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ABSTRACT

The success of “infinite-inventory” retailers such as Amazon.com

and Netflix has been largely attributed to a “long tail” phenomenon.

Although the majority of their inventory is not in high demand,

these niche products, unavailable at limited-inventory competitors,

generate a significant fraction of total revenue in aggregate. In ad-

dition, tail product availability can boost head sales by offering

consumers the convenience of “one-stop shopping” for both their

mainstream and niche tastes. However, most of existing recom-

mender systems, especially collaborative filter based methods, can

not recommend tail products due to the data sparsity issue. It has

been widely acknowledged that to recommend popular products is

easier yet more trivial while to recommend long tail products adds

more novelty yet it is also a more challenging task.

In this paper, we propose a novel suite of graph-based algorithms

for the long tail recommendation. We first represent user-item in-

formation with undirected edge-weighted graph and investigate the

theoretical foundation of applying Hitting Time algorithm for long

tail item recommendation. To improve recommendation diversity

and accuracy, we extend Hitting Time and propose efficient Ab-

sorbing Time algorithm to help users find their favorite long tail

items. Finally, we refine the Absorbing Time algorithm and pro-

pose two entropy-biased Absorbing Cost algorithms to distinguish

the variation on different user-item rating pairs, which further en-

hances the effectiveness of long tail recommendation. Empirical

experiments on two real life datasets show that our proposed algo-

rithms are effective to recommend long tail items and outperform

state-of-the-art recommendation techniques.

1. INTRODUCTION
Traditionally, most physical retailers concentrate on a relatively

small number of established best-sellers, as shown in Figure 1.

Economists and business managers often use the Pareto Principle

to describe this phenomenon of sales concentration. The Pareto

Principle, sometimes called the 80/20 rules, states that a small pro-

portion (e.g., 20%) of products in a market often generate a large

proportion (e.g., 80% ) of sales. However, the Internet enjoys the

potential to shift this balance. Anderson in his book [3] coined a

term-“The Long Tail”- to describe the phenomenon that niche prod-

ucts can grow to become a large share of total sales. In the book,

he claimed that Internet technologies have made it easier for con-

sumers to find and buy niche products, which renders a shift from

the hit market into the niche market. As shown in Figure 1, the

increased popularity of the Internet has accelerated this transition

and the Pareto Principle is giving way to the “Long Tail Rule”.
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Figure 1: Hits Market vs. Niche Market

The long tail brings dual benefits for increasing companies’ profit:

(1) Compared with popular items, long tail items embrace relatively

large marginal profit, which means the endeavor to expand the long

tail market can bring much more profit. It is generally accepted in

Economics that the economical profit of a completely competitive

market is nearly zero. The head market, full of bestselling prod-

ucts is an example of such highly competitive market with little

profit. Just as Deniz Oktar, in his recent publication [22], pointed

out that for recommender systems, the key to increase profit lies in

the exploration of long tail market. He further explained that if a

product sells a lot, its profit margin is usually low since all com-

petitors have to sell the same product for the same price; if non-

popular products are brought to the interest of right buyers with a

successful mechanism, profitability increases drastically. (2) Avail-

abilities to the tail items can also boost the sales on the head due to

the so called “one-stop shopping convenience” effect. By provid-

ing customers the convenience to obtain both their mainstream and

niche goods at one-stop, even small increase in direct revenue from

niche products may be associated with much second-order gain due

to increased overall consumer satisfaction and resulting repeat pa-

tronage. According to results of many analysis [3], companies like

Amazon that apply the Long Tail effect successfully make most of

their profit not from the best selling products, but from the long tail.

Anderson [3] introduced two imperatives to create a thriving

long tail business: (1) Make everything available; (2) Help me find

it. The explosion of electronic commerce, such as Amazon.com,

Netflix, and the iTunes Music Store, has opened the door to so-

called “infinite-inventory” retailers, which makes the former condi-

tion fulfilled already by offering an order of magnitude more items

than their brick-and-mortar counterparts. But there is still a long
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way to go for the second imperative since most of the existing rec-

ommendation algorithms can only provide popular recommenda-

tions, disappointing both to users, who can get bored with the rec-

ommender system, and to content providers, who invest in a rec-

ommender system for pushing up sales of less known items [6]. In

other words, most of the existing recommendation algorithms can-

not help users find long tail items with limited historical data due

to data sparsity, even if they would be viewed favorably.

For example, association rules have been widely investigated

in [24] for item recommendation. The basic idea of mining asso-

ciation rules is simple: If many users rating item1 (high support)

also rate item2 (high confidence), then a new user rating item1 is

most likely to rate item2 in the near future. Considering that the

mined association rules require high support for item1 and item2,

they typically recommend rather generic, popular items. Similarly,

the recommendation results from the classic collaborative filter-

ing(e.g. [12, 20]) are always local popular and obvious. The basic

idea of collaborative filtering is as follows: for a given user, it first

finds k most similar users by using Pearson correlation or Cosine

similarity to compute similarity among all users, and then recom-

mends the most popular item among these k users [7]. Recently,

various latent factor models, such as matrix factorization model [1,

2, 16] and probabilistic topic model [15, 5], have been proposed to

make recommendations. Although these models perform well in

recommending popular items, they cannot address the problem of

long tail item recommendation because these models can only pre-

serve principal components and factors while ignoring those niche

latent factors, and these principal components and factors can only

capture properties of the popular items [6].

In addition, recent studies [7] show that most of popular recom-

menders can even lead to a reduction in sales diversity rather than

enhancement, but they do not provide any solution to promote sales

diversity. Although most of existing recommenders can push each

person to new products, they often push different users toward the

same products. These recommenders create a rich-get-richer effect

for popular products and vice-versa for unpopular ones. So a new

recommender model that can both promote sales diversity and help

users discover their favorite niche products is most desirable.

In this paper, we investigate the novel problem of long tail rec-

ommendation, and propose a suite of recommendation algorithms

for this task, including Hitting Time, Absorbing Time and Absorb-

ing Cost algorithms. The proposed methods have several advan-

tages over existing ones. First, our proposed algorithms have the

desirable ability to help users accurately find their favorite niche

items, rather than merely popular items, which enables less main-

stream music or film to find a customer. Second, we treat various

user-item rating pairs differently in our algorithms, which drasti-

cally improves the accuracy of long tail recommendation. Third,

our proposed algorithms can provide more diverse recommenda-

tions to different users in the aggregate, which lays solid founda-

tion for promoting sales diversity. In a word, our proposed recom-

mendation algorithms provide an effective novel framework, or an

alternative way for building a real recommender system.

To the best of our knowledge, this is the first work proposed

to address the long tail recommendation problem, and our work

contributes to its advancements in the following ways:

• We analyze the long tail phenomenon and long tail recom-

mendation problem, and propose a basic solution called Hit-

ting Time algorithm based on user-item graph. To further im-

prove recommendation diversity and accuracy, we extend the

hitting time and propose efficient Absorbing Time algorithm.

• We propose entropy-cost model to distinguish the variation

on different user-item rating pairs, based on which we design

Absorbing Cost algorithms to improve the recommendation

accuracy and quality.

• We propose a new LDA-based method to mine and discover

users’ latent interests and tastes by using only the rating in-

formation, which provides a reasonable and effective way to

compute user entropy, a novel feature proposed in this work.

• We conduct extensive experiments to evaluate our proposed

algorithms, as well as other state-of-the-art recommendation

techniques, using two real datasets. The experimental results

demonstrate the superiority of our methods in various mea-

surements including recall, diversity and quality for long tail

item recommendation.

The rest of the paper is organized as follows. We review the

related work in Section 2. In Section 3, we present an overview of

the long tail recommendation and propose a basic solution based

on hitting time. In Section 4, we propose two novel approaches

to improve the basic solution, which enhance both the efficiency

and effectiveness of long tail recommendation. In Section 5, we

conduct extensive experiments and present an empirical study on

two real datasets. Finally, we offer our concluding remarks in the

last section.

2. RELATED WORK
A major task of the recommender system is to present recom-

mendations to users. The task is usually conducted by first pre-

dicting a user’ s ratings (or probability of purchasing) for each item

and then ranking all items in descending order. There are two major

recommendation approaches: content-based filtering and collabo-

rative filtering.

The content-based recommendation [25] is based on the assump-

tion that descriptive features of an item (meta data, words in de-

scription, price, tags, etc.) tell much about a user’s preferences to

the item. Thus a recommender system makes a decision for a user

based on the descriptive features of other items the user likes or

dislikes. However, in e-commerce systems, products usually have

very limited description (title, user reviews, etc.). The effectiveness

of content-based approaches is limited.

In the collaborative filtering approach [12, 20], user behavior

history is utilized to make recommendations. This approach is

based on the assumption that users with similar tastes on some

items may also have similar preferences on other items. Thus the

main idea is to utilize the behavioral history from other like-minded

users to provide the current user with good recommendations. Re-

search on collaborative filtering algorithms has reached a peak due

to the 1 million dollar Netflix movie recommendation competi-

tion. Factorization-based collaborative filtering approaches, such

as the regularized Singular Value Decomposition, perform well on

this competition, significantly better than Netflix’s own well-tuned

Pearson correlation coefficient (nearest neighbors) algorithm. Re-

cently, authors in [6] conduct extensive experiments to evaluate the

performances of various matrix factorization-based algorithms and

neighborhood models on the task of recommending long tail items,

and their experimental results show that: (1) the accuracy of all

algorithms decreases when recommending long tail products, as

it is more difficult to recommend non-trivial items; (2) PureSVD

outperforms other state-of-the-art matrix factorization based algo-

rithms and neighborhood models.

In addition, a group of probabilistic topic models have been de-

veloped in recent years. [15, 5] use LDA-based methods for com-

munity recommendation. [17] uses an approach based on LDA for
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recommending tags. Besides, some graph-based recommender sys-

tems are proposed. Authors in [29, 23] apply a node similarity

algorithm to item-based recommendation. Hitting time and Com-

mute time models have been proposed as a basis for making rec-

ommendations [8] in which the target users are set to be starting

states instead of absorbing states, but the recommending from their

hitting time and commute time is almost the same as recommend-

ing the most popular items identified by the stationary distribution,

often causing the same popular items to be recommended to every

consumer, regardless of individual consumer taste [4].

In contrast to our work, most of existing recommendation algo-

rithms can not recommend long tail items with limited historical

data due to data sparsity. Meanwhile, the diversity of their recom-

mendations is poor. To challenge long tail item recommendation

and improve recommendation diversity, we propose a novel suite

of graph-based algorithms in this paper.

3. OVERVIEW OF THE LONG TAIL REC­

OMMENDATION
In this section, we first introduce the graph modeling of the user-

item information, and then propose a basic solution called Hitting

Time to help users find their favorite long tail items on this graph.

3.1 Graph­based Representation of User­Item
information

Users and items in recommendation scenarios are inter-connected

through multiple ways, and we will model these information by an

edge-weighed undirect graph G(V,E) where V denotes the set of

nodes and E represents the set of edges. n is the number of nodes

and m is the number of edges. This graph has weights w(i, j): if

there is an edge connecting i and j, then w(i, j) is positive; other-

wise, w(i, j) = 0. Since the graph is undirected, the weights are

symmetric. The weight w(i, j) indicates the strength of the relation

between node i and node j. Let A = (a(i, j))i,j∈V be the adjacent

matrix of the graph with a(i, j) = w(i, j).
Let us consider a movie-rating dataset. Basically, this dataset

consists of three kinds of information; demographic information

about the users, information about the movie, and information about

rating which users assign to movies they have watched. As shown

in Figure 2, each element of the user and movie sets corresponds

to a node of the graph, the has watched link is expressed as an

edge, and the edge weight corresponds to the rating. This graph

expresses the relation between users and items (a user-item graph).

In this graph, nodes can be divided into two disjoint sets such as

V = V1

∪

V2, where V1 denotes the set of users and V2 represents

the set of movies. A query node corresponds to a user to whom the

recommender system wants to make recommendations.

Now we define the Long Tail Recommendation problem as fol-

lows:

PROBLEM 1. Given : a user-item graph G(V,E) with adja-

cency matrix A, and a query user node q. Find: top-k item nodes

that (1) are close enough to q, and (2) lie in the long tail.

3.2 Random Walk Similarity
Since the essence of recommendation task is to find user-interested

items which are typically close to user preferences in the graph,

random walk can be applied to a user-item graph G specified by

the adjacent matrix A , where various statistics of this walk are use-

ful for computation of proximity [4]. The Markov chain describing

the sequence of nodes visited by a random walker is called random

walk. A random walk variable s(t) contains the current state of the

U1 

U2 

U3 

U4 

U5 

M1 

M2 

M3 

M4 

M5 

M6 

Genre: Action 
 

Genre: Drama 
 

Patton (1970) 

Gandhi (1982) 

First Blood (1982) 

Highlander (1986) 

Ben-Hur (1959) 

The Seventh Scroll 

          (1999) 

M1 M2 M3 M4 M5 M6 

U1 5 3 - - 3 5 

U2 5 4 5 - 4 5 

U3 4 5 4 - - - 

U4 - - 5 5 - - 

U5 - 4 5 - - - 

Figure 2: Example of a user-item bipartite graph

Markov chain at time step t: if the random walker is in state i at

time t, then s(t) = i. The random walk is defined with the follow-

ing single-step transition probabilities of jumping from any state or

node i = s(t) to an adjacent node j = s(t+ 1) as follows:

pij = P (s(t+ 1) = j|s(t) = i) =
a(i, j)

di
(1)

where di =
∑n

j=1 a(i, j), denotes the degree of node i.
Since the graph is connected, the Markov chain (first-order) is ir-

reducible, that is, every state can be reached from any other state. If

we denote the probability of being in a state i at time t by πi(t) =
P (s(t) = i) and we define P as the transition matrix with entries

pij = P (s(t + 1) = j|s(t) = i), the evolution of the Markov

chain is characterized by π(t+1) = P
Tπ(t) where T is the matrix

transpose and π(t) = [π1(t), ..., πi(t), ..., πn(t)]
T . This provides

the state probability distribution π(t) at time t once the initial prob-

ability distribution π(0) is known. It is well-known [27] that such

a Markov chain of random walk on a graph has the stationary prob-

abilities as follows:

πi =

∑n

j=1 a(i, j)
∑n

i,j=1 a(i, j)
(2)

which means, the stationary probability πi is proportional to di.
There are some random walk based methods to measure the prox-

imity between a pair of nodes ¡i, j¿ in recommendation: random

walk with restart [23], commute time [4, 8], Katz [8], Random for-

est based algorithm(RFA) [8], just to name a few. Although these

methods can give reasonable proximity scores, they can not chal-

lenge long tail item recommendation. Some of them do not take

into account the popularity of items, e.g., Katz and RFA; others

such as random walk with restart and commute time tend to rec-

ommend popular items. Their recommendations are very similar to

the results by simply suggesting the most popular items, most likely

because they are both dominated by the stationary distribution, as

stated in [4, 8].

So in the following part, we propose a basic solution called Hit-

ting Time based on the random walk, and investigate its theoretical

foundation to recommend long tail items.

3.3 Basic Solution Based on Hitting Time

In terms of the stationary distribution mentioned above, it is easy

to formulate the property of time-reversibility [18]: it is equivalent
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to say that for every pair i, j ∈ V , πipi,j = πjpj,i, where pi,j
denotes the probability that a random walker starting from node i
reaches node j. The probability pi,j can capture the graph structure

where i and j have many common neighbors and/or many short

paths in between them. Specifically, the probability has the nice

property of increasing when the number of paths connecting two

nodes increases and when the length of any path decreases. Due

to this property, the probability pi,j can be used to compute the

similarity between i and j. In short, two nodes are considered as

being similar if there are many short paths connecting them.

From the property of time-reversibility, we can see that the prob-

abilities pi,j and pj,i are not symmetric. So there can be two alter-

natives to compute the similarity between two nodes on the graph.

Given one query user node q , we can apply either pq,j or pj,q to

compute the similarity between q and j in principle. One alterna-

tive is to apply pq,j to find the most relevant node j for the query

node q on the graph. But this method can not challenge the long tail

recommendation. According to the property of time-reversibility,

we can get the following equations:

pq,j =
pj,qπj

πq

(3)

where the denominator πq is fixed for the given query node q. From

the above equation, we can see that the popular item node j will

enjoy priority to be suggested by pq,j because pq,j is most likely to

be dominated by the stationary distribution πj .

In order to recommend long tail items, we adopt pj,q to compute

the relevance between q and j. Similar to the equation 3, we get

the equation for pj,q as follows:

pj,q =
pq,jπq

πj

(4)

where πq is fixed for the given query node q. It can be seen from

the above equation that pj,q represents the ratio between the rele-

vance score pq,j and the stationary probability πj . As mentioned in

Section 3.2, the stationary probability πj is proportional to dj , the

degree of node j. So the probability pj,q discounts items by their

overall popularity. Based on the probability pj,q , we introduce the

definition of hitting time from j to q, denotes as H(q|j).

DEFINITION 1. (Hitting Time). The hitting time from j to q,

denoted as H(q|j), is the expected number of steps that a random

walker starting from node j (j ̸= q) will take to reach node q.

By definition of hitting time, we can easily get the following

equation:

H(q|j) =
1

pj,q
=

πj

pq,jπq

(5)

According to the above equation, a small hitting time from an

item node j to the query node q means: (1) q and j are relevant (2)

the item node j is with low stationary probability, which implies

fewer users rate or purchase the item j.

Now we transfer the Long Tail Recommendation problem into

the following problem :

PROBLEM 2. Given : a user-item graph G(V,E) with adja-

cency matrix A, and a query user node q. Find : top-k item nodes

with smallest hitting times to q.

Based on the above analysis, we can use the hitting time to rec-

ommend long tail items. Given a query user, we first compute

the hitting times from all item nodes to the query user node, and

then use this measure to rank all items except those already rated

by the query user. Finally, we select k items with smallest hit-

ting times as recommendations to the query user. For example, as

shown in Figure 2, U5 is the assumed query user node, and we can

compute the hitting times H(U5|Mi) for all movies except those

already rated by U5: H(U5|M4) = 17.7, H(U5|M1) = 19.6,

H(U5|M5) = 20.2 and H(U5|M6) = 20.3. So, we will recom-

mend the niche movie M4 to U5 since it has the smallest hitting

time to U5, while traditional CF based algorithms would suggest

the local popular movie M1 . From the figure, we can see that M4

is not only harmony with the taste of U5 (e.g., Action movies), but

also unpopular, rated by only one user.

4. ENHANCEMENTS OF RECOMMENDA­

TION
In the last section, we propose the user-based Hitting Time algo-

rithm to challenge long tail item recommendation. It is well known

that the accuracy of recommendation methods depends mostly on

the ratio between the number of users and items in the system [25].

In large commercial systems like Amazon.com where the number

of users is much greater than the number of items, the average num-

ber of ratings per item is much higher than the average number of

ratings per user, which means every item has more information to

use. To utilize more information and improve the accuracy of rec-

ommendation, we refine the Long Tail Recommendation problem

as follows:

PROBLEM 3. Given : a user-item graph G(V,E) with adja-

cency matrix A, and a query user node q. Find : top-k item nodes

which (1) are close enough to Sq , and (2) lie in the distribution of

long tail .

where Sq denotes the set of items rated(or purchased) by query

user q. We would like to have a recommendation algorithm for

suggesting items which not only relevant to user preferred item set

Sq , but also hard-to-find.

Based on the above problem definition, we extend the Hitting

Time algorithm and propose two efficient and effective algorithms

for the long tail recommendation in this section.

4.1 Recommender Based on Absorbing Time
In this part, we extend the Hitting Time and propose an efficient

item-based algorithm called Absorbing Time to challenge the long

tail recommendation. First, we give the definition of Absorbing

Nodes and Absorbing Time, as follows.

DEFINITION 2. (Absorbing Nodes). In a graph G, a set of

nodes S are called absorbing nodes if a random walker stops when

any node in S is reached for the first time.

DEFINITION 3. (Absorbing Time). Given a set of absorbing

nodes S in a graph G, the absorbing time denoted as AT (S|i)
is the expected number of steps before a random walker, starting

from node i, is absorbed by S.

where S is a subset of V . Note that when S = {j}, the absorb-

ing time AT (S|i) is equivalent to the hitting time H(j|i). Let s(t)
denotes the position of the random walk at discrete time t. The

first-passage time TS is the first time that the random walk is at

a node in S. Thus TS = min{t : s(t) ∈ S, t ≥ 0}. It is ob-

vious that TS is a random variable. The absorbing time AT (S|i)
is the expectation of TS under the condition s(0) = i, that is,

AT (S|i) = E[TS |s(0) = i]. The absorbing time AT (S|i) de-

notes the expected number of steps before node i visits the absorb-

ing nodes S. The recurrence relations for computing absorbing

time can be obtained by first step analysis [14, 13].
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AT (S|i) =

{

0 , i ∈ S
1 +

∑n

j=1 pijAT (S|j), i ̸∈ S
(6)

The meaning of the above recurrence formula is : in order to

jump from node i to the absorbing nodes S, one has to go to any

adjacent state j of state i and proceed from there. The absorbing

time can also be interpreted as weighted path-length from node i to

node j ∈ S as follows:

AT (S|i) =
∑

j∈S

∑

path(i,j)

|path(i, j)|Pr(path(i, j)) (7)

where
∑

j∈S

∑

path(i,j) Pr(path(i, j)) = 1, |path(i, j)| is the

length of the path from i to j and Pr(path(i, j)) is the probability

of following the path(i, j) from i to S.

Now we transfer the Long Tail Recommendation problem into

the following problem :

PROBLEM 4. Given : a user-item graph G(V,E) with adja-

cency matrix A, and a query user node q. Find : top-k item nodes

with smallest absorbing time AT (Sq|j) to Sq .

Based on the above definition and analysis, we can use the Absorb-

ing Time to recommend long tail items. Given a query user q, we

can first compute the absorbing times AT (Sq|i) for all items based

on the graph G, and then use this measure to rank all items ex-

cept those in Sq . Finally, we select k items with smallest absorbing

times as recommendations to user q. However, there are still two

concerns for using the straightforward absorbing time.

• The graph G can be excessively large (e.g., millions of users

and items). In fact, most nodes are irrelevant to the query

user, but they increase the computational cost.

• Solving the linear system can be time-consuming. When

number of variables of the linear system is millions, it be-

comes extremely inefficient to get an exact solution to that

linear system. The absorbing times, starting from every non-

absorbing node and absorbed by S can be computed in time

O(n3) where n is |V | − |S| [13].

To overcome these two obstacles, we propose the following ef-

ficient algorithm for long tail recommendation using Absorbing

Time in Algorithm 1. Similar to [10], we compute Absorbing Time

by iterating over the dynamic programming step for a fixed num-

ber of times τ rather than directly solving the linear system. This

leads to the truncated Absorbing Time, which is reasonable and ap-

propriate in the context of recommendation because what we really

care about is the ranking of item nodes rather than the exact value

of Absorbing Time. A good selection of τ would guarantee that

the ranking of top k items stays stable in the future iterations. If

the algorithm is implemented on the global graph, for each user

its complexity is O(τ ·m), where m denotes the number of edges

and τ denotes the iteration number. In order to scale the search

and improve the efficiency, we first deploy a breadth-first search

from the absorbing node set and stop expansion when the number

of item nodes exceeds a predefined number µ. Then we apply the

iterative algorithm to the local subgraph. A worst-case analysis

suggests that m = O(µ2) on the subgraph. Thus, the worst-case

running time of the Absorbing Time based on the local subgraph is

O(τ · µ2). However, in practice, the rating matrix is very sparse

and the running time of the algorithm is much less than this worst-

case analysis suggests. In addition, µ and τ do not need to be large,

which ensures the efficiency of this algorithm. Generally, when we

use 15 iterations, it already achieves almost the same results to the

exact solution which we can get from solving the linear system.

Algorithm 1 Recommendation Using Absorbing Time

Input:

A user-item graph, G(V,E) with adjacency matrix A;

A query user node, q ∈ V ;

Output:

A ranked list of k recommended items;

1: Given the query user q, find the item set Sq rated by q.

2: Construct a subgraph centered around Sq by using breadth-first

search in the graph G. The search stops when the number of

item nodes in the subgraph is larger than a predefined number

of µ.

3: Initialize the absorbing times of all nodes in the subgraph with

AT0(Sq|i) = 0.

4: For all nodes in the subgraph except those in Sq , iterate

ATt+1(Sq|i) = 1 +
∑

j

pijATt(Sq|j)

for a predefined number of τ iterations.

5: Let ATτ (Sq|i) be the final value of ATt(Sq|i). Output the

items Rq which have the top-k smallest ATτ (Sq) as recom-

mendations.

4.2 Recommender Based on Absorbing Cost
The proposed efficient Absorbing Time algorithm has the desir-

able ability to help users find their favorite long tail items. How-

ever, it lacks modeling of rich information to distinguish the vari-

ation on different user-item rating pairs besides the rating scores,

thus there is still much space to improve its accuracy for the long

tail recommendation. Intuitively, a score rated by a user who spe-

cializes in limited interests would provide much more valuable in-

formation than the rating offered by a person of wide interests.

However, in the Absorbing Time model, those two rating scores

are not treated distinguishingly as it should be, resulting in the loss

of important information which can otherwise be utilized to reach

more accurate recommendation.

As show in Figure 2, M3 is rated by both U2 and U4 with the

same rating score 5-stars. There is a critical question when only

considering the raw rating score: Should the equal ratings provided

by different users to the same item be viewed equally important in

the recommendation? Or are the costs of jumping from a certain

item node to different connected users with same ratings in the bi-

partite graph equal? Clearly not. In this case, at an intuitive level,

the rating from U4 to M3 may capture more meaningful informa-

tion, or be more important than the rating from U2 to M3. In other

words, jumping from M3 to U4 should be less costly than jumping

from M3 to U2. The key difference is that the connected users are

different: U4 is a taste-specific user (e.g., only likes Action movies)

while U2 has a wider range of interest (e.g., both Action and Drama

movies).

To treat various user-item rating pairs differently, we propose the

Absorbing Cost model in this part. In a similar way to the Absorb-

ing Time, the Absorbing Cost is the average cost incurred by the

random walker starting from state i to reach absorbing states S for

the first time. The transition cost from state i to its adjacent state j
is given by c(j|i). Notice that the Absorbing Time AT (S|i) is ob-

tained as a special case where c(j|i) = 1 for all i, j. The following

recurrence relations for computing Absorbing Cost AC(S|i) can

easily be obtained by first-step analysis [14, 13].

AC(S|i) =

{

0 , i ∈ S
∑

j
pijc(j|i) +

∑

j
pijAC(S|j), i ̸∈ S

(8)
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In the following parts, we first propose a novel feature called

user entropy, and then utilize this feature to compute the transition

cost and capture the variation on different user-item rating pairs.

4.2.1 Entropy Metric used in Information Theory

Before performing a theoretical analysis, we first briefly review

the entropy in information theory [26]. Suppose there is a user who

has a wide range of interests and tastes, which tends to increase

the ambiguity of the user. On the other hand, if the user centers

on few specific interests, this tends to increase the specificity of the

user. Therefore, a single rating from a specific user is most likely

to be more important to distinguish the specificity of the item than

another rating from an ambiguous user.

For example, if two different items are connected by a specific

user, then they are more likely to be similar and proximal in topics

and tastes. Based on the intuition, we introduce a novel feature user

entropy to weight the cost of jumping from one item node to dif-

ferent connected user nodes as shown in Equation 9. Specifically,

we currently only consider changing the cost of jumping from the

item node to the user node, and keeping the cost of jumping from

the user node to the item node as a predefined constant C.

AC(S|i) =







0 , i ∈ S
∑

j
pijE(j) +

∑

j
pijAC(S|j), i ∈ V2 − S

C +
∑

j
pijAC(S|j) , i ∈ V1 − S

(9)

where V1 is the set of all user nodes and V2 is the set of all item

nodes in our system; E(j) denotes the entropy of user j and C is a

tuning parameter, which corresponds to the mean cost of jumping

from V2 to V1 in our current model.

In the following subsections, we propose two strategies to com-

pute the novel feature user entropy. They are item-based and topic-

based respectively.

4.2.2 Item­based User Entropy

The Absorbing Time algorithm and most CF-based recommen-

dation algorithms only consider the information of users’ ratings

of items, and treat different user-item rating pairs equally even if

some users are very general and prefer everything. More gener-

ally, a great variation in users’ preferred item distribution is likely

to appear, and it may thus cause the loss of important information

since different user-item pairs are not sufficiently distinguished. It

is easy to understand that the broader a user’ s tastes and interests

are, the more items he/she rates and prefers. Thus general users

would have a larger collection distribution than the taste-specific

ones, which tends to increase the ambiguity and uncertainty of the

users in the ordinary sense.

An assumption is accepted that if a user rates (or downloads,

purchases) large number of items, especially with equal probability,

the ambiguity (uncertainty) of the user tends to increase, otherwise

if a user rated only a few items, the specificity of the user tends to

increase. Using information theory, the entropy [26] of a user u is

defined as

E(u) = −
∑

i∈Su

p(i|u) log p(i|u) (10)

where p(i|u) =
w(u,i)∑

i∈Su
w(u,i)

.

4.2.3 Topic­based User Entropy

In the last section, we propose an item-based method to compute

user entropy. But the assumption made in the item-based method

is not always true, because it is possible that an interest-specific

user rates a large number of items which all center around his spe-

cific interest. So we try to employ probabilistic topic model [28] to

directly model users’ latent interests and tastes in this section.

Given a topic set T = {z1, z2, ..., zK} and a user u’s topic dis-

tribution θu, we can compute his/her entropy as follows:

E(u) = −
∑

zi∈T

p(zi|θu) log p(zi|θu) (11)

To compute a user’s latent topic distribution, we propose a new

LDA based method to learn users’ latent topics and tastes by only

utilizing the rating information. In our method, user-item data is

entered as a frequency count where the value is the rating score.

We choose the rating to measure the strength of relationship be-

tween users and items. A user’s preference to different items may

be various, for example, to his favorite item, the user may give high

rating score. We use w(u, i), which is the relation between the user

u and his/her rated ith item itemu,i, to denote u’s rating score of

itemu,i. In our method, w(u, i) is viewed as the frequency of the

item’s appearance in the item set Su rated by u. As shown in Fig-

ure 3, we denote the per-user topic distribution as θ, the per-topic

item distribution as φ, and the generative process of LDA model

can be summarized as follows:

1. For each topic k = 1, ...,K, draw a multinomial φk from a

Dirichlet prior β.

2. For each user, u ∈ U :

(a) Draw θu ∼ Dirichlet(·|α).

(b) For each item, itemu,i, in user rated item set Su:

i. Draw z from multinomial θu;

ii. Draw itemu,i from multinomial φz;

iii. Repeat the above two steps w(u, i) times.

Z 

� 

  ! 

" item 

      

 

 

 

                    T 
  w(u,i) 

         Su 

  w(u,i)( , )

        Su

         U 

Figure 3: LDA model for user-item data

Below, we show how to train LDA and estimate parameters using

Gibbs sampling, then infer the per-user topic distribution. Follow-

ing the same procedure of assigning each word with different topics

in Gibbs sampling [9], we start our algorithm by randomly assign-

ing a topic set T = {z1, z2, ..., zw(i,j)} to the jth item of the ith
user. Figure 4 demonstrates the process. For example, we assign a
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topic set Tij = {zi,j,1, zi,j,2, ..., zi,j,w(i,j)} to itemi,j . Then each

topic in the topic set is updated by Gibbs sampling using:

P (zi,j,k = z|T (i,j,k), item) ∝
n
itemi,j

(i,j,k),z + β

n•

(i,j,k),z +NIβ

nui

(i,j,k),z + α

nui

(i,j,k),• +NTα

(12)

where T (i,j,k) is the topic assignment of user rated item set Su,

not including the current topic zi,j,k. n
itemi,j

(i,j,k),z is the number of

times itemi,j is assigned to topic z, nui

(i,j,k),z is the number of

times topic z is assigned to ui. n•

(i,j,k),z is the number of times

topic z appears, and nui

(i,j,k),• is the number of topics assigned to

ui. Both of them do not include the current instance. NI is the

total number of items, while NT is the size of topic set. From

these counts, we can estimate the topic-item distributions φ and

user-topic distribution θ by :

φ̂item,z =
nitem
z + β

n•
z +NIβ

(13)

θ̂u,z =
nu
z + α

n
(u)
• +NTα

(14)

U1 U2 � Ui � 

Item1,1 Item1,2 � Itemi,1 � Itemi,j � 

Z1,1,1 Z1,1,2 � Z1,1,w[1,1] Zi,j,1 Zi,j,2 ... Zi,j,w[i,j] 

Figure 4: Topic assignment of user documents

Algorithm 2 Algorithm for training LDA

Input:

user-item rating matrix, W = NU ×NI ;

Output:

A set of topic assignments, T ;

1: //initialize T;

2: Randomly assigns a topic set to each item.

3: Initialize arrays N1, N2, N3, N4;

4: for iteration = 1 to l do

5: for each user i do

6: for each item j in Si do

7: for each topic k in j do

8: N1[i,k]−−;N2[i,k]−−;N3[k]−−;

9: for z = 1 to K do

10:

P [z] =
(N1[j, z] + β) ∗ (N2[i, z] + α)

(N3[z] +NI ∗ β) ∗ (N4[i] +NT ∗ α)

11: end for

12: //update the topic assignment according to the P[];

13: update(k);

14: N1[i,k]++; N2[i,k]++; N3[k]++;

15: end for

16: end for

17: end for

18: end for

Repeat the Gibbs sampling process to update topic assignments

for several iterations, until the model parameters converge. Algo-

rithm 2 shows the details for training LDA and inferencing the pa-

rameters, where N1,N2, N3, N4 are matrixes whose elements are

n
itemi,j

(i,j,k),z , nui

(i,j,k),z , n•

(i,j,k),z ,nui

(i,j,k),•.

Table 1 shows two example topics that were derived from the Movie-

lens1 rating dataset. The table shows five movies that have the high-

est probability under each topic, and we can see that most movies

in Topic 1 are Children’s and Animation, and the movies in Topic

2 center around the genre of Action.

Topic 1 Topic2

Sleeping Beauty (1959) Live and Let Die (1973)

Peter Pan (1953) Thunderball (1965)

Lady and the Tramp (1955) Lethal Weapon (1987)

Antz (1998) Romancing the Stone (1984)

Tarzan (1999) First Blood (1982)

Table 1: Two topics extracted from the Movielens dataset

5. EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

performance of the proposed approaches for long tail recommenda-

tion and demonstrate the superiority of our methods by comparing

with other competitive techniques.

5.1 Experimental Setup

5.1.1 State­of­the­art techniques

In this experimental study, we compare our approaches with some

existing recommendation techniques for long tail recommendation

on real-world data corpus collected from MovieLens and Douban2.

Our recommendation methods have four variants, named HT for

Hitting Time based algorithm, AT for Absorbing Time based algo-

rithm, AC1 for item-based Absorbing Cost algorithm and AC2 for

topic-based Absorbing Cost algorithm, respectively. The competi-

tors fall in three categories which cover the state-of-the-art tech-

niques for recommendation tasks.

• LDA-Based Method: Latent Dirichlet Allocation (LDA) [28]

is a generative model that allows sets of observations to be

explained by unobserved groups. [15, 5, 17] use LDA-based

method for recommendation. Especially in [17] their em-

pirical results suggest that association rules-based methods

typically recommend rather generic, popular tags while their

proposed LDA-based methods can recommend specific, in-

frequent tags.

• Matrix Factorization: Recently, several recommendation

algorithms based on Matrix Factorization have been proposed

[16, 2]. Authors in [6] conducted extensive experiments to

evaluate the performances of various algorithms on the task

of recommending long tail items, and their findings suggest

that PureSVD [6] outperforms all other powerful models such

as AsySVD , SVD++ [16] and classic neighborhood models.

• Personalized PageRank: The Personalized PageRank(PPR)

[11] algorithm tends to suggest popular items since the sta-

tionary distribution for the personalized pagerank w.r.t. start-

ing nodes S is localized around the starting nodes, which

1http://www.movielens.umn.edu
2http://www.douban.com
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combines the factors of similarity and popularity. To chal-

lenge the task of suggesting long tail items, we propose a

baseline algorithm called Discounted Personalized PageR-

ank (DPPR) which discounts items by their overall popular-

ity. The computation of DPPR value of items w.r.t. starting

nodes S proceeds as follows:

DPPR(i|S) =
PPR(i|S)

Popularity(i)
(15)

where PPR(i|S) denotes the personalized pagerank value

of node i w.r.t the starting nodes S, and Popularity(i) is

the frequency of item i’s rating, purchasing or downloading.

5.1.2 Data Description

Since no benchmark data is available for performance evaluation

on long tail recommendation, we utilize the real-life datasets col-

lected from MovieLens and Douban. The long tail of a catalog is

measured in terms of frequency distribution (e.g., purchases, rat-

ings, downloads, etc.), ranked by item popularity. Though these

long tail products locate in the long tail, they in the aggregate ac-

count for a sizable fraction of total consumption. We define those

products as long tail products (or niche products), enjoying lowest

purchasing, downloading or ratings while in the aggregate gener-

ating r% of the total sales, downloads or ratings. All the rest are

called short head products. In our experiment, r% is set to 20%
following the 80/20 rules. We observe that about 66% hard-to-

find movies generate 20% ratings collected by Movielens and 73%
least-rating books generate 20% book ratings collected by Douban.

• MovieLens Dataset: It is a real movie dataset from the web-

based recommender system MovieLens. The dataset [6] con-

tains 1M ratings on a scale of 1-to-5 star for 3883 movies by

6040 users. Users rated 20-737 movies and movies received

1-583 ratings. The density for the rating matrix is 4.26%,

a sparse matrix, which means that most users have not seen

most movies.

• Douban Dataset: We also collect the real-life dataset from

Douban for performance evaluation. Douban is a Chinese

Web 2.0 website , the largest online Chinese language book,

movie, and music database and one of the largest online com-

munities in China with more than 50 million users. Users

can assign 5-scale integer ratings to movies, books and mu-

sic. Douban is also the largest book review website in China.

We crawled totally 383, 033 unique users and 89, 908 unique

books with 13, 506, 215 book ratings. The density for this

rating matrix is 0.039%, an even much sparser matrix than

the Movielens.

5.1.3 Evaluation metrics and methodologies

As we introduced previously, long tail recommendation is a novel

problem and there exists no benchmark dataset and evaluation met-

rics for this task. Intuitively, a desirable long tail recommender

should be able to help users discover their favorite niche products

and promote sales diversity, i.e., the recommended items should

be in long tail (less popular), diverse, and match users’ interests.

According to previous study and our experience, we propose fol-

lowing metrics to evaluate the performance of long tail recommen-

dation algorithms which cover various aspects of our consideration.

• Accuracy measurement: Our overall goal is to measure

the accuracy of all mentioned algorithms and models in the

long tail recommendation. As the predicted scores of rec-

ommended items by different algorithms are not in the same

range, thus, to fairly compare their predictability of all algo-

rithms, we employ the metric of Recall@N which have been

widely adopted by [16, 6, 5].

• Long tail measurement: As mentioned in [6], to recom-

mend popular products is easier yet more trivial. On the other

hand, to recommend long tail products adds more novelty yet

it is also a harder task due to data sparsity issue. In order

to compare our methods with state-of-the-art techniques on

the task of recommending long tail items, we evaluate them

in terms of popularity. We define the popularity of recom-

mended item as its frequency of rating.

• Quality measurement: Obviously, the popularity measure-

ment is not sufficient since the recommendations may be lo-

cated in the long tail but not harmony with the target user’s

taste. The basic idea behind all successful item-based rec-

ommender systems is to find items that are most relevant to

the previous choices of the given user. Hence, to evaluate the

quality of recommendation, we propose to compute the simi-

larity between recommended items and user interests, which

is similar to the method used in [19]. Besides, we conduct a

user study to evaluate the usefulness of recommendations.

• Diversity measurement: Authors in [7] examine the effect

of recommender systems on the diversity of sales, and they

arrive at a surprising conclusion that most of existing recom-

menders can lead to reduction in sales diversity. To evaluate

the recommendation diversity of all recommendation algo-

rithms, we adopt the normalized number of different items

recommended to all testing users.

• Efficiency measurement: This is the general performance

issue of recommendation algorithms, i.e., the time cost, as

the algorithms must be efficient and scalable to facilitate the

online operations on large-scale datasets.

5.2 Performance on Recommendation
In this section, we present our performance comparison with the

state-of-the-art recommendation strategies. The parameter tuning

of different models is a critical issue for the system performance,

such as the hyper-parameters α and β for LDA, the number of latent

factors (topics) for AC2, LDA and PureSVD, the dumping factor

λ for DPPR. We only report the optimal performance with tuned

parameters and omit the detailed discussion due to space constraint,

e.g., the default value of α is 50/K (K is the number of topics), β
is 0.1, and λ is set as 0.5.

5.2.1 Accuracy Measurement

To compare the recommendation accuracy of all algorithms in

recommending long tail items, we adopt the testing methodology

and the measurement Recall@N applied in [16, 6, 5]. The basic

idea of this metric is to form an item set including a user favorite

item and some randomly selected items, then the recommendation

algorithm ranks all the items and see whether the favorite item is in

the top-N results. This purely objective evaluation metric has been

widely applied in recommender system evaluation.

We next introduce how this experiment will be conducted. For

each dataset, known ratings are split into two subsets: training set

M and testing set L. We randomly select 4000 long tail ratings

with 5-stars as the testing set and the remaining ratings as training

set. As expected, the testing set is not used for training. For each

long tail item i rated 5-stars by user u in L, we first randomly
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Figure 5: (a)Recall-at-N on Movielens testset; (b)Recall-at-N on Douban testset.

select 1000 additional items unrated by u, and then compute pre-

dicted scores for the test item i as well as the additional 1000 items.

Based on their scores, we form a ranked list of these 1001 items.

The computation of Recall@N proceeds as follows. We define

hit@N for a single test case, as either the value 1 if the test item i
appears in the top-N results, or else the value 0. The overall Re-

call@N are defined by averaging all test cases:

Recall@N =

∑

hit@N

|L|
(16)

where |L| is the number of all test cases, i.e., 4000 in our experi-

ment. It should be noted that the hypothesis that all the 1000 ran-

dom items are non-relevant to user u tends to underestimate the

computed recall with respect to true recall. However, this experi-

mental setting and evaluation are fair to all competitors.

Figure 5(a) reports the performance of recommendation algo-

rithms on the Movielens dataset. We only show the performance

on N in the range [1...50], since larger value of N can be ignored

for a typical top-N recommendations task. It is apparent that the

algorithms have significant performance disparity in terms of top-

N recall. For instance, the recall of AC2 at N = 10 is about 0.12,

and 0.48 for N = 50, i.e., the model has the probability of 12%
to place a long tail appealing movie in top-10 and 48% in top-50.

Clearly, our approaches perform better than all other competitors

whose performances are less than 50% of AC2. Since the 1000
randomly selected items scatter over the whole dataset, in other

words, the testing set consists of both popular and unpopular items,

the existing methods generally give higher weight to the popular

items in the recommendation. And hence, the target long tail item,

i.e., the known user favorite, has lower probability to appear in the

top-N among these 1001 items.

We also report the performances of all algorithms on Douban

dataset in Figure 5(b). From the figure, we can see that the trend of

comparison result is similar to that of 5(a). The main difference is

that the accuracy of all algorithms increases on the Douban dataset

because the Movielens dataset is smaller than Douban dataset, and

the rating matrix on Movielens is much denser than that of Douban,

4.26% v.s. 0.039%. Thus, for the Movielens dataset, it is more

likely that there are more relevant items to the target user in the ad-

ditional 1000 items and these relevant items will have prior rank-

ings, which degrades the recall@N performance.

From Figure 5, we can observe that AC2 outperforms the other

algorithms in terms of recall, followed by AC1, AT and HT, which

supports our intuitions:(1) item-based AT outperforms user-based

HT since the average number of ratings per item is much higher

than the average number of ratings per user, which means every

item has more information to use; (2) entropy-biased AC models

perform better than AT because AC can enrich the model with use-

ful information to capture the differences of ratings from various

users by utilizing the novel feature user entropy; (3) probabilis-

tic topic-based entropy model beats item-based entropy model be-

cause the probabilistic topics can directly capture users’ interests

and tastes in the latent semantic level.

5.2.2 Long Tail Measurement

The above measurement Recall@N mainly evaluates the perfor-

mance of all algorithms in terms of accuracy when recommending

long tail items, but it has been well evidenced that being accuracy

is not enough for recommender systems [21, 23, 6, 7]. To verify

whether all mentioned algorithms have the desirable ability to help

users accurately find the long tail items they may like in the near

future, from the mixtures of both popular and unpopular items, we

present the following testing methodology: given a target user u
and a rating log dataset, a recommendation algorithm suggests a

list of items Ru unrated by u, and we evaluate the performance of

the algorithm by testing Ru in measurements of Long Tail, Simi-

larity and Diversity. We randomly sample a set of 2000 users from

our datasets as the testing users. In order to speed up our proposed

algorithms, we construct a subgraph centered around the query user

by using breadth first search to build a candidate item set for rec-

ommendation task as illustrated in Algorithm 1. In this study, the

default size of candidate item set, µ, is 6k and the default iterations

τ is 15. In the following, we first present the performance of all

algorithms in the measurement of Long Tail.

In this experiment, we evaluate the popularity of the recom-

mended items over the 2000 testing users, and report the average

numbers of ratings. The comparison results are shown in Fig-

ure 6(a) and 6(b). From the comparisons, we can observe that

no matter how many recommendations are returned, our proposed

recommendation algorithms consistently recommend more niche

items than other existing methods, which shows the effectiveness

of our methods in recommending long tail products. As expected,

our designed baseline algorithm DPPR shows comparable perfor-

mance with our approaches, as it discounts items by their popularity

and gives priority to long tail items. However, it performs worse in

terms of Recall@N as shown in previous analysis. An interesting

observation is that the popular items enjoy priority to be recom-

mended in LDA and PureSVD models, so the top suggested results

from the two latent factor-based recommendation models are more
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Figure 6: (a)Popularity at N on Douban testset; (b)Popularity at N on Movielens testset.

likely to be popular items. That is why Popularity@N decreases

with the increasing N for LDA and PureSVD in Figure 6. It should

be noted that the decrease of Popularity@N is not visibly obvious

in Figure 6(b) since we take the logarithm form on the vertical axis

for the Movielens testset.

5.2.3 Diversity Measurement

As we discussed previously, most of existing recommenders can

lead to a reduction in sales diversity. Because these recommenders

suggest products based on sales and ratings, they may create a rich-

get-richer effect for popular products. Some recommenders can

push users to new products, but they often push different users

toward the same products. Thus the overall recommendation di-

versity will be degenerated rather than enhanced. To evaluate the

recommendation diversity of all recommendation algorithms, we

propose the computation of diversity as follows:

Diversity =
|
∪

u∈U
Ru|

|I|
(17)

where U is the set of users and I is the set of items. Ru denotes the

set of recommended items for u.

Table 2: Comparison on Diversity
AC2 AC1 AT HT DPPR PSVD LDA

Douban 0.58 0.625 0.58 0.55 0.45 0.325 0.035

Movielens 0.42 0.425 0.42 0.41 0.35 0.245 0.025

In our experiment, for Douban dataset U consists of 2000 test-

ing users, and an ideal recommender model can recommend 20000
(|I| = 20000) unique items at most if each testing user is suggested

a list of 10 items. As Table 2 shows, our proposed recommenders

outperform the competitors in terms of Diversity. Among all algo-

rithms, LDA performs worst. Though LDA can recommend user-

interested items for each user, it only recommends about 700 differ-

ent items for the 2000 testing users on Douban dataset. Among our

approaches, AC1 performs best and it can suggest 12500 unique

items for the 2000 testing users; AT performs as well as AC2 and

both of them can recommend 11600 unique items. The experi-

mental results also confirm that item-based methods(e.g., AT algo-

rithm) perform better than user-based methods(e.g., HT algorithm)

in terms of recommendation diversity: HT suggests 11000 unique

items while AT recommends 11600 unique items for the 2000 test-

ing users. In Movielens dataset, the trend of comparison result

is similar to the result in Douban dataset. The main difference is

that the Diversity of almost all algorithms decreases in Movielens

dataset due to that the rating matrix on Movielens is much denser

than that of Douban. Two randomly selected users in Movielens

dataset enjoy higher probability of having rated same items and

enjoying the similar interests than two randomly selected users in

Douban, which increases the probability that the same items are

suggested for different users. Based on the above observations, we

can conclude that our proposed algorithms can help firms to im-

prove their sales diversity by recommending diverse items to users.

5.2.4 Similarity Measurement

Obviously, both popularity and diversity measurements are not

sufficient since the recommendations may reside in the long tail

but not match the interest of target user. In this part, we evalu-

ate the performance of all algorithms in similarity measurement on

Douban dataset.

We utilize a well-defined book ontology from dangdang3, an

Amazon-like Chinese e-commerce company, and map the douban’s

books into this ontology by books’ ISBN. The computation of sim-

ilarity in this ontology proceeds as follows. Given a book, we

first find category matches in the form of paths between categories.

For instance, given the book “Introduction to Data Mining”, we

would identify the hierarchial category “Book: Computer & Inter-

net: Database: Data Mining and Data Warehouse: Introduction to

Data Mining” while the hierarchial category for book “Informa-

tion Storage and Management” is “Book: Computer & Internet:

Database: Data Management: Information Storage and Manage-

ment”, where “:” is used to separate different categories. Hence,

to measure how similar two books are, we can use a notion of sim-

ilarity between the corresponding categories provided by the well

defined book ontology. In particular, we measure the similarity

between two categories Ci and Cj as the length of their longest

common prefix P (Ci, Cj) divided by the length of longest path

between Ci and Cj . More precisely, the similarity is defined as:

Sim(Ci, Cj) =
|P (Ci, Cj)|

max(|Ci|, |Cj |)
(18)

where |Ci| denotes the length of path Ci. For instance, the similar-

ity between the above two books is 2/4 since they share the path

“Book: Computer & Internet: Database” and the longest path is

4. We evaluate the similarity between two books by measuring the

similarity between their corresponding categories.

3http://book.dangdang.com/
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Based on the above equation, we propose a novel measurement

to measure the relevance between a user u and an item i, as follows

Sim(u, i) = max
j∈Su

sim(i, j) (19)

where Su is u’s preferred item set. The definition in Eq.(19) indi-

cates that: the recommended book i is relevant to the target user’s

taste if book i is similar with one of his favorite books. We evaluate

the relevance of the recommendation results of 2000 testing users

and we report the average values.

Table 3: Comparison on Similarity

AC2 AC1 AT HT DPPR PureSVD LDA

0.48 0.42 0.39 0.37 0.36 0.45 0.43

The comparison results are shown in Table 3. From the table, we

can see that our proposed recommendation methods can perform

as well as, if not better than, other state-of-the-art recommenda-

tion algorithms. Especially, our proposed AC2 variant performs

best among all algorithms, which supports our intuition that vari-

ous user-item rating pairs should be treated differently in the rec-

ommendation. Among all of our proposed algorithms, we can see

that item-based AT, AC1 and AC2 can recommend more relevant

items than user-based HT, and probabilistic topic-based AC2 can

suggest more similar items than item-based AC1 due to that the

topic-based user entropy is more proximate to the exact user en-

tropy than the item-based. Our designed baseline algorithm DPPR

does not perform well on the measurement of similarity although it

can recommend long tail items.

5.2.5 Impact of Parameter µ

As our approach is an item-oriented solution, we have to decide a

proper candidate set for recommendation to avoid time-consuming

dataset scan. In this experiment, we investigate how the number

of candidate items in the constructed subgraph µ will affect the ef-

fectiveness and efficiency of the recommendation. Note that, pro-

cessing on the whole graph can be time-consuming and inefficient

as analyzed previously. In practice, we can adopt a subgraph with

fewer candidate item nodes to make recommendations, which can

achieve almost the same performance as the the whole graph scan,

as shown in Table 4. Due to the space constraint, we only show the

performance of AC2 on Douban dataset by varying µ in the table.

Table 4: Impact of Parameter µ
µ 3000 4000 5000 6000 89908

Popularity 100.6 100.1 95.7 93.2 94.8

Similarity 0.44 0.46 0.47 0.48 0.48

Diversity 0.585 0.585 0.58 0.58 0.58

Efficiency(s) 0.17 0.3 0.42 0.52 12.7

From Table 4, we can observe that (1) Popularity slightly de-

creases with the increasing µ ; (2) Similarity increases with µ in-

creasing from 3k to 6k and then does not change much when µ
is larger than 6k; (3) Diversity slightly decreases with the increas-

ing µ because an item would enjoy higher probability to appear in

more candidate sets with the increasing µ, which may result in the

decrease of recommendation diversity; (4) the time cost of AC2 al-

gorithm increases with parameter µ increasing from 3000 to 89908.

As shown in Table 4, AC2 can achieve satisfactory performance

with relatively small µ, e.g., 3k-6k, and the performance does not

change much when µ is larger than 6k. Based on the above anal-

ysis, we can conclude that our proposed methods are scalable to

large datasets by selecting much smaller subgraph centered around

the target user, which ensures the efficiency of our algorithms.

5.2.6 Comparison on Efficiency

We next proceed to perform an efficiency comparison of dif-

ferent recommendation algorithms. All the recommendation al-

gorithms are implemented in Java (JDK 1.6) and run on a Linux

Server with 32G RAM. They are required to recommend 10 items

for each user on Douban dataset. Since LDA and PureSVD are

model based methods, we only report their online recommendation

time costs, ignoring their offline training time. For our proposed

AC2 algorithm, we present its time cost with parameter µ = 6k
and τ = 15, which also excludes the offline time cost of learning

entropy of users with LDA model.

Table 5: Comparison on Time Cost

LDA PureSVD AC2 DPPR

time(s) 0.47 0.45 0.52 13.5

From the Table 5, we can observe that our proposed AC2 al-

gorithm achieves comparable performance with model-based ap-

proaches such as LDA and PureSVD, and it beats the graph-based

DPPR algorithm on Douban dataset. Our approach only needs

to explore the relevant subgraph to avoid time-consuming global

graph scan, while preserving the effectiveness of the recommenda-

tion. Note that, though the latent factor model based approaches,

such as LDA and PureSVD, are quite efficient in our study, their

costs are linear to the size of data. For the latent factor model,

we have to compute the similarity of a user to all the items in the

dataset and subsequently select the best k among them to recom-

mend to the user. When the dataset becomes larger (e.g., containing

millions of items), computing the top-k items for each user requires

millions of vector operations per user.

5.2.7 User Study

In order to evaluate the usefulness of our proposed recommen-

dation algorithms, we employ a user survey on Movielens dataset

by hiring 50 movie-lovers as evaluators to answer the evaluation

questions. In the survey, we use AC2, DPPR, PureSVD and LDA

algorithms to recommend 10 movies for each evaluator according

to their preferences, respectively.

The survey is structured as follows. In order to elicit the evalua-

tors’ preferences, each one is first presented 50 movies and required

to provide their ratings. It should be noted that these 50 movies al-

most cover all movie genres. They are then offered 10 recommen-

dations, represented as a list of ten movies titles (together with the

corresponding DVD covers and IMDB links) and asked to answer

the following evaluation questions for each movie:

• Preference: How much does the recommended movie match

your taste and interest (1-5)?

• Novelty: Have you ever known the recommended movie be-

fore (0(Y) - 1(N))? If yes, how did you know it(free text)?

• Serendipity: How much surprise and serendipity can the

movie bring to you (1-5)?

• Score : Please provide the overall rating for the movie (1-5).

The 50 evaluators individually answer the above evaluation ques-

tions and the average results are given in Table 6. Based on this user

study, we have following observations: (1) Our proposed method

can recommend more satisfactory movies to users in overall. Specif-

ically, the movies suggested by our method not only match users’
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tastes and interests, but also bring more novelty and serendipity to

users due to that the movies suggested by our method are much

more likely to lie in the long tail and hence most users may have

never known them before. (2) Compared with our recommenda-

tions, the movies recommended by LDA and PureSVD concentrate

on the short head, the majority of which are hit movies. According

to the evaluators’ answers and explanations to Novelty, we observe

that they have known more than one-third of the recommended

movies before, from other medium such as film posters, newspa-

pers, broadcast and their friends. Besides, some evaluators ex-

plained that they have seen the movies in the top lists of some web-

sites such as IMDB, Hulu and YouTube. Obviously, this kind of

recommendation may not be that useful. (3) Although the movies

recommended by DPPR can also bring novelty to users since most

of them are in the long tail, they do not match users’ tastes and in-

terests very well. That is why the movies suggested by DPPR have

lower overall scores.

Table 6: Comparison on Usefulness

Preference Novelty Serendipity Score

AC2 4.32 0.98 4.78 4.41

DPPR 3.12 0.89 3.95 3.65

PureSVD 4.34 0.64 2.12 4.25

LDA 4.12 0.66 2.15 4.22

6. CONCLUSIONS
In this paper, we have addressed the problem of long tail rec-

ommendation which aims to suggest niche items to users. We

first analyzed the long tail phenomenon and long tail recommen-

dation problem. Based on the undirect edge-weighted graph repre-

sentation, four recommendation algorithm variants were proposed

which utilized hitting time, absorbing time and absorbing cost. Our

approaches can exploit the less popular items residing in the long

tail of inventory and emphasize the user interests and recommen-

dation diversity. We conducted extensive experiments on two real

datasets and the experimental results show that our proposed algo-

rithms outperform the state-of-the-art recommendation algorithms

for long tail item recommendation task in terms of recommendation

accuracy, quality and diversity. Our work can serve as an alternative

of recommender system and provide a potential and novel feature

for online sale services.
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