nucleation,

crack-opening and closing, crack intersection, definition

of crack propagation direction and crack branching.

The available numerical approaches for the simu-

lation of propagating cracks can be categorized with

respect to the choice of the crack representation. This

is possible using a strong discontinuity (discrete crack
approach), weak ones (smeared crack approach), or a
combination of both (hybrid crack approaches). De-

spite their differences, many of these approaches have

as a common standpoint the use of tracking algorithms.

These are numerical procedures used to define the zones

within the structure that cracking is expected to occur.

In this way, the discrete or smeared crack modelling

of cracking is applied in a limited zone within the in-

vestigated structure. One of the most important bene-

fits of using tracking algorithms is the improvement of

the directional mesh-bias independency, experienced by

both discrete and smeared crack approaches, due to the

explicit definition of the crack location according to a
selected a-priori crack propagation strategy.

Tracking algorithms have seen many advances in the

last two decades. Considering the information necessary
for defining and storing the crack path, tracking algo-

rithms can be categorized as local, global and partial-

domain ones, while a special category are the ones based

on an underlying damage-related field.

An important part of every tracking algorithm is

the criterion used for selecting the crack propagation

direction. This can be based on linear elastic fracture

mechanics criteria, material bifurcation analysis or em-

pirical criteria. The topic is certainly not exhausted and

a wide variety of crack propagation criteria are used to-

day.

Contrary to monotonic loading, cyclic response is a

relatively unexplored territory for tracking algorithms.
Cases with cyclic loads necessitate to account for crack-
opening and closing, as well as crack intersection phe-

nomena. These phenomena are easier to simulate with

tracking algorithms based on a smeared crack approach

than with a discrete crack framework.

Some of the identified challenges for modelling

cracking with tracking algorithms have been addressed

in this paper through the presentation of a local track-

ing algorithm. Strategies for modelling arbitrary inter-

nal and boundary cracking, crack-path continuity, crack

intersection, crack opening and closing, as well as multi-

directional cracking have been detailed. The validity of
these strategies has been demonstrated through the pre-
sentation of four case studies with monotonic and cyclic

loading.
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Appendix A Continuum damage mechanics

model

A.1 Constitutive equation

The constitutive model used in this work is a contin-
uum damage model that distinguishes between tensile

(d+) and compressive damage (d−). The constitutive

equation is

σ = (1− d+) σ̄+ + (1− d−) σ̄−. (A.1)

The effective stresses (σ̄) are computed adopting a

strain equivalent hypothesis [284, 285] as

σ̄ = C0 : εe (A.2)

εe = ε− εi (A.3)

where C0 is the 4th order isotropic elastic constitutive

tensor, while ε, εe and εi are second order tensors repre-

senting the total, the elastic and the irreversible strains,

respectively. The split of the effective stress tensor into

a positive (σ̄+) and a negative part (σ̄−) is performed

according to Faria et al. [286, 13] as

σ̄+ =

3
∑

j=1

〈σ̄j〉 pj ⊗ pj (A.4)

σ̄− = σ̄ − σ̄+. (A.5)

In the above equations, σ̄j is the principal effective

stress corresponding to the eigenvector pj of the effec-
tive stress tensor and the symbols 〈·〉 are the Macaulay

brackets (〈x〉 = x, if x ≥ 0 ,〈x〉 = 0, if x < 0).

A.2 Damage criteria

Loading, unloading and reloading conditions are distin-

guished with the use of two scalar positive quantities,

one for tension τ+ and a second for compression τ−,

termed as equivalent stresses. Their values are defined
according to the following functions proposed by Pe-
tracca et al. [287, 288]

τ+ = H0 [σ̄max]

[

1

1− a

(

aĪ1 +
√

3J̄2 + b〈σ̄max〉
) f+

f−

]

(A.6)

τ− = H0 [−σ̄min]

[

1

1− a

(

aĪ1 +
√

3J̄2 + κ1b〈σ̄max〉
)

]

(A.7)

a =

(

f−b /f
−
)

− 1

2
(

f−b /f
−
)

− 1
(A.8)

b = (1− a) f−/f+ − (1 + a) . (A.9)

In the above, f+ and f− stand for the tensile and com-

pressive uniaxial strengths, respectively, and f−b for the
biaxial compressive strength. Ī1 is the first invariant of

the effective stress tensor and J̄2 the second invariant

of the deviatoric effective stress tensor. The κ1 variable

in Eq. (A.7) was introduced in [287, 288] as a way to
control the shape of the compressive damage surface

in the shear quadrants, and through this the dilatant
behaviour of the material under shear stress states. Its
value varies between 0 (i.e. the Drucker-Prager crite-

rion) and 1 (i.e. the criterion proposed by Lubliner et

al. [15]). Finally, σ̄max and σ̄min designate the maxi-

mum and minimum principal effective stresses respec-
tively, whereas H0 is the specific Heaviside function

(H0[x] = 1 forx > 0 andH0[x] = 0 forx ≤ 0). The evo-

lution of tensile and compressive damage is controlled
with two damage criteria (Φ±), which are defined as

Φ±(r±, τ±) = τ± − r± ≤ 0. (A.10)

The stress thresholds (r±) are internal stress-like vari-
ables representing the current damage threshold. Their
initial values are equal to the uniaxial tensile and com-

pressive strength at the moment of damage initiation

r±0 = f±. After damage is triggered, both thresholds

become equal to the maximum attained values by the

equivalent stresses and can be explicitly computed for

a generic time instant t as

r±t = max

[

r±0 , max
i∈ (0,t)

(

τ±i
)

]

. (A.11)

A.3 Irreversible strains

The irreversible strains are considered as an internal

variable with the following evolution law proposed in

[116]

∆εin+1 = β
r( ˜̄σn+1)− rn

rn+1
εen+1. (A.12)

where ˜̄σn+1 are the trial effective stresses and r( ˜̄σn+1)

the equivalent stress threshold computed as

˜̄σn+1 = (σ̄|∆ε
i=0)n+1 = σ̄n +C0 : ∆εn+1 (A.13)

r( ˜̄σn+1) = max
[

rn, τ( ˜̄σn+1)
]

. (A.14)

The parameter β = [0, 1] is used to determine the mag-

nitude of the incremental irreversible strains. For β = 0

no increment of irreversible strains is considered, while

for β = 1 the total strain increment is irreversible. Nu-

merically, the effect of the irreversible strains is consid-
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ered through the update of the effective stresses accord-

ing to the following expressions (see [116, 260])

σ̄n+1 = λ ˜̄σn+1 (A.15)

λ = 1− β

(

1−
rn

r( ˜̄σn+1)

)

. (A.16)

A.4 Damage variables

The damage variables are defined according to the ex-

ponential softening law proposed in [289]

d+ = 1−
r+0
r+

exp

{

2H+
d

(

r+0 − r+

r+0

)

}

r+ ≥ r+0 .

(A.17)

Tension and compression evolution laws consider the

positive G+
f and negative G−

f fracture energies, respec-

tively, as well as the characteristic finite element width

ldis through the corresponding discrete softening pa-

rameterH±

d ensuring mesh-size independent energy dis-

sipation according to the crack-band theory [5]. For the
case of tension this is

H+
d =

ldis

l+mat − ldis
(A.18)

For the case of compressive damage, the expression pro-
posed in [116, 260] is used to compute the discrete soft-

ening parameter H−

d

H−

d =
1

1− β

(

ldis

l−mat − ldis

)

(A.19)

The above definition is consistent with the crack band-

width approach yielding objective results for different

values of β by considering the contributions to the dissi-
pated energy of the evolution of the irreversible strains

and the compressive damage. In the above, the material

characteristic length l±mat for tension and compression

is

l±mat =
2EG±

f

(f±)
2 . (A.20)

The current work considers the use of constant strain

triangles for which the characteristic finite element

length has been considered as ldis =
√

2Afe, with Afe

representing the area of the finite element. This is a

standard procedure that can be refined to consider the

crack direction and the finite element size according to

references [290, 110, 291].
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