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Abstract 

The spatio-temporal database (STDB) has received considerable attention during the past few years, due to 

the emergence of numerous applications (e.g., flight control systems, weather forecast, mobile computing, 

etc.) that demand efficient management of moving objects. These applications record objects’ geographical 

locations (sometimes also shapes) at various timestamps and support queries that explore their historical 

and future (predictive) behaviors. The STDB significantly extends the traditional spatial database, which 

deals with only stationary data and hence is inapplicable to moving objects, whose dynamic behavior 

requires re-investigation of numerous topics including data modeling, indexes, and the related query 

algorithms. In many application areas, huge amounts of data are generated, explicitly or implicitly 

containing spatial or spatiotemporal information. However, the ability to analyze these data remains 

inadequate, and the need for adapted data mining tools becomes a major challenge. In this paper, we have 

presented the challenging issues of spatio-temporal data mining.       
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1. Introduction 

Classical data mining techniques often perform poorly when applied to spatial and spatio-temporal data sets 

because of the many reasons. First, these dataset are embedded in continuous space, whereas classical 

datasets (e.g. transactions) are often discrete. Second, patterns are often local where as classical data mining 

techniques often focus on global patterns. Finally, one of the common assumptions in classical statistical 

analysis is that data samples are independently generated. When it comes to the analysis of spatial and 

spatio-temporal data, however, the assumption about the independence of samples is generally false 

because such data tends to be highly self correlated. For example, people with similar characteristics, 

occupation and background tend to cluster together in the same neighborhoods. In spatial statistics this 

tendency is called autocorrelation. Ignoring autocorrelation when analyzing data with spatial and spatio-

temporal characteristics may produce hypotheses or models that are inaccurate or inconsistent with the data 

set.  

In application areas such as robotics, computer vision, mobile computing, and traffic analysis, huge 

amounts of data are generated and stored in databases, explicitly or implicitly containing spatial or 

spatiotemporal information. For instance, the proliferation of location-aware devices gives rise to vast 

amounts of frequently updated telecommunication and traffic data, and satellites generate terabytes of 

image data daily. These huge collections of spatiotemporal data often hide possibly interesting information 

and valuable knowledge. It is obvious that a manual analysis of these data is impossible, and data mining 

might provide useful tools and technology in this setting. Spatiotemporal data mining is an emerging 

research area that is dedicated to the development of novel algorithms and computational techniques for the 

successful analysis of large spatiotemporal databases and the disclosure of interesting knowledge in 
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spatiotemporal data. However, the ability to analyze these data remains inadequate and the need for adapted 

data mining tools becomes a major challenge. 

 

Spatio-Temporal Databases (STDB) explores recent trends in flexible querying and reasoning about time- 

and space-related information in databases. It shows how flexible querying enhances standard querying 

expressiveness in many different ways, with the aim of facilitating extraction of relevant data and 

information. Flexible spatial and temporal reasoning denotes qualitative reasoning about dynamic changes 

in the spatial domain, characterized by imprecision or uncertainty (or both). 

Spatio-temporal databases need to support a wide variety of continuous spatio-temporal queries. For 

example, a continuous spatio-temporal range query may have various forms depending on the mutability of 

objects and queries. In addition, a range query may ask about the past, present, or the future. A naive way to 

process continuous spatio-temporal queries is to abstract the continuous queries into a series of snapshot 

queries. Snapshot queries are issued to the server (e.g., a location-aware server) every T seconds. The naive 

approach incurs redundant processing where there may be only a slight change in the query answer between 

any two consecutive evaluations [1, 2, 3]. 

The reminder of the paper is organized as follows: Section 2 presents an architecture of data mining. 

Section 3 and 4 briefly illustrate the spatial and temporal data mining respectively. Section 5 describes the 

spatio-temporal data mining. A conclusion is given in Section 6.  

 

2. An Architecture of Data Mining 

Data mining, the extraction of hidden predictive information from large databases, is a powerful new 

technology with great potential to help companies focus on the most important information in their data 

warehouses. Data mining tools predict future trends and behaviors, allowing businesses to make proactive, 

knowledge-driven decisions. The automated, prospective analyses offered by data mining move beyond the 

analyses of past events provided by retrospective tools typical of decision support systems. Data mining 

tools can answer business questions that traditionally were too time consuming to resolve. They scour 

databases for hidden patterns, finding predictive information that experts may miss because it lies outside 

their expectations. 

To best apply these advanced techniques, they must be fully integrated with a data warehouse as well as 

flexible interactive business analysis tools. Many data mining tools currently operate outside of the 

warehouse, requiring extra steps for extracting, importing, and analyzing the data. Furthermore, when new 

insights require operational implementation, integration with the warehouse simplifies the application of 

results from data mining. The resulting analytic data warehouse can be applied to improve business 

processes throughout the organization, in areas such as promotional campaign management, fraud 

detection, new product rollout, and so on. Figure 1 illustrates an architecture for advanced analysis in a 

large data warehouse. 

The ideal starting point is a data warehouse containing a combination of internal data tracking all customer 

contact coupled with external market data about competitor activity. Background information on potential 

customers also provides an excellent basis for prospecting. This warehouse can be implemented in a variety 

of relational database systems: Sybase, Oracle, Redbrick, and so on and should be optimized for flexible 

and fast data access. 

An OLAP (On-Line Analytical Processing) server enables a more sophisticated end-user business model to 

be applied when navigating the data warehouse. The multidimensional structures allow the user to analyze 

the data as they want to view their business – summarizing by product line, region, and other key 

perspectives of their business. The Data Mining Server must be integrated with the data warehouse and the 

OLAP server to embed ROI-focused business analysis directly into this infrastructure. An advanced, 

process-centric metadata template defines the data mining objectives for specific business issues like 

campaign management, prospecting, and promotion optimization. Integration with the data warehouse 

enables operational decisions to be directly implemented and tracked. As the warehouse grows with new 
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decisions and results, the organization can continually mine the best practices and apply them to future 

decisions. 

 

This design represents a fundamental shift from conventional decision support systems. Rather than simply 

delivering data to the end user through query and reporting software, the Advanced Analysis Server applies 

users’ business models directly to the warehouse and returns a proactive analysis of the most relevant 

information. These results enhance the metadata in the OLAP Server by providing a dynamic metadata 

layer that represents a distilled view of the data. Reporting, visualization, and other analysis tools can then 

be applied to plan future actions and confirm the impact of those plans. 

 

3. Spatial Database 

Spatial data mining is the process of discovering interesting and previously unknown, but potentially useful 

patterns from large spatial datasets. Extracting interesting and useful patterns from spatial datasets is more 

difficult than extracting the corresponding patterns from traditional numeric and categorical data due to the 

complexity of spatial data types, spatial relationships, and spatial autocorrelation. 

A spatial database contains objects which are characterized by a spatial location and/or extension as well as 

by several non-spatial attributes. Figure 2 illustrates a spatial database on Bavaria as an example. Depicted 

is the relation Communities containing polygons which represent communities in a geographic information 

system. This spatial database on Bavaria - referred to as the BAVARIA database. The database contains the 

ATKIS 500 data and the Bavarian part of the statistical data obtained by the German census of 1987, i.e. 

2043 Bavarian communities with one spatial attribute (polygon) and 52 non-spatial attributes (such as 

average rent or rate of unemployment). Also included (in a separate table of the database) are spatial objects 

representing natural objects like mountains or rivers and infrastructure such as highways or railroads. The 

total number of spatial objects in the database then amounts to 6924. 

The discovery process for spatial data is more complex than for relational data. This applies to both the 

efficiency of algorithms as well to the complexity of possible patterns that can be found in a spatial 

database. The reason is that, in contrast to mining in relational databases, spatial data mining algorithms 

have to consider the neighbours of objects in order to extract useful knowledge. This is necessary because 

the attributes of the neighbours of some object of interest may have a significant influence on the object 

itself. 

 

4. Temporal Database 

Temporal data stored in a temporal database is different from the data stored in non-temporal database in 

that a time period attached to the data expresses when it was valid or stored in the database. Conventional 

databases consider the data stored in it to be valid at time instant now, they do not keep track of past or 

future database states. By attaching a time period to the data, it becomes possible to store different database 

states. 

A first step towards a temporal database thus is to timestamp the data. This allows the distinction of 

different database states. One approach is that a temporal database may timestamp entities with time 

periods. Another approach is the timestamping of the property values of the entities. In the relational data 

model, tuples are timestamped, where as in object-oriented data models, objects and/or attribute values may 

be timestamped. What time period do we store in these timestamps? There are mainly two different notions 

of time which are relevant for temporal databases. One is called the valid time, the other one is the 

transaction time. Valid time denotes the time period during which a fact is true with respect to the real 

world. Transaction time is the time period during which a fact is stored in the database. Note that these two 

time periods do not have to be the same for a single fact. Imagine that we come up with a temporal database 

storing data about the 18
th

 century. The valid time of these facts is somewhere between 1700 and 1799, 

where as the transaction time starts when we insert the facts into the database, for example, January 21, 
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1998. 

Assume we would like to store data about our employees with respect to the real world. Then, the result 

appears as like in Table 1. 

The above valid-time table stores the history of the employees with respect to the real world. The attributes 

ValidTimeStart and ValidTimeEnd actually represent a time interval which is closed at its lower and open at 

its upper bound. Thus, we see that during the time period [1985 - 1990), employee John was working in the 

research department, having a salary of 11000. Then he changed to the sales department, still earning 

11000. In 1993, he got a salary raise to 12000. The upper bound INF denotes that the tuple is valid until 

further notice. Note that it is now possible to store information about past states. We see that Paul was 

employed from 1988 until 1995. In the corresponding non-temporal table, this information was (physically) 

deleted when Paul left the company. 

 

4.1 Different Forms of Temporal Databases 

The two different notions of time - valid time and transaction time - allow the distinction of different forms 

of temporal databases. A historical database stores data with respect to valid time, a rollback database stores 

data with respect to transaction time. A bitemporal database stores data with respect to both valid time and 

transaction time. 

Commercial DBMS are said to store only a single state of the real world, usually the most recent state. 

Such databases usually are called snapshot databases. A snapshot database in the context of valid time and 

transaction time is depicted in Figure 3. 

On the other hand, a bitemporal DBMS such as TimeDB stores the history of data with respect to both valid 

time and transaction time. Note that the history of when data was stored in the database (transaction time) is 

limited to past and present database states, since it is managed by the system directly which does not know 

anything about future states. 

A table in the bitemporal relational DBMS TimeDB may either be a snapshot table (storing only current 

data), a valid-time table (storing when the data is valid wrt. the real world), a transaction-time table (storing 

when the data was recorded in the database) or a bitemporal table (storing both valid time and transaction 

time). An extended version of SQL allows specifying which kind of table is needed when the table is 

created. Existing tables may also be altered (schema versioning). Additionally, it supports temporal queries, 

temporal modification statements and temporal constraints. 

The states stored in a bitemporal database are sketched in Figure 4. Of course, a temporal DBMS such as 

TimeDB does not store each database state separately as depicted in Fig. 4. It stores valid time and/or 

transaction time for each tuple, as described above. 

 

5. Spatio-Temporal Database 

Depending on the temporal aspects of data, a STDB aims at either historical or predictive retrieval. 

Specifically, given a set of objects o1, o2, . . . , oN (where N is termed the cardinality), a historical STDB 

stores, for each object oi (1 ≤ i ≤ N), its extent oi.E(t) at all the timestamps t in the history. Following the 

convention of spatial databases, each extent oi.E(t) can be a polygon describing the object’s actual shape at 

time t (e.g., the contour of a moving typhoon). Specially, if the shape is not important (e.g., cars, flights, 

etc.), oi.E(t) degenerates to a point describing the location of oi at time t. In practice, the extents of the same 

object at the successive timestamps can be compressed using various methods (e.g., if the object remains 

stationary at several continuous timestamps, its extent is stored only once during this period). A predictive 

STDB, on the other hand, stores, for each (usually point) object oi, its most recent updated location 

oi.L(tupd) (where tupd is the time of the object’s last update), and the motion function describing its current 

movement. The most popular motion function is the linear function [4, 5], because it (i) can approximate 

any trajectory, and (ii) requires the fewest number of parameters. Specifically, in addition to oi.L(tupd), the 

system only needs to record the object’s velocity oi.vel, such that the object’s location at any future time t > 
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tupd can be calculated as oi.L(t) = oi.L(tupd) + oi.vel.(t - tupd). Using such modeling, an object needs to issue an 

update to the database only if the parameters of its motion function (e.g., oi.vel for linear movement) 

change. 

 

Since the spatial database can be regarded as a special type of STDB where all the objects have zero 

velocities, all the spatial query types naturally find their counterparts in STDB, except that they are 

augmented with additional temporal predicates. Specifically, a window query (WQ) specifies a query region 

qR and time interval qT (consisting of continuous timestamps), and finds all the objects whose extents (or 

locations for point data) intersect qR during qT. Particularly, the selectivity of a WQ equals the number of 

retrieved objects divided by the dataset cardinality, and its accurate estimation [6, 7] is imperative to query 

optimization. A k nearest neighbor (kNN) query specifies a query point qP and time interval qT , and finds 

the k objects whose distances to qP during qT are the smallest. These problems become even more complex 

if query regions/points (in WQ/kNN) are also moving. While the above queries involve only one dataset, 

the within-distance join (WDJ), given two datasets S1, S2 reports all the object pairs (o1, o2) in the cartesian 

product S1×S2, such that the distance between o1, o2 during a query time interval qT is smaller than certain 

threshold d. The selectivity of a join is the number of retrieved pairs divided by the size of S1×S2. Similarly, 

the k closest pair (kCP) query retrieves the k object pairs (o1, o2) such that the distance of o1,o2 during qT is 

the smallest, among all the pairs in S1×S2. Note that the above queries can be defined in both historical and 

predictive STDB. 

In addition to queries inherited from conventional spatial databases, the dynamic nature of STDB also leads 

to several novel query types. For historical databases, the navigational WQ has been introduced which 

specifies two query regions qR1, qR2 and timestamps qT1, qT2 and retrieves all the objects that intersect qR1 at 

qT1, and also intersect qR2 at qT2 (e.g., find all the vehicles that appeared in Harvard at 5pm yesterday and 

then appeared in MIT 10 minutes later). In predictive STDB, [8] points out that the results of traditional 

queries (i.e., WQ, kNN, WDJ, kCP) are usually inadequate because they may change (sometimes almost 

immediately) due to the movements of objects and/or queries (e.g., a user’s nearest gas station may change 

as s/he drives on the highway). 

Motivated by this, [8] proposes the time-parameterized (TP) query, which applies to any traditional query, 

and returns, in additional to the result R, also (i) an expiry time T of R, and (ii) the change C of the result 

after T. An example of TPNN is to report (i) the nearest station s, (ii) when s will cease to be the nearest 

(given the user’s moving direction and speed), and (iii) the new nearest station after the expiry of s. The 

concept of TP is extended to the continuous query in [9], which is another general concept applicable to all 

traditional queries and aims at continuously tracking the result changes until certain conditions are satisfied. 

A continuous WQ, for instance, may “return the aircrafts within 10 miles from flight UA183 now and 

continuously update this information until its arrival”. In TP and continuous processing, the moving 

direction of the query can be clearly specified, which is not true in some applications (e.g., a tourist 

wandering around casually). The concept useful in such scenarios is the location-based (LB) query [10], 

which applies to WQ and kNN and finds the query result as well as its validity region such that, as long as 

the query is in this region, its result will remain the same. For example, a LB NN may return the nearest 

restaurant of a tourist, as well as a validity region in which the restaurant will remain the nearest. 

Numerous access methods have been proposed for efficient spatio-temporal query processing. A 

straightforward approach to index historical STDB is to create a spatial index (the most common ones 

include the R-tree) at each timestamp in history, managing objects’ extents at that timestamp. This is the 

idea behind the so-called partially persistent structures which in order to reduce the space consumption 

allows the R-trees at consecutive timestamps to share common nodes if the objects in these nodes do not 

incur extent changes. The first partially persistent structure, the historical R-tree (HR-tree), however, still 

involves considerable data redundancy, which led to the development of the multi-version R-tree (MVR-

tree) and its subsequent versions. Besides the partially persistent methodology, historical STDB can also be 

indexed using a 3D R-tree by treating time just as an extra dimension (in addition to the two spatial 

dimensions). Specifically, each record in the 3D R-tree represents a 3D box, whose spatial projection 
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corresponds to the extent of a stationary object, and whose temporal projection denotes the time interval 

during which the object is stationary. Similar ideas are used in the trajectory bundle tree (TB-tree), a 

structure optimized for navigational WQ queries. In practical STDB, it adapts the Quadtree (a spatial index) 

for indexing the movements of 1D object, while the time-parameterized R-tree (TPR-tree) and its improved 

versions support objects of arbitrary dimensionality. Finally, indexing moving objects has also been studied 

in theory [11] which develops numerous interesting structures with provable worst-case performance 

bounds. These bounds, however, usually involve large hidden constants, rendering these “theoretical” 

solutions to be outperformed by the “practical” solutions introduced earlier. 

Due to the time component, spatiotemporal databases need to manage large amounts of data accumulated 

over long period of time. A user asks queries over this data and the straightforward solution to find the 

answer is to read all objects in the database and return the objects that belong to the answer. However this 

approach is inefficient due to the size of the database. A better solution is to construct indexes over the data 

and answer a query by reading only a small part of the database. In general, an index is a way to organize a 

dataset in disk pages in order to answer efficiently a specific type of queries, by reading only a small 

number of disk pages [12-14]. 

 

6. Conclusion 

Spatio-temporal data mining is becoming now very important field of research as it focuses the data for not 

only static view point but also on time and space. Thus it is useful to locate future statistics based on time 

and space but querying, indexing and many other relevant issues of spatio-temporal data are not easy till 

days. Spatiotemporal data support is considered to be an important research direction, since many 

applications need to manipulate data that change over time. STDBMS, in particular, should (i) offer 

appropriate data types and query languages for time-evolving spatial objects, (ii) provide efficient indexing 

techniques and access methods for spatiotemporal query processing and (iii) exploit cost models for query 

optimization purposes. So the research on spatio-temporal data mining is still going on. 
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Appendix 

 

 

Figure 1. Integrated Data Mining Architecture 

 

 

 

Figure 2. Spatial and Non-Spatial Attributes of Communities 

Table 1. Employees record with valid start and end time 

EmpID Name Department Salary ValidTimeStart ValidTimeEnd 

10 John Research 11000 1985 1990 

10 John Sales 11000 1990 1993 

10 John Sales 12000 1993 INF 

11 Paul Research 10000 1988 1995 

12 George Research 10500 1991 INF 

13 Ringo Sales 15500 1988 INF 
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Figure 3. Snapshot Database in the Context of Valid Time and Transaction Time 

 

 

Figure 4. The States Stored in a Bitemporal Database 

  



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.   Prospective authors of 
IISTE journals can find the submission instruction on the following page: 
http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

