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Abstract. In this paper, we consider personalized recommendation sys-
tems in which before publication, the profile of a user is sanitized by a
non-interactive mechanism compliant with the concept of differential pri-
vacy. We consider two existing schemes offering a differentially private
representation of profiles: BLIP (BLoom-and-flIP) and JLT (Johnson-
Lindenstrauss Transform). For assessing their security levels, we play
the role of an adversary aiming at reconstructing a user profile. We com-
pare two inference attacks, namely single and joint decoding. The first
one decides of the presence of a single item in the profile, and sequentially
explores all the item set. The latter strategy decides whether a subset
of items is likely to be the user profile, and considers all the possible
subsets. Our contributions are a theoretical analysis as well as a prac-
tical implementation of both attacks, which were evaluated on datasets
of real user profiles. The results obtained clearly demonstrates that joint
decoding is the most powerful attack, while also giving useful insights on
how to set the differential privacy parameter ε.

Keywords: Differential privacy, Joint decoding.

1 Introduction

Most of the social applications, like recommender systems or private matching,
require computing some kind of pairwise similarity between the profiles of dif-
ferent users. Some of the challenges that such systems face include privacy and
scalability issues. For instance, privacy concerns arise naturally due to the poten-
tially sensitive nature of profiles, and some users may even refuse to participate
if they have no guarantees on the privacy of their profiles.

To address these concerns, the concept of differential privacy [1] has been in-
troduced by Dwork in the context of private analysis on statistical databases and
has known a widespread adoption in the privacy community. In a nutshell, the
main privacy guarantee provided by differential privacy is that for any compu-
tation that will be performed on the database, adding or removing a single row
from the database will not significantly change the probability of a particular
output. Usually, the database is composed of the collection of the individuals’
data, and differential privacy protects the privacy of a particular individual,
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which corresponds to a row of the database. In contrast in our context, the
“database” is actually the profile of an individual (e.g., composed of the items
he has liked) and therefore the guarantees provided by differential privacy applies
to the protection of the items contained in the profile.

One of the usual limits of differential privacy is that each time a differentially
private computation takes place, the user loses a little bit of privacy (as measured
by the value of the privacy parameter ε). Therefore, if this computation takes
place too many times, the user may spend all his privacy budget and remains
with no privacy left. The adversary is then able to reconstruct almost entirely
the user’s profile. One possible approach to solve this problem is to sanitize the
profile of a user with a non-interactive mechanism compliant with the concept of
differential privacy before his publication. In particular, this paper investigates
the privacy guarantees offered by two non-interactive mechanisms offering a
differentially private representation of profiles: BLIP (BLoom-and-flIP) [2] and
JLT (Johnson-Lindenstrauss Transform) [3].

In this paper, we propose two inference attacks that help to assess the privacy
guarantee provided by the BLIP and JLT mechanisms. We provide an analysis of
the utility and the protection offered by BLIP and JLT against these attacks, by
deriving theoretical bounds on the resulting approximation error generated by
a specific value of the privacy parameter. Furthermore, we evaluate experimen-
tally the trade-off between privacy and utility achieved by these mechanisms.
These attacks helps to better understand the privacy guarantees offered by a
differentially-private mechanism, while also enabling the privacy practitioner to
tune ε experimentally.

A detailed survey on inference attacks on sanitized data can be found in [4]
and [5]. Common attacks include eigen-analysis [6,7], MAP estimation [7], In-
dependent Component Analysis (ICA) [8] and distribution analysis [9]. MAP
estimation and ICA make direct assumptions on the distribution of the original
data, whereas distribution analysis and our approach estimate it from publicly
available information. In addition, eigen-analysis makes even stronger assump-
tions on the representation of data and thus is not generic enough to apply
to representations studied in this paper. Furthermore, the possibility of using
probabilistic inference techniques to attack sanitized histogram data has been
illustrated in [10] and [11]. In these works, bounds of records count are esti-
mated from histogram of attributes coming from a Markov Chain Monte Carlo
(MCMC) simulation. This line of work is different from our approach aiming at
reconstructing a user profile from perturbed data. Application of probabilistic
inference techniques for parameter estimation on differentially private data is
illustrated in [12]. In this work, the authors have also experimentally validated
their approach using MCMC on parameter estimation of logistic regression and
probabilistic inference of principal components. Although their objective was not
directly the reconstruction of data, their approach demonstrates that probabilis-
tic inference is possible on differentially private data.

The outline of the paper is the following. First in Section 2, we give an overview
of the concept of differential privacy. Then, we describe two non-interactive



148 R. Balu, T. Furon, and S. Gambs

differentially private mechanisms in Sections 3 and 4 that have been recently pro-
posed: BLIP (BLoom-and-flIP) [2] and one based on the Johnson-Lindenstrauss
Transform (JLT in short) [3]. These mechanisms transform the profile of a user
into a compact representation that estimate the similarity between profiles while
hiding the presence or absence of a particular item in the profile (in the sense
of differential privacy). Afterwards in Section 5, we provide a theoretical anal-
ysis showing that the joint decoding strategy is more powerful than the single
decoding strategy in reconstructing the profile of a user. Finally in Section 6,
we propose a tractable implementation of this strategy based on the MCMC
algorithm before reporting in Section 7 the results on two real datasets.

2 Differential Privacy

In this paper, we are interested in a strong privacy notion called differential pri-
vacy [1]. Differential privacy aims at providing strong privacy guarantees with
respect to the input of some computation by randomizing the output of this com-
putation, and this independently of the auxiliary information that the adversary
might have gathered. In our setting, the input of the computation is the profile
of a user and the randomized output will be a perturbed version of a compact
representation of this profile (e.g., a Bloom filter or a random projection).

Two profiles x and x′ are said to differ in at most one element or said to be
neighbors if they are equal except for possibly one entry.

Definition 1 (Differential privacy [13]). A randomized function F : Dn →
Dn is ε-differentially private, if for all neighboring profiles x,x′ ∈ Dn and for
all t ∈ Dn:

P[F(x) = t] � eε · P[F(x′) = t] .

This probability is taken over all the coin tosses of F and e is the base of the
natural logarithm.

The parameter ε is public and may take different values depending on the appli-
cation (for instance it could be 0.1, 0.25, 1.5 or even 10). The smaller the value
of ε, the higher the privacy but also as a consequence the higher the impact
might be on the utility of the resulting output. A relaxed notion differential pri-
vacy called (ε,δ)-differential privacy [14], can be seen as a probabilistic variant
in which the guarantees of differential privacy hold with probability of 1− δ.

Originally, differential privacy was developed within the context of private
data analysis and the main guarantee is that if a differentially private mecha-
nism is applied on a dataset composed of the personal data of individuals, no
output would become significantly more (or less) probable whether or not a sin-
gle participant contributes to the dataset. This means that observing the output
of the mechanism only gains negligible information about the presence (or ab-
sence) of a particular individual in the database. This statement is a statistical
property about the behavior of the mechanism (i.e., function) and holds inde-
pendently of the auxiliary knowledge that the adversary might have gathered.
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More specifically, even if the adversary knows the whole database but one indi-
vidual row, a mechanism satisfying differential privacy still protects the privacy
of this individual row. In our setting, the database that we want to protect is
the profile of a user and the objective of a differentially private mechanism is to
hide the presence or absence of a particular item in the profile.

Dwork, McSherry, Nissim and Smith have designed a generic technique, called
the Laplacian mechanism [13], that achieves ε-differential privacy for a function
f by adding random noise to the true answer of f before releasing it. Subse-
quently, McSherry and Talwar have proposed the exponential mechanism [15]
which unlike the Laplacian mechanism that works only for functions with nu-
merical output, provides differential privacy for functions whose output is more
structured (e.g., graphs or trees). Both previous mechanisms (i.e., Laplacian and
Exponential mechanisms) are interactive as they require a two-way communica-
tion protocol between the curator (the entity in charge of the database) and the
client performing the query. Therefore, the curator has to be online in order to
receive the query and prepare the associate response to this query.

On the other hand, a non-interactive mechanism computes some function
from the original database and releases it once and for all, which corresponds to
a one-way communication protocol. The output released by the non-interactive
mechanism can later be used by anyone to compute the answer to a particular
class of queries (usually not just a single specific query), without requiring any
further interactions with the curator. It is important to understand that the
answer is computed from the output released by the non-interactive mechanism,
thus after publishing this output the curator can go offline. One particular type
of non-interactive mechanism is the generation of a synthetic dataset that allows
the answer to certain class of queries (but not necessarily all) to be approximated.
Examples of non-interactive mechanisms for differential privacy include [16,17].

In the next sections, we describe two non-interactive mechanisms that have
recently been proposed. The first mechanism is based on randomizing a Bloom
filter representation of the profile [2] while the second relies on the application of
the Johnson-Lindenstrauss transform and the addition of noise [3]. Both mecha-
nisms preserve some global properties such as the ability to compute a distance
between two profiles while hiding the details of the profiles themselves.

3 BLIP

The main objective of BLIP [2] is to prevent the adversary from learning the
presence (or absence) of an item in the profile of a user by observing the Bloom
filter representation of this profile. Our theoretical analysis provided in Section 5
is based on the model of profiles and the BLIP sanitization described thereafter.

3.1 Setup of BLIP

The setup that we consider for the theoretical analysis is the following. We
assume that a profile P is a list of c items randomly picked from a set of N ∈
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N
� possible items: P = {j1, . . . , jc}. We denote the set of items by [N ], with

[N ] � {1, . . . , N} and the set of all possible profiles by P . This set is a subset
of the power set of [N ] and we have |P| = (

N
c

)
. For the moment, we make the

assumption that c is publicly known, but this hypothesis will be lifted later by
inferring this value directly from the Bloom filter.

The profile is first encoded in the form of a Bloom filter, which is a binary
string of L bits. Each item j ∈ P is hashed through K different hash functions
(h1, . . . , hK). Each hash function yields a position hk(j) in the Bloom filter,
pseudo-randomly selected based on the identifier of the item j. One simple tech-
nique to implement this is to rely on K cryptographic hash functions modulo L.
We call the codeword Xj associated to item j the following string of L bits:

Xj(�) =

{
1 if ∃k ∈ [K] such that hk(j) = �,
0 otherwise.

(1)

The Bloom filter associated to the profile P = {j1, . . . , jc} is denoted by BP

and computed as the aggregation of the codewords:

BP = Xj1 ∨ . . . ∨Xjc , (2)

in which ∨ denotes the bit-wise (inclusive) OR operator. Our presentation of
Bloom filters is different than usual to stress the link with our general problem.

The BLIP mechanism adds noise to the Bloom filter representation of a profile
before publishing it. We denote the output of BLIP by B̃P :

B̃P = BP ⊕N, (3)

in which ⊕ corresponds to the bit-wise logical (exclusive) XOR operator andN ∈
{0, 1}L is a random binary string of size L, whose symbols are i.i.d. (independent
and identically distributed) as a Bernoulli distribution B(pε) (i.e. , N(�) ∈ {0, 1}
and P[N(�) = 1] = pε, ∀� ∈ [L]). Alaggan, Gambs and Kermarrec [2] proved that
the BLIP mechanism ensures ε-differential privacy for the items of the profile if

pε = 1/(1 + eε/K). (4)

3.2 The Simple Model

We assume that the hash functions produce independently random outputs,
which means that the probability that hk(j) “points” to a given index is 1/L.
This assumption implies that the bits of the codewords can be modeled as in-
dependent Bernoulli random variables: Xj(�) ∼ B(p), ∀(j, �) ∈ [N ] × [L] with

p � P[Xj(�) = 1] = 1−
(
1− 1

L

)K

. (5)

For a random P composed of c items, we have BP (�) ∼ B(πc), ∀� ∈ [L], with

πc � P[BP (�) = 1] = 1− (1 − p)c = 1−
(
1− 1

L

)cK

. (6)
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As for the BLIP, B̃P contains i.i.d. random symbols B̃P (�) ∼ B(π̃c) with

π̃c � P[B̃P (�) = 1] = (1− pε)πc + pε(1− πc). (7)

3.3 More Complex Models

This subsection presents two possible extensions of the simple model, in which
we no longer assume that c is fixed in advance and publicly known.

To account for this, we introduce the probability P[|P | = c], in which |P |
denotes the number of items in P . Then, we have to replace πc by:

πc → π =
∑

c>0

πcP[|P | = c]. (8)

This new expression leads to π̃ = (1− pε)π + pε(1− π). Not knowing c may not
be a big challenge for the adversary because he can easily infer the number of
items in a profile. The quantity ω(B̃P )/L, in which ω(.) is the Hamming weight
of a binary string (the number of bits set to one), is an unbiased estimator of
π̃c. Inverting (7) is possible when pε 	= 1/2 (i.e. , ε > 0) since pε is public:

π̂c =
ω(B̃P )/L− pε

1− 2pε
, (9)

which in turn gives an estimator ĉ by inverting (6). In the same way, a confidence
interval for π̃c based on ω(B̃P )/L yields a confidence interval [cmin, cmax] on c.

An even more refined model consists in taking into account the popularity of
the items. Indeed, popular items impact the Bloom filter by ensuring that some
of its bits are more likely to be set to one. To tackle this issue, we still pretend
that the bits are independent but distributed according their own Bernoulli
law: BP (�) ∼ B(π(�)), ∀� ∈ [L]. The same model holds for the BLIP symbols:
B̃P (�) ∼ B(π̃(�)), with π̃(�) = (1− pε)π(�) + pε(1− π(�)).

4 JLT

Kenthapadi and co-authors [3] proposed another mechanism to prevent the ad-
versary from learning the presence (or absence) of an item in the profile, although
their scheme tackles a different data type (i.e., real vector). In the sequel, we
denote this proposal by JLT because it is based on the Johnson-Lindenstrauss
Transform.

4.1 Description

The profile is encoded in the form of a real vector of length L as follows. A
codeword Xj associated to item j is a real vector. Its L components have been

independently and identically drawn such that Xj(i)
i.i.d.∼ N (0, 1/L), ∀(i, j) ∈

[L]×N . The codebook (X1,X2, · · · ,XN ) is generated once for all and is public.
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Profile P is encoded into vector YP =
∑

j∈P Xj , then the user adds a noise N

(private data) before publishing ỸP = YP +N. The authors of [3] recommend

a white Gaussian noise: N(i)
i.i.d.∼ N (0, σ2). According to [3, Lemma 2], if

L ≥ 2(log(N) + log(2/δ)), σ ≥ 4

ε

√
log(1/δ) and ε < log(1/δ) (10)

then this mechanism complies with (ε, δ)-differential privacy (for 0 < δ < 1).

4.2 A Simple Probabilistic Model

The adversary does not know the profile P and therefore he models the observa-
tion ỸP as a white Gaussian noise since ỸP is the sum of c+ 1 white Gaussian
noises. As these patterns are statistically independent, their powers sum up so

that ỸP (i)
i.i.d.∼ N (0, σ2 + c/L). We assume now that σ2 is a recommended noise

power, and thus that it is a public parameter. This allows the adversary to
estimate the number of items in profile P in the following manner:

ĉ =
L

L− 1

L∑

i=1

ỸP (i)
2 − Lσ2. (11)

Consider now the case in which the adversary knows that the item j is in the
profile. This knowledge stems into a refined statistical model of the observation:

ỸP (i)
i.i.d.∼ N (Xj(i), σ

2+(c−1)/L). In the same way, knowing the profile P ends

up with ỸP (i)
i.i.d.∼ N

(∑
j∈P Xj(i), σ

2
)
.

5 Theoretical Analysis

In this section, we propose two decoders that can be used by an adversary to
reconstruct the profile of a given user out of his public representation. This
analysis is detailed for the BLIP mechanism, but similar concepts hold for the
JLT scheme. The expressions of the information theoretical quantities are given
in Appendix A for BLIP and Appendix B for JLT.

5.1 Single Decoder

From the observation of one BLIPed representation b̃, the adversary would like
to infer which item belongs to the original profile. The adversary can conduct
this inference by analyzing the L symbols of b̃ and making an hypothesis test
about the presence of item j in the underlying profile.

– H0: Item j is not in the profile, which means that the observed BLIP
symbols are statistically independent from the symbols of codeword Xj :

P[B̃P (�), Xj(�)] = P[B̃P (�)]P[Xj(�)], ∀� ∈ [L].
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– H1: Item j belongs to P , and thus there is a slight dependency between the
symbols of the observed BLIP and that of codeword Xj : P[B̃P (�), Xi(�)] =

P[B̃P (�)|Xi(�)]P[Xi(�)], ∀� ∈ [L].

For a given item, this test may make two types of error: 1) False positive rate
α1: The probability of detecting the presence of an item that does not belong
to the profile; 2) False negative rate α2: The probability of missing the presence
of an item that belongs to the profile. Information theory gives an upper bound
on the performance of the test thanks to the Stein’s lemma. More precisely, for
a given α2, the probability of false positive cannot be lower than

α1 ≥ e−(I(B̃P ;X)+1)/(1−α2), (12)

in which I(B̃P ;X) is the mutual information between a BLIPed filter and the
codeword of an item of the profile.

This test concerns a particular item, but an adversary that wants to recon-
struct the whole profile needs to repeat it for the whole ensemble of size N . This
repetition increases the global probability of false positive η1:

η1 = 1− (1− α1)
N−c � Nα1, (13)

in which we assume that Nα1 � 1 and c � N . η1 is the probability that at
least one item not in the profile is detected as belonging to the profile. At the
end, for targeted error probabilities (α2, η1), inequality (12) constraints the size
of the item ensemble the adversary can deal with:

log(N) ≤ I(B̃P ;X)

1− α2
+ log η1. (14)

The last inequality stresses the important role of I(B̃P ;X). Appendices A
and B provide expressions of this quantity for the BLIP and JLT mechanisms.

5.2 Joint Decoder

Let us consider another strategy. From the observation b̃, the adversary would
like to test whether P was the original profile that gave birth to this BLIPed
representation. The difference with the previous approach is that the presence of
items are not tested independently but jointly, hence the name “joint decoder”.

Basically, the analysis is the same as previously except that the information
theoretic quantity is now I(B̃P ;P ) = I(B̃P ; (Xj1 , . . . ,Xjc)) and that the en-
semble of profiles is much bigger. Roughly, log(|P|) ≈ c logN , thus we have:

log(N) ≤ I(B̃P ;P )

c(1− α2)
+ log η1. (15)

Stated differently, the performance of this approach is driven by the quan-
tity I(B̃P ;P )/c. Theorem [18, Eq. (3.4)] states that I(B̃P ; (Xj1 , . . . ,Xjc))/c ≥
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I(B̃P ;Xj), which means that considering the items jointly yields better perfor-
mances. Appendices A and B provide expressions of this quantity for respectively
the BLIP and JLT mechanisms. For this first scheme, subsection A.2 shows that
the difference I(B̃P ; (Xj1 , . . . ,Xjc))/c − I(B̃P ;Xj) can be be substantial for
practical setups. We also provide upper bounds simply depending on ε.

6 Practical Decoders

The previous section can be summarized as follows: joint decoding is theoretically
more powerful than single decoding. However, no complexity argument has been
so far taken into account. This section deals with this issue by proposing practical
implementations of a single and a joint decoder. Again, we take the example of
BLIP but our approach is more generic as it works also with JLT.

6.1 Single Decoders

In practice, a single decoder computes from the observed BLIPed profile a score
sj for any item j ∈ [N ], which reflects the likelihood of belonging to the pro-
file (i.e., the most likely item has the highest score). The score is compared to
a threshold to decide whether or not the item should be included in the re-
constructed profile. The complexity of this single decoder is O(N) since it is
exhaustive and goes through all the possible items.

As a practical implementation, we propose the Maximum Likelihood decoder

in which the score sj = log P[B̃P =b̃|j∈P ]

P[B̃P =b̃]
equals, by independence of the symbols:

sj = n11 log
1− pε
π̃

+ n01 log
pε

1− π̃
, with: (16)

n11 = |{� ∈ [L]|b̃(�) = 1ANDXj(�) = 1}|, (17)

n01 = |{� ∈ [L]|b̃(�) = 0ANDXj(�) = 1}|. (18)

This decoder is derived from models that are more realistic in which πc ≈ πc−1 ≈
π, so that the score of item j only takes into account the (n11 +n01) symbols in
which Xj(�) = 1 (i.e., at most K symbols over L).

6.2 Joint Decoder

In practice, a joint decoder computes from the observed BLIPed filter a score
for any profile P ′ ∈ P , which reflects the likelihood that P ′ is the true profile.
This score is computed by taking into account L symbols but the complexity
of a joint decoder is proportional to |P| (i.e., O(N c)), which is computationally
expensive. Yet, there exists at least three possible approaches that approximate
joint decoding with a reasonable complexity: 1) Monte Carlo Markov Chain
(MCMC) [19,20], 2) Belief Propagation Decoder [21] and 3) Joint Iterative De-
coder [22].
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In this paper, we investigate the first approach. The MCMC decoder is based
on two key ideas. First, it receives as input an observed BLIPed filter b̃ and
then creates a Markov Chain that will be used to sample profiles according to
the posterior distribution P[P |b̃]. This sampling requires a burn-in period after
which the Markov Chain has converged. Once this convergence has occurred, it
samples profiles with the targeted posterior distribution. During a second phase,
some profiles are sampled and statistics are computed such as the marginal a
posteriori distribution P̂[j ∈ P |b̃] that item j belongs to the true profile.

Posterior distribution. The objective is to sample profiles according to the pos-
terior distribution P[P |b̃], which can be written as:

P[P |b̃] = P[B̃P = b̃|P ]P[P ]

P[B̃P = b̃]
. (19)

In this equation, P[P ] is the a priori probability of P . To simplify our pre-
sentation, we consider only the simple model exposed in Section 3.2. We de-
note by |P | the size of profile P (i.e., the number of his items), and we set by
P[P ] = 0 if |P | 	= c, and 1/|P| otherwise. Any profile is equally likely provided
it has exactly c items. When we use more realistic models in our experimental
work, the prior will be substantially different. We denote by ω(B) the Hamming
weight of a binary vector B (i.e., the number of bits set to 1). The probability
P[B̃P = b̃|P ] = P[N = BP ⊕ b̃] has the following expression

P[B̃P = b̃|P ] = pω(BP⊕b̃)
ε (1− pε)

L−ω(BP⊕b̃). (20)

The evaluation of the last quantity P[B̃P = b̃] in (19) is more involved:

P[B̃P = b̃] =
∑

P∈P
P[B̃P = b̃|P ]P[P ]. (21)

It requires a screening of P , which is intractable for large c and N , which is why
we will rely on the Markov chain.

Markov Chain. A Markov Chain is an iterative process with an internal state
(i.e., a profile in our case) taking value P (t) at iteration t. The next itera-
tion draws a new state P (t+1) according to a transition probability distribu-
tion P[P (t+1)|P (t)]. The Markov Chain is initialized randomly at state P (0). The
probability distribution of transitions is crafted with care to enforce a conver-
gence of the distribution of sampled profile P (t) to the posterior P[P |b̃] of (19)
as t → ∞ (see Section 6.3). In practice, the convergence occurs after the first T
iterations, the so-called burn-in period. Once this period has passed, it means
that the Markov Chain has forgotten its starting point (i.e., the samples are
now independent of P (0)) and that the distribution of the sample profiles has
converged.
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Monte Carlo method. After the burn-in period, the Markov Chain keeps on
sampling for M more iterations. The marginal a posteriori probabilities are then
estimated by a Monte Carlo method, which computes the empirical frequency
that item j is present in sample P (t):

P̂[j ∈ P |b̃] = |{t ∈ [T + 1, T +M ]|j ∈ P (t)}|/M. (22)

From these estimations, several post-processing are possible such as:

– inferring the most likely items of the true profile by ranking them in decreas-
ing marginal probabilities,

– reconstructing the profile as the set of items whose marginal probability is
above a given threshold,

– reconstructing the profile as the set of items with highest marginal.

6.3 Transition Probabilities

Algorithmic coding of a profile. Section 3.3 describes how to infer from the
observed BLIP a maximum number cmax of items of the corresponding profile. In
this algorithm, we code a profile as a vector of cmax components taking values in
[N ]∪{0}. Some of these components may take the value “0” meaning an “empty
item”, while the others have different values (i.e., there is no pair of non-zero
components with the same value). For instance, for cmax = 5, P = (0, 3, 2, 0, 4)
represents the profile of 3 items: #2, #3 and #4.

We define V(P0, i) as the neighborhood of profile P0 in the following manner:

V(P0, i) = {P ∈ P|P (k) = P0(k) ∀k 	= i}. (23)

This neighborhood profile is the set of all profiles whose coding differs at most
from the i-th component. Note that P0 ∈ V(P0, i). If P0(i) = 0, this neighbor-
hood comprises profiles having at most one more item. Otherwise if P0(i) > 0,
this neighborhood contains profiles having at most one different item (i.e., P0(i)
is substituted by another item) and one profile having one less item (i.e., item
P0(i) is substituted by 0, the “empty item”).

Multi-stage Gibbs sampling. Instead of computing the transition probabilities for
all the possible profiles, we restrict the transitions to the neighborhood of the
actual state. At the iteration t+1, an integer i is first uniformly drawn in [cmax]
that indicates the subset V(P (t), i). Then, the following transition probability
distribution is computed: ∀P ∈ V(P (t), i)

P[P (t+1) = P |P (t)] =
P[B̃P = b̃|P ]P[P ]

∑
P ′∈V(P (t),i) P[B̃P ′ = b̃|P ′]P[P ′]

(24)

Iteration t+ 1 ends by randomly drawing state P (t+1) from this distribution.
This choice of probabilistic transitions is called a multi-stage Gibbs sam-

pler with random scan [23, Alg. A.42]. It guarantees that the law of sampled
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Table 1. Datasets characteristics

Nb of users Training set size Testing set size N cavg Sparsity %

Digg 531 331 200 1237 317 25.63%

MovieLens 943 600 343 1682 106 6.30%

profiles converges to the stationary distribution P[P |b̃], which legitimates our
approach [23, Sect. 10.2.1]. The unknown multiplicative constant P[B̃P = b̃]
in (19) has disappeared in the ratio. This transition probability distribution
only depends on the priors P[P ] (which depends on the mathematical model
of a profile), and the conditional probabilities P[B̃P = b̃|P ] (which depends
on the privacy-preserving mechanism). For instance, for the JLT mechanism,
P[ỸP = ỹ|P ] ∝ exp(−‖ỹ −∑

j∈P Xj‖2/2σ2).

7 Experiments

7.1 Setup

In this section, we test the inference attacks designed on two real datasets: Digg
and MovieLens. The Digg dataset has been collected on a social news aggregator
and the profile of a user is composed of the news he has read. The MovieLens
dataset is a snapshot from a movie recommendation site and in this dataset the
profile of a user is composed of the movies he likes. For the experiments, we
split both datasets into two parts : the training set and the testing set. The
characteristics of these datasets are summarized in Table 1, in which cavg is the
average number of items per profile and sparsity is the average occupancy of
items among the user profiles.

During the experiments, we assume that the adversary has access to some
raw profiles of users to estimate the item priors (i.e., popularities of items).
This is similar to assuming that the adversary has access to some global infor-
mation about the general distribution of items in the population. We rely on
the training dataset for computing the frequencies of items while the testing
dataset is used solely for evaluating the performance of the attacks. In terms
of parameters, for BLIP we set the number of hash functions K = 20 and
the number of bits of the representation to L = 5, 000. The values of ε are
from the set {59, 28, 17, 8, 6, 5, 3, 2, 0}, which equivalently translate to the corre-
sponding flipping pε from the range {0.05, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5}.
For the JLT scheme, we set the size of the representation L to 1, 000. L is
set to a lower value as the representation, a dense real vector, is richer than
the binary version of BLIP. The privacy parameter ε takes value in the set
{600, 6, 3, 2, 1, 0.75, 0.5, 0.25, 0.1}, which translates into a noise level σ in {0, 1, 2,
3, 6, 8, 12, 24, 61}.

For MCMC, we used a burn-in period of T = 1, 000 samples and estimation
sample size of M = 19, 000 for all the experiments. In practice, we observed that
the performance is not very sensitive to the burn-in period length. As with other
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MCMC based approaches proper initialization for sampling is highly desirable
for a faster convergence to the stationary distribution. We used the input public
representation of the profile to estimate ĉ and started with ĉ random items. A
poor estimation of ĉ has to be traded-off with a longer burn-in period. We also
prefilter items that are to be tested against the public profile for joint decoder, to
reduce the search space. To realize this, we first predict the f × ĉ most probable
items for a given profile (f ∈ [2, 6]) using single decoder and then run the
joint decoder on the filtered items to return ĉ items. This prefiltering decreases
significantly the running time of the algorithm without impacting the prediction
as only unlikely items will not be considered by the joint decoder.

7.2 Reconstruction Attacks

We benchmark four attacks that produce a score per item:

– The single decoder described in [2].
– The popularity-based attack in which the score of an item is its prior esti-

mated from the training data, independent of the given public representation.
– Our MCMC joint decoder with and without priors (i.e., with flat priors) in

which the scores are the estimated marginal a posteriori probabilities.

Reconstruction P̂ is then the list of the top ĉ items ranked based on their scores.
We measure the performance of a reconstruction attack by computing the

cosine similarity between the reconstruction P̂ and the true profile P as expressed
in (25) for all the profiles of the testing set.

cos(P, P̂ ) =
|P.P̂ |
|P ||P̂ | (25)

Afterwards, we compute the following statistics: average, the 10% and the 90%
quantiles of the cosine similarities.

The plots in Figure 1 show that the performance of the reconstruction attack
is better for high values of ε while it degrades as ε → 0. In this case, pε → 0.5 and
every profile becomes equiprobable so that inferring the original profile becomes
impossible. In addition, ĉ depends on ε and low value results in a poor estimation
of ĉ, which impacts the similarity measure as only top ĉ items of the prediction
is considered in the reconstructed profile. As the estimation of ĉ is performed
similarly for all the four attacks, the performance drop is common to all of them.
Overall the performance of our MCMC attack is better than the single decoder
of [2] for almost all ε values over the two datasets. Another way to see this is
to find the range of ε in which a given attack performs worse than the baseline
(i.e., the popularity-based attack). For instance, by setting ε = 8, the designer
is sure that the single attack is no longer a threat. However, a skilled adversary
can reconstruct almost 50% of the profile thanks to our MCMC attack.
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Taking into account the prior of items improves the efficiency in the recon-
struction significantly, provided that the estimation is reliable. This improvement
is clearly observed on the MovieLens dataset. As for the Digg setup, priors of the
training set do not generalized to the test set, hence they do not help much. We
conducted the same experiment with the JLT scheme. The figure is not included
in the paper due to a lack of space, but the results that we obtained are very
close from the one of BLIP and thus we can draw the same conclusions.
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Fig. 1. Values of the cosine similarity (average, 10% quantile and 90% quantile) of BLIP
for MCMC with prior, with no prior and single decoding for various ε on Movielens
(left) and Digg (right) dataset

7.3 Identifying the Presence of an Item

When ε is very small, Figure 1 clearly shows that the adversary cannot hope
to reconstruct the full profile. In this situation, we evaluate the prediction of
top R items, with R � c, as another assessment of the privacy guarantees. The
success is measured in terms of the mean Average Precision atR (mAP@R) given
in (26), which is the mean over the Q profiles in the test dataset of the average
of the precisions at rank 1 ≤ r ≤ R. The precision(r) refers to the fraction of
correct items out of the top r predicted items. The mAP is sensitive to the order
of the correct results and is a better gauge of the quality of a ranking.

mAP@K =
1

Q

Q∑

q=1

(
1

R

R∑

r=1

precisionq(r)

)

. (26)

The characteristics of mAP@R depicted in Figure 2 are almost similar to the
exact reconstruction measurement. Even if the exact reconstruction of profile
is hardly possible for a given ε, predicting the top R items work. For instance,
the maximum reconstruction for ε = 0 for Movielens is 0.23 whereas the mean
average precision is close to 0.5. The same conclusion holds for the Digg dataset.
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Fig. 2. Mean Average Precision for R = 10 for BLIP for MCMC with prior, with no
prior and single decoding for various ε on Movielens (left) and Digg (right) dataset
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Fig. 3. Utility against privacy for BLIP and JLT for various ε on Movielens (left) and
Digg (right) datasets

7.4 Utility-Privacy Trade-Off

Finally, we also studied the achievable trade-off between privacy and utility.
Since BLIP and JLT are used for similarity estimation, we quantify the utility
in terms of the recall, which is defined as the probability of identifying the k-
nearest neighbors (we set k = 10 in our experiments). In this experiment, we
measure privacy as 1− cos(P, P̂ ) (see (25)) based on the joint decoder. Figure 3
illustrates the utility-privacy trade-off obtained for various ε. The trade-off is
almost similar on the two datasets. The privacy preserving properties of JLT
transform is slightly better than BLIP, at least for the parameters we used in our
simulation. This difference in performance is due partially to the representation
superiority of dense real vector over binary vector. However, BLIP offers a more
compact representation of the profile (5, 000 bits versus 1, 000 scalars). The plot
is helpful in fixing ε giving good utility without compromising much on privacy.
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8 Conclusion

In differential privacy, the trade-off between utility and privacy is set by the
parameter ε. However, being able to choose an appropriate value for this param-
eter is still an open research question, which has not been deeply investigated,
with a few exceptions [24,25]. In this paper, we have made a step forward to
answer this question by proposing two generic inference attacks, namely single
and joint decoding, whose objective is to reconstruct the profile of a user out of
a differentially-private representation produced through a non-interactive mech-
anism. The first inference attack decides of the presence of a single item and
sequentially explores all the item set, while the latter strategy decides whether a
subset of items is likely to be the user profile and considers all possible subsets.

We have evaluated the effectiveness of the attack on two schemes produc-
ing differentially private representations: BLIP (BLoom-and-flIP) [2] and JLT
(Johnson-Lindenstrauss Transform) [3]. Our theoretical analysis as well as the
experimental results clearly shows that joint decoding is more powerful than sin-
gle decoding. Overall, we believe that this attack helps better understanding the
privacy guarantees offered by a wide class of differentially-private mechanisms
(interactive or not) as well as for the privacy practitioner to tune experimentally
ε to ensure the maximum utility without compromising much on privacy.
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A Appendix A: BLIP Mechanism

A.1 Single and Joint Decoding

We have I(B̃P ;X) = H(B̃P )−H(B̃P |X), in which H is the (Shannon) entropy
of a random variable. With the simple model detailed in Section 3.2, we get that

I(B̃P ;X) = L(hb(π̃c)− (1− p)hb(π̃c−1)− phb(pε)), (27)

with hb(p) the entropy of a Bernoulli distribution B(p) (in hats):

hb(p) � −p log(p)− (1− p) log(1− p) = hb(1− p). (28)
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Fig. 4. (Left): Mutual information of the joint decoder I(B̃P ;P )/c in nats as a function
of (c, L). (Right): Difference I(B̃P ;P )/c− I(B̃P ;X) in nats as a function of (c, L).

The probabilities π̃c and π̃c−1 appear in (27) because we assume that the
profiles are of identical size c. When considering more complex but also more
practical models, this difference vanishes as π̃c and π̃c−1 are replaced by π̃:

I(B̃P ;X) ≈ Lp(hb(π̃)− hb(pε)). (29)

As for the joint decoding, Bloom filter being a deterministic process, we write:

I(B̃P ;P ) = I(B̃P ;BP ) = H(B̃P )−H(B̃P |BP )

= H(B̃P )−H(N) = L(hb(π̃c)− hb(pε)). (30)

A.2 Comments

Example. Figure 4 (left) shows I(B̃P ;P )/c as a function of c and L. From a
particular (c, L), we set

K =

⌊
log(2)

L

c

⌋
, (31)

which is the recommended number of hash functions in Bloom filter design, and
we apply the model of Section 3.2 with ε = 20. For a given c, too small L
means too few observed symbols for reliably estimating the profile. Too large L
implies a big K and therefore, pε tends to 1/2 according to (4). Figure 4 (right)
shows that I(B̃P ;P )/c − I(B̃P ;X) can be substantial: a joint decoding allows
the adversary to tackle up to 3.5 (i.e. e1.25) times more items.

Upper bounds. As ε → 0, pε → 1/2 as well as π̃, so that I(B̃P ;X) → 0 and also
I(B̃P ;P ) → 0. When ε = 0, observing the BLIP is useless since it brings no
information. In this situation, neither the single nor the joint decoding can do
anything. We can bound the quantity in common in both expressions as follows:

hb(π̃c)− hb(pε) ≤ log(2)− hb(pε) ≤ log(2)− log
(
1 + eε/K

)
+

ε

K

eε/K

1 + eε/K

≤ ε

K

eε/K

1 + eε/K
≤ ε

K
. (32)
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Typical Bloom filter setup. Figure 4 shows that estimating an important number
of items is possible provided that L grows linearly with c. Indeed, it is also
common practice in the design of Bloom filter to set:

L =

⌈
−c

log(Pfp)

(log 2)2

⌉
, (33)

in which Pfp is the probability of false positive of the Bloom filter (i.e., to
detect the presence of an item not belonging to P ). Inserting (31) and (33) in
the expression of the mutual informations, we get quantities independent of c:

1

c
I(B̃P ;P ) ∼ − log(Pfp)

log(2)

(
1− 1

log(2)
hb

(
(1 + 2

ε
− log(Pfp) )−1

))
, (34)

I(B̃P ;X) ∼ log(2).
1

c
I(B̃P ;P ). (35)

This shows that if the Bloom filter is properly designed, the power of the attack
does not depend on c but solely on the values of − log(Pfp) and ε. Moreover, the
joint decoder is 1/ log(2) ∼ 1.44 more “powerful” than the single decoder.

B Appendix B: JLT Mechanism

The same analysis holds for the JLT representation described in Section 4. The
main difference lies in the fact that we manipulate differential entropies because
the JLT representation is a real vector. The quantities at stake respectively for
the single and joint decoders are upper bounded, thanks to conditions (10)

I(ỸP ;X) =
L

2
log

(
1 +

1

(c− 1) + Lσ2

)
≤ ε

32 + 2ε(c− 1)L
, (36)

I(ỸP ;P )

c
=

L

2c
log

(
1 +

c

Lσ2

)
≤ ε

32
, (37)
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