Challenging the estimation of cortical activity from MEG with
simulated fMRI-constrained retinotopic maps

Alexandre Gramfort, Benoit Cottereau, Maureen Clerc, Bertrand Thirion, Sylvain Baillet

Abstract— Detection of activity from the primary visual
cortex is a difficult challenge to magneto-encephalography
(MEG) source imaging techniques: the geometry of the visual
cortex is intricate, with structured visual field maps extending
deeper along the calcarine fissure. This questions the very
sensitivity of MEG to the corresponding neural responses of
visual stimuli and the usage of MEG source imaging for
innovative retinotopic explorations. In this context, we compare
two imaging models of MEG generators in realistic simulations
of activations within the visual cortex. Localization and spatial
extent of neural activity in the visual cortex were extracted from
retinotopic maps obtained in fMRI. We prove that the suggested
approaches are robust and succeed in accurately recovering the
activation patterns with satisfactory match with fMRI results.
These results suggest that fast retinotopic exploration of the
visual cortex could be obtained from MEG as a complementary
alternative to more standard fMRI approaches. The excellent
time resolution of MEG imaging further opens interesting
perspectives on the temporal and spectral processes sustained
by the human visual system.

I. INTRODUCTION

Neural activity is sustained by intracellular — primary
— currents that loop within the brain volume owing to
secondary — or volumic — extracellular currents [2]. Magneto-
encephalography (MEG) essentially detects the magnetic
fields produced by neocortical pyramidal neurons, whose
combined activity at the scale of neural assemblies can be
efficiently modeled by an equivalent current dipole (ECD)
oriented perpendicularly to the cortical surface [8]. Imaging
approaches to the estimation of the neural generators of MEG
are based on the distribution of at least 10,000 ECDs on a
tessellated model of the cortical envelope.

By modeling the cortical currents with such a dense sur-
facic dipole field, distributed dipole models yield an interest-
ing imaging alternative to the more conventional localization
approaches based on non-linear dipole fits and other scanning
techniques. Image models for MEG generators also suggest
that the very spatial extension of neural activations could be
extracted from the data. Reliable estimation of this parameter
would advantageously complement basic measures of brain
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responses in multiple experimental paradigms. One canonical
example is vision, where brain responses to visual stimuli
have been extensively explored in animal models and hu-
mans. fMRI has revealed a number of keys in the retinotopic
organization of visual cortices where neural responses are
structured into visual field maps [10]. The intricate functional
and anatomical organization of the human visual system is
a challenge to EEG and MEG imaging [4], whose spatial
resolution is usually considered on the order of the centimeter
and rapidly degrades with distance to sensors. Here we report
on the performances of recent forward and inverse MEG
image models in the difficult context of neural responses
within the visual cortex. We compare the images of neural
activations obtained from MEG to the regions identified from
fMRI, a technique known for its excellent spatial resolution.

II. METHODS
A. Forward and inverse modeling in MEG

Solving the direct problem in EEG consists in computing
the electrical potential V' (r) given the conductivity o(r)
in the volume  and the primary current J?(r) within
the cortex. The Maxwell equations with the quasi-static
approximation give the following equation :

V- (0VV)=V-J? in Q )

The forward problem in MEG computes the magnetic field
B(r) given the primary current J?(r), the conductivity of
volumes o(r) and the potential V'(r) using the Biot-Savart
equation. The inverse problem in MEG aims at evaluating
the primary currents on the cortex from measurements on
the MEG sensors.

B. Symmetric BEM solution with variational energy-based
inverse problem resolution

Boundary element methods (BEM) belong to the general
category of finite element methods which are commonly used
to solve partial differential equations over complex domains.
The BEM consists in substituting computation of integrals
over domains with integrals over surfaces. The symmetric
BEM approach [7] samples both the potential V' and the
normal currents on the surfaces 0, V.

The geometry of the head model consists of 4 nested
homogenous domains (‘brain’ including cerebrospinal fluid
(CSF), ‘skull’, ‘skin’ and ‘air’) and therefore 3 nested
interfaces. The brain interface separates the CSF and the
inner skull surface, the skull envelope corresponds to the
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Fig. 1. (a) Schematic representation of the head model with 3 nested
interfaces and the cortex covered with dipoles normally distributed on the
surface (€21 = Brain with cerebrospinal fluid, Q22 = Skull, 23 = Skin and
Q4 = Air) (b) Realistic head model obtained by segmenting a T1 MRI scan
(about 500 vertices per interface. The cortical envelope is a triangulation
with 35,000 vertices).

outer skull surface and the skin is the outer surface of the
scalp (cf. Fig. 1).
The method leads to a linear formulation of the problem:

M =HS 2)

where H is the lead field matrix relating the sources to
the measurements, M is a vector of NN,, instantaneous
measurements on the MEG sensor array at a given time
frame, and S is a vector of corresponding elementary source
amplitudes from the distributed cortical image model.

The MEG inverse problem is severely ill-posed and re-
quires therefore complementary assumptions on the expected
solution. Such priors generally enforce some regularizing
smoothness in the distribution of source amplitudes. For-
mally, this property is translated in the estimation process
through the minimization of an energy functional E(S) with
two terms: Fgq1,(S) that balances between the fit of the
forward model from S with the measurements on the MEG
sensors, and Fg,0tn(S), a term that imposes the distribution
of source amplitudes to be spatially smooth:

E(S) = Edata(s) + /\Esmooth(s) (3)

where Eg44(S) = ||[M — HS||? and ), a positive scalar,
controls for the smoothness of source amplitudes. Here we
suggest the following two image models :

Minimum norm of the gradient (HEAT) : Eqpo0tn=||VS||?
Total variation (TV) ! Esmootn=||VS||

where V stands for the gradient on the cortical manifold
(see [1] for a complete description of the associated opti-
mization approaches).

Optimization of the TV model has been well studied in
the image processing community for denoising purposes.
Results show that blurring of estimated source intensities
is considerably reduced in MEG using this model. The
associated optimization functional however is non convex
and may require a considerable number iterations before it
reaches convergence, thereby impeding its practical usage.

C. Alternative multiresolution approach

As over 10,000 elementary sources are necessary to prop-
erly sample the cortical anatomy, estimating S from M

Fig. 2. Illustration of a 300 mm? cortical patch. Moments of current
quadrupolar expansion are obtained from the elementary dipole moments
supporting the patch geometry, expanded about the parcel centroid.

is extremely underdetermined, thereby aggravating the ill-
posedness of the inverse estimation. We therefore suggest a
multiresolution image model to circumvent this problem. At
each spatial resolution k, the image model M, is segmented
into N, clusters C]’-c of elementary sources:

My ={C}.j € [1,N]}. 4)

Some sources are eliminated at each resolution & while
others are brought to the next image resolution k + 1 and
distributed in a new image model through the following
steps:

1) Design of the piecewise image model My at reso-
Iution k + 1 from the elementary sources that survived
previous eliminatory procedure of Step 3;

2) Compact parametric modeling of regional neural ac-
tivity from each elementary cluster CJ’?H in Mgyq;

3) Model selection: eliminate the least-significant source
cluster from M, and loop back to Step 1.

We now briefly detail the technical aspects of the modeli-
sation and selection steps (see [3] for a full description).

At each resolution k, the available cortical sources are
clustered in NN, patches C']]-C of similar surface area. Jerbi
et al. showed in [5] that the current quadrupolar expansion
was an adequate model for extended sources (> 5 cm?)
with only 7 moment parameters accounting for the cortical
activity generally supported by about 100 elementary dipoles
in conventional imaging models (see Fig. 2). At resolution
k, the activity of cluster C f is modeled up to its quadrupolar
expansion about its geometrical centroid. (2) becomes:

M = H,; Qi (&)

where Hj, is the (V,, x N,) associated gain matrix up
to quadrupolar moments. Note that as N, = 7N., we
can enforce the problem to be overdetermined by assuming
N, < N,,,/20 at each spatial resolution k.

In order to successively eliminate the least-significant
cluster in the source model, we compute the Generalized
Cross-Validation error (GCV-error) e;? for N. submodels
indexed by j consisting of all clusters in M, except C]’?. In the
context of a Weighted Minimum-Norm Estimate (WMNE)
of the quadrupolar moments controlled by a regularisation



Fig. 3. The stimulus presented in the visual field in (a) yields activity
identified from fMRI (c). Simulated MEG data consists in the corresponding
cortical locations supporting a sinewave time course (b) and associated
forward model.

parameter ), this error writes analytically [9] :

_ S—1y—1
o N FG, + 2G5~ M) ©)
J q 0 C-L)-
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where (_3,;‘; is a spatial covariance prior on quadrupolar mo-
ments of clusters My, ; at resolution k (see [3]). The cluster
associated with the smallest GCV-error C;‘O is supposed to
be the least significant and is removed at resolution k + 1.

At the end of this exhaustive procedure when all elemen-
tary dipoles have been removed from the image model, the
best model in the GCV-error sense is selected retrospectively.
As the initial cortical parcellation at k¥ = 0 is arbitrary and
coarse, the entire process is restarted L times. A weighted
summation of the individual GCV errors across the L best
models yields a so-called multiresolution clustering (MRC)
frequency map of dipole amplitudes.

III. SIMULATION STUDY

A. Description

MEG data from source distributions of neural currents
were simulated from retinotopic maps revealed by fMRI [11].
Portions of the maps corresponding to a particular region
of the visual field were selected. Neural activations within
these regions were simulated with a sine wave (cf. Fig. 3).
The resulting activities on the MEG sensors were computed
using the BEM forward model described in Section II-B.
Locations and orientations of the MEG sensors were those
of the OMEGA-151 system from VSM MedTech (Coquitlam,
BC, Canada) and consisted of 151 axial gradiometers. The
cortical envelope containing about 35,000 vertices was ex-
tracted from a T1 MRI with BrainVISA'. Two experimental
conditions were tested: one noiseless (cf. Fig. 4-a), and one
with strong additive white noise (SNR = 1 in variance
ratio), cf. Fig. 5-a. Sections III-B and III-C detail the results
from the evaluated methods for the simulation illustrated
Fig. 3. Section III-D provides a global analysis of the
performances from the simulated data sets.

Uhttp://www.brainvisa.info

Direct problem Inverse problem
Computation of Hpgps | HEAT TV
3h 9.5s 6.1s (79 iterations)
Computation of Hpsrce Frequency Map
10s 30 min. (30 Trials)

BEM

MRC

TABLE 1
COMPUTATION TIMES REQUIRED BY THE FORWARD AND THE INVERSE
PROBLEMS (1 TIME FRAME)

B. Results Method 1: Symmetric BEM with variational ap-
proach

In the absence of noise, we can observe (cf. Fig. 4-c and
4-d) that both smoothing methods succeed in localizing the
peak of activity. As expected, the solutions of TV and HEAT
provide contrasted reconstructions. With noisy data (cf. Fig.
5) the TV solution appears to be more robust than the HEAT
solution. This is confirmed by the ROC study in III-D.

Computation times are presented in Table I. The compu-
tation has been performed on an Intel™ Core 2 Duo 2.33
GHz processor with 2 GB of RAM. The ATLAS Library was
used for linear algebra operations.

C. Results Method 2: Multiresolution approach

Data processing, forward modelling and visualization were
obtained with the BrainStorm toolbox? using a spherical head
geometry. Fig. 4 and Fig. 5-e present the MRC frequency
map obtained from the simulated activity given by Fig. 3-a
(see Fig. 4 and Fig. 5-a and b for the corresponding signals
and topographies) with L = 30 resolution descent trials.
Accuracy is satisfactory even with noisy data as confirmed
by the AUC estimation in Section III-D.

These results were computed on a Pentium® 4 3 GHz
with 1 GB of RAM. It took about one minute to compute
one trial of the algorithm, leading to a global computing time
of 30 minutes to get the MRC frequency map (cf. Table I).

D. ROC Study

The forward and inverse models were further estimated
for additional stimulation configurations (4 quadrants and
3 eccentricities within a quadrant) and Receiver Operating
Curves (ROC) were computed for each stimulus. These
curves are obtained by plotting S, () against 1 —S,(5) with:

TPE)
50 = ThE) T FN )
S(8) = —NB) @

TN(B)+ FP(B)’

where T'P, FFP, TN and F'N are the true positive, false
positive, true negative and false negative detection rates for
a cutoff value of 3 (see [6] for a full description). The Area
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Fig. 4. Results with clean direct problem at time Tp.

HEAT TV MRC
No Noise | 0.9343 | 0.8818 | 0.8607
Quadrants

SNR =1 | 0.8104 | 0.8620 | 0.7722
L No Noise | 0.9353 | 0.8632 | 0.9038

Eccentricities
SNR =1 | 0.7837 | 0.8349 | 0.8486

TABLE II

RESULTS OF THE ROC STUDY OBTAINED BY SIMULATIONS ON THE 4
QUADRANTS AND FOR 3 DIFFERENT ECCENTRICITIES

Under the Curve (AUC) provides a global quality index of
the estimate: the closer to 1, the better the estimation. Table II
displays mean AUC values obtained for the methods under
evaluation.

Results show that all three methods give good results on
noiseless conditions, but also provide satisfactory reconstruc-
tions even with a significant amount of noise. We also notice
that, in these experiments, TV smoothing is the most robust
to noise.

IV. CONCLUSIONS AND FUTURE WORK

We have confronted results of two significantly different
approaches and discussed results obtained from both image
models. By running multiple experiments on real retinotopic
fMRI data, we proved that distributed methods in MEG
are of interest for localizing spatially extended activations
especially in the visual cortex.
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Fig. 5. Results with noisy direct problem (SN R = 1) at time Tp.

The natural evolution of this work is to setup an experi-
mental protocol using visual stimuli to evaluate such methods
on real MEG measurements.
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