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Abstract— Detection of activity from the primary visual
cortex is a difficult challenge to magneto-encephalography
(MEG) source imaging techniques: the geometry of the visual
cortex is intricate, with structured visual field maps extending
deeper along the calcarine fissure. This questions the very
sensitivity of MEG to the corresponding neural responses of
visual stimuli and the usage of MEG source imaging for
innovative retinotopic explorations. In this context, we compare
two imaging models of MEG generators in realistic simulations
of activations within the visual cortex. Localization and spatial
extent of neural activity in the visual cortex were extracted from
retinotopic maps obtained in fMRI. We prove that the suggested
approaches are robust and succeed in accurately recovering the
activation patterns with satisfactory match with fMRI results.
These results suggest that fast retinotopic exploration of the
visual cortex could be obtained from MEG as a complementary
alternative to more standard fMRI approaches. The excellent
time resolution of MEG imaging further opens interesting
perspectives on the temporal and spectral processes sustained
by the human visual system.

I. INTRODUCTION

Neural activity is sustained by intracellular – primary

– currents that loop within the brain volume owing to

secondary – or volumic – extracellular currents [2]. Magneto-

encephalography (MEG) essentially detects the magnetic

fields produced by neocortical pyramidal neurons, whose

combined activity at the scale of neural assemblies can be

efficiently modeled by an equivalent current dipole (ECD)

oriented perpendicularly to the cortical surface [8]. Imaging

approaches to the estimation of the neural generators of MEG

are based on the distribution of at least 10,000 ECDs on a

tessellated model of the cortical envelope.

By modeling the cortical currents with such a dense sur-

facic dipole field, distributed dipole models yield an interest-

ing imaging alternative to the more conventional localization

approaches based on non-linear dipole fits and other scanning

techniques. Image models for MEG generators also suggest

that the very spatial extension of neural activations could be

extracted from the data. Reliable estimation of this parameter

would advantageously complement basic measures of brain
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responses in multiple experimental paradigms. One canonical

example is vision, where brain responses to visual stimuli

have been extensively explored in animal models and hu-

mans. fMRI has revealed a number of keys in the retinotopic

organization of visual cortices where neural responses are

structured into visual field maps [10]. The intricate functional

and anatomical organization of the human visual system is

a challenge to EEG and MEG imaging [4], whose spatial

resolution is usually considered on the order of the centimeter

and rapidly degrades with distance to sensors. Here we report

on the performances of recent forward and inverse MEG

image models in the difficult context of neural responses

within the visual cortex. We compare the images of neural

activations obtained from MEG to the regions identified from

fMRI, a technique known for its excellent spatial resolution.

II. METHODS

A. Forward and inverse modeling in MEG

Solving the direct problem in EEG consists in computing

the electrical potential V (r) given the conductivity σ(r)
in the volume Ω and the primary current Jp(r) within

the cortex. The Maxwell equations with the quasi-static

approximation give the following equation :

∇ · (σ∇V ) = ∇ · Jp in Ω (1)

The forward problem in MEG computes the magnetic field

B(r) given the primary current Jp(r), the conductivity of

volumes σ(r) and the potential V (r) using the Biot-Savart

equation. The inverse problem in MEG aims at evaluating

the primary currents on the cortex from measurements on

the MEG sensors.

B. Symmetric BEM solution with variational energy-based

inverse problem resolution

Boundary element methods (BEM) belong to the general

category of finite element methods which are commonly used

to solve partial differential equations over complex domains.

The BEM consists in substituting computation of integrals

over domains with integrals over surfaces. The symmetric

BEM approach [7] samples both the potential V and the

normal currents on the surfaces σ∂nV .

The geometry of the head model consists of 4 nested

homogenous domains (‘brain’ including cerebrospinal fluid

(CSF), ‘skull’, ‘skin’ and ‘air’) and therefore 3 nested

interfaces. The brain interface separates the CSF and the

inner skull surface, the skull envelope corresponds to the
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Fig. 1. (a) Schematic representation of the head model with 3 nested
interfaces and the cortex covered with dipoles normally distributed on the
surface (Ω1 = Brain with cerebrospinal fluid, Ω2 = Skull, Ω3 = Skin and
Ω4 = Air) (b) Realistic head model obtained by segmenting a T1 MRI scan
(about 500 vertices per interface. The cortical envelope is a triangulation
with 35, 000 vertices).

outer skull surface and the skin is the outer surface of the

scalp (cf. Fig. 1).

The method leads to a linear formulation of the problem:

M = HS (2)

where H is the lead field matrix relating the sources to

the measurements, M is a vector of Nm instantaneous

measurements on the MEG sensor array at a given time

frame, and S is a vector of corresponding elementary source

amplitudes from the distributed cortical image model.

The MEG inverse problem is severely ill-posed and re-

quires therefore complementary assumptions on the expected

solution. Such priors generally enforce some regularizing

smoothness in the distribution of source amplitudes. For-

mally, this property is translated in the estimation process

through the minimization of an energy functional E(S) with

two terms: Edata(S) that balances between the fit of the

forward model from S with the measurements on the MEG

sensors, and Esmooth(S), a term that imposes the distribution

of source amplitudes to be spatially smooth:

E(S) = Edata(S) + λEsmooth(S) (3)

where Edata(S) = ||M − HS||2 and λ, a positive scalar,

controls for the smoothness of source amplitudes. Here we

suggest the following two image models :

Minimum norm of the gradient (HEAT) : Esmooth=||∇S||2

Total variation (TV) : Esmooth=||∇S||

where ∇ stands for the gradient on the cortical manifold

(see [1] for a complete description of the associated opti-

mization approaches).

Optimization of the TV model has been well studied in

the image processing community for denoising purposes.

Results show that blurring of estimated source intensities

is considerably reduced in MEG using this model. The

associated optimization functional however is non convex

and may require a considerable number iterations before it

reaches convergence, thereby impeding its practical usage.

C. Alternative multiresolution approach

As over 10,000 elementary sources are necessary to prop-

erly sample the cortical anatomy, estimating S from M

Fig. 2. Illustration of a 300 mm2 cortical patch. Moments of current
quadrupolar expansion are obtained from the elementary dipole moments
supporting the patch geometry, expanded about the parcel centroid.

is extremely underdetermined, thereby aggravating the ill-

posedness of the inverse estimation. We therefore suggest a

multiresolution image model to circumvent this problem. At

each spatial resolution k, the image model Mk is segmented

into Nc clusters Ck
j of elementary sources:

Mk = {Ck
j , j ∈ [1, Nc]}. (4)

Some sources are eliminated at each resolution k while

others are brought to the next image resolution k + 1 and

distributed in a new image model through the following

steps:

1) Design of the piecewise image model Mk+1 at reso-

lution k +1 from the elementary sources that survived

previous eliminatory procedure of Step 3;

2) Compact parametric modeling of regional neural ac-

tivity from each elementary cluster Ck+1

j in Mk+1;

3) Model selection: eliminate the least-significant source

cluster from Mk and loop back to Step 1.

We now briefly detail the technical aspects of the modeli-

sation and selection steps (see [3] for a full description).

At each resolution k, the available cortical sources are

clustered in Nc patches Ck
j of similar surface area. Jerbi

et al. showed in [5] that the current quadrupolar expansion

was an adequate model for extended sources (> 5 cm2)

with only 7 moment parameters accounting for the cortical

activity generally supported by about 100 elementary dipoles

in conventional imaging models (see Fig. 2). At resolution

k, the activity of cluster Ck
j is modeled up to its quadrupolar

expansion about its geometrical centroid. (2) becomes:

M = H̄kQ̄k (5)

where H̄k is the (Nm × Np) associated gain matrix up

to quadrupolar moments. Note that as Np = 7Nc, we

can enforce the problem to be overdetermined by assuming

Nc ≤ Nm/20 at each spatial resolution k.

In order to successively eliminate the least-significant

cluster in the source model, we compute the Generalized

Cross-Validation error (GCV-error) ǫk
j for Nc submodels

indexed by j consisting of all clusters in Mk except Ck
j . In the

context of a Weighted Minimum-Norm Estimate (WMNE)

of the quadrupolar moments controlled by a regularisation



Fig. 3. The stimulus presented in the visual field in (a) yields activity
identified from fMRI (c). Simulated MEG data consists in the corresponding
cortical locations supporting a sinewave time course (b) and associated
forward model.

parameter λ, this error writes analytically [9] :

ǫk
j =

||(H̄k|jH̄
t
k|j + λC̄−1

k|j)
−1M||

Trace
(

(H̄k|jH̄
t
k|j + λC̄−1

k|j)
−1

) (6)

where C̄−1

k|j is a spatial covariance prior on quadrupolar mo-

ments of clusters Mk|j at resolution k (see [3]). The cluster

associated with the smallest GCV-error Ck
j0

is supposed to

be the least significant and is removed at resolution k + 1.

At the end of this exhaustive procedure when all elemen-

tary dipoles have been removed from the image model, the

best model in the GCV-error sense is selected retrospectively.

As the initial cortical parcellation at k = 0 is arbitrary and

coarse, the entire process is restarted L times. A weighted

summation of the individual GCV errors across the L best

models yields a so-called multiresolution clustering (MRC)

frequency map of dipole amplitudes.

III. SIMULATION STUDY

A. Description

MEG data from source distributions of neural currents

were simulated from retinotopic maps revealed by fMRI [11].

Portions of the maps corresponding to a particular region

of the visual field were selected. Neural activations within

these regions were simulated with a sine wave (cf. Fig. 3).

The resulting activities on the MEG sensors were computed

using the BEM forward model described in Section II-B.

Locations and orientations of the MEG sensors were those

of the OMEGA-151 system from VSM MedTech (Coquitlam,

BC, Canada) and consisted of 151 axial gradiometers. The

cortical envelope containing about 35, 000 vertices was ex-

tracted from a T1 MRI with BrainVISA1. Two experimental

conditions were tested: one noiseless (cf. Fig. 4-a), and one

with strong additive white noise (SNR = 1 in variance

ratio), cf. Fig. 5-a. Sections III-B and III-C detail the results

from the evaluated methods for the simulation illustrated

Fig. 3. Section III-D provides a global analysis of the

performances from the simulated data sets.

1http://www.brainvisa.info

Direct problem Inverse problem

BEM
Computation of HBEM HEAT TV

3h 9.5s 6.1s (79 iterations)

MRC
Computation of HMRC Frequency Map

10s 30 min. (30 Trials)

TABLE I

COMPUTATION TIMES REQUIRED BY THE FORWARD AND THE INVERSE

PROBLEMS (1 TIME FRAME)

B. Results Method 1: Symmetric BEM with variational ap-

proach

In the absence of noise, we can observe (cf. Fig. 4-c and

4-d) that both smoothing methods succeed in localizing the

peak of activity. As expected, the solutions of TV and HEAT

provide contrasted reconstructions. With noisy data (cf. Fig.

5) the TV solution appears to be more robust than the HEAT

solution. This is confirmed by the ROC study in III-D.

Computation times are presented in Table I. The compu-

tation has been performed on an IntelTM Core 2 Duo 2.33

GHz processor with 2 GB of RAM. The ATLAS Library was

used for linear algebra operations.

C. Results Method 2: Multiresolution approach

Data processing, forward modelling and visualization were

obtained with the BrainStorm toolbox2 using a spherical head

geometry. Fig. 4 and Fig. 5-e present the MRC frequency

map obtained from the simulated activity given by Fig. 3-a

(see Fig. 4 and Fig. 5-a and b for the corresponding signals

and topographies) with L = 30 resolution descent trials.

Accuracy is satisfactory even with noisy data as confirmed

by the AUC estimation in Section III-D.

These results were computed on a Pentium R© 4 3 GHz

with 1 GB of RAM. It took about one minute to compute

one trial of the algorithm, leading to a global computing time

of 30 minutes to get the MRC frequency map (cf. Table I).

D. ROC Study

The forward and inverse models were further estimated

for additional stimulation configurations (4 quadrants and

3 eccentricities within a quadrant) and Receiver Operating

Curves (ROC) were computed for each stimulus. These

curves are obtained by plotting Se(β) against 1−Sp(β) with:

Se(β) =
TP (β)

TP (β) + FN(β)

Sp(β) =
TN(β)

TN(β) + FP (β)
, (7)

where TP , FP , TN and FN are the true positive, false

positive, true negative and false negative detection rates for

a cutoff value of β (see [6] for a full description). The Area

2http://neuroimage.usc.edu/brainstorm
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Fig. 4. Results with clean direct problem at time T0.

HEAT TV MRC

Quadrants
No Noise 0.9343 0.8818 0.8607

SNR = 1 0.8104 0.8620 0.7722

Eccentricities
No Noise 0.9353 0.8632 0.9038

SNR = 1 0.7837 0.8349 0.8486

TABLE II

RESULTS OF THE ROC STUDY OBTAINED BY SIMULATIONS ON THE 4

QUADRANTS AND FOR 3 DIFFERENT ECCENTRICITIES

Under the Curve (AUC) provides a global quality index of

the estimate: the closer to 1, the better the estimation. Table II

displays mean AUC values obtained for the methods under

evaluation.

Results show that all three methods give good results on

noiseless conditions, but also provide satisfactory reconstruc-

tions even with a significant amount of noise. We also notice

that, in these experiments, TV smoothing is the most robust

to noise.

IV. CONCLUSIONS AND FUTURE WORK

We have confronted results of two significantly different

approaches and discussed results obtained from both image

models. By running multiple experiments on real retinotopic

fMRI data, we proved that distributed methods in MEG

are of interest for localizing spatially extended activations

especially in the visual cortex.
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Fig. 5. Results with noisy direct problem (SNR = 1) at time T0.

The natural evolution of this work is to setup an experi-

mental protocol using visual stimuli to evaluate such methods

on real MEG measurements.
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