
Chameleon: A Hybrid Secure Computation Framework
for Machine Learning Applications

M. Sadegh Riazi
UC San Diego

mriazi@eng.ucsd.edu

Christian Weinert
TU Darmstadt, Germany

christian.weinert@crisp-da.de

Oleksandr Tkachenko
TU Darmstadt, Germany

oleksandr.tkachenko@crisp-da.de

Ebrahim M. Songhori
UC San Diego

e.songhori@gmail.com

Thomas Schneider
TU Darmstadt, Germany

thomas.schneider@crisp-da.de

Farinaz Koushanfar
UC San Diego

fkoushanfar@eng.ucsd.edu

ABSTRACT

We present Chameleon, a novel hybrid (mixed-protocol) framework

for secure function evaluation (SFE) which enables two parties to

jointly compute a function without disclosing their private inputs.

Chameleon combines the best aspects of generic SFE protocols with

the ones that are based upon additive secret sharing. In particular,

the framework performs linear operations in the ring Z2l using

additively secret shared values and nonlinear operations using

Yao’s Garbled Circuits or the Goldreich-Micali-Wigderson protocol.

Chameleon departs from the common assumption of additive or

linear secret sharing models where three or more parties need to

communicate in the online phase: the framework allows two parties

with private inputs to communicate in the online phase under the

assumption of a third node generating correlated randomness in an

offline phase. Almost all of the heavy cryptographic operations are

precomputed in an offline phase which substantially reduces the

communication overhead. Chameleon is both scalable and signifi-

cantly more efficient than the ABY framework (NDSS’15) it is based

on. Our framework supports signed fixed-point numbers. In partic-

ular, Chameleon’s vector dot product of signed fixed-point numbers

improves the efficiency of mining and classification of encrypted

data for algorithms based upon heavy matrix multiplications. Our

evaluation of Chameleon on a 5 layer convolutional deep neural

network shows 110x and 3.5x faster executions than Microsoft

CryptoNets (ICML’16) and MiniONN (CCS’17), respectively.

CCS CONCEPTS

· Security and privacy→ Privacy-preserving protocols;

KEYWORDS

Secure Function Evaluation; Privacy-Preserving Computation; Gar-

bled Circuits; Secret Sharing; Deep Neural Networks; Machine

Learning

1 INTRODUCTION

Secure Function Evaluation (SFE) is one of the great achievements

of modern cryptography. It allows two or more parties to evaluate

a function on their inputs without disclosing their inputs to each

other; that is, all inputs are kept private by the respective owners.

In fact, SFE emulates a trusted third party which collects inputs

from different parties and returns the result of the target function

to all (or a specific set of) parties. There are many applications

in privacy-preserving biometric authentication [17, 37, 38, 71, 76],

secure auctions [39], privacy-preserving machine learning [35],

and data mining [59, 60, 69]. In 1986, Yao introduced a generic

protocol for SFE, called Yao’s Garbled Circuit (GC) protocol [83].

The Goldreich-Micali-Wigderson (GMW) protocol [42] is another

SFE protocol that was introduced in 1987.

In theory, any function that can be represented as a Boolean

circuit can securely be evaluated using GC or GMW protocols.

However, GC and GMW can often be too slow and hence of limited

practical value because they need several symmetric key operations

for each gate in the circuit. During the past three decades, the great

effort of the secure computation community has decreased the

overhead of SFE protocols by several orders of magnitude. The

innovations and optimizations span the full range from protocol-

level to algorithm-level to engineering-level. As a result, several

frameworks have been designedwith the goal of efficiently realizing

one (or multiple) SFE protocols. They vary by the online/offline run-

time, the number of computing nodes (two-party or multi-party),

online/offline communication, the set of supported instructions,

and the programming language that describes the functionality.

These frameworks accept the description of the function as either

(i) their own customized languages [64, 67], (ii) high-level languages

such as C/C++ [46] or Java [48, 61], or (iii) Hardware Description

Languages (HDLs) [32, 81].

A number of SFE compilers have been designed for translat-

ing a program written in a high level language to a low-level

code [43, 64, 67]. The low-level code is supported by other SFE

frameworks that serve as a backbone for executing the crypto-

graphic protocols. In addition to generic SFE protocols, additive/lin-

ear secret sharing enables secure computation of linear operations

such as multiplication, addition, and subtraction. In general, each

framework introduces a set of trade-offs. The frameworks based on

secret-sharing require three (or more) computing nodes which op-

erate on distributed shares of variables in parallel and need multiple

rounds of communication between nodes to compute an operation

on shares of two secret values. The main idea behind Chameleon is

to create a framework that combines the advantages of the previous

secure computation methodologies.

One of the most efficient secure computation frameworks is

Sharemind [18] which is based on additive secret sharing over the

specific ring Z232 . All operations are performed by three comput-

ing nodes. Sharemind is secure against honest-but-curious (semi-

honest) nodes which are assumed to follow the protocol but they

cannot infer any information about the input and intermediate re-

sults as long as the majority of nodes are not corrupted.We consider

1

the same adversary model in this paper. Securely computing each

operation in Sharemind needs multiple communication rounds be-

tween all three nodes which makes the framework relatively slow

in the Internet setting. Computation based on additive shares in

the ring Z2l enables very efficient and fast linear operations such

as Multiplication (MULT), Addition (ADD), and Subtraction (SUB).

However, operations such as Comparison (CMP) and Equality test

(EQ) are not as efficient and non-linear operations cannot easily be

realized in the ring Z2l .

We introduce Chameleon, a fast, modular, and hybrid (mixed-

protocol) secure two-party computation framework that utilizes GC,

GMW, and additive secret sharing protocols and achieves unprece-

dented performance both in terms of run-time and communication

between parties. The analogy comes from the fact that similar to a

chameleon that changes its color to match the color of the environ-

ment, our framework allows changing the executing SFE protocol

based on the run-time operation. The idea of a mixed-protocol

solution was first introduced in [20] which combines GC with Ho-

momorphic Encryption (HE). HE enables to perform MULT and

ADD operations on encrypted values without actually knowing the

unencrypted data.

The TASTY framework [43] enables automatic generation of

protocols based on GC and HE. However, due to the high computa-

tional cost of Homomorphic Encryption (HE) and costly conversion

between HE and GC, they achieve only marginal improvement

compared to the single protocol execution model [51].

Our framework Chameleon is based on ABY [34] which imple-

ments a hybrid of additive SS, GMW, and GC for efficient realization

of SFE. However, we overcome three major limitations, thereby

improving efficiency, scalability, and practicality: First, ABY’s scal-

ability is limited since it only supports combinational circuit de-

scriptions, but most functionalities cannot be efficiently expressed

in a combinational-only format [81]. Therefore, we add the ability

to handle sequential circuits. In contrast to combinational circuit

representation, sequential circuits are a cyclic graph of gates and

allow for a more compact representation of the functionality. Sec-

ond, the ABY model relies on oblivious transfers for precomputing

arithmetic triples which we replace by more efficient protocols

using a Semi-honest Third Party (STP). The STP can be a separate

computing node or it can be implemented based on a smartcard [33]

or Intel Software Guard Extensions (SGX [7]). Therefore, the online

phase of Chameleon only involves two parties that have private

inputs. Third, we extend ABY to handle signed fixed-point num-

bers which is needed in many deep learning applications, but not

provided by ABY and other state-of-the-art secure computation

frameworks such as TASTY.

Chameleon supports 16, 32, and 64 bit signed fixed-point num-

bers. The number of bits assigned to the fraction and integral part

can also be tuned according to the application. The input programs

to Chameleon can be described in the high-level language C++. The

framework itself is also written in C++which delivers fast execution.

Chameleon provides a rich library of many non-linear functions

such as exp, tanh, sigmoid, etc. In addition, the user can simply add

any function description as a Boolean circuit or a C/C++ program

to our framework and use them seamlessly.

Machine Learning on Private Data Using Chameleon.

Chameleon’s efficiency helps us to address a major problem in

contemporary secure machine learning on private data. Matrix

multiplication (or equivalently, vector dot product) is one of the

most frequent and essential building blocks for many machine

learning algorithms and applications. Therefore, in addition to scal-

ability and efficiency described earlier, we design an efficient secure

vector dot product protocol based on the Du-Atallah multiplication

protocol [36] that has very fast execution and low communication

between the two parties. We address secure Deep Learning (DL)

which is a sophisticated task with an increasing attraction. We

also provide the privacy-preserving classification based on Support

Vector Machines (SVMs).

The fact that many pioneering technology companies have

started to provide Machine Learning as a Service (MLaaS1,2,3)

proves the importance of DL. Deep and Convolutional Neural Net-

works (DNNs/CNNs) have attracted many machine learning practi-

tioners due to their capabilities and high classification accuracy. In

MLaaS, clients provide their inputs to the cloud servers and receive

the corresponding results. However, the privacy of clients’ data is

an important driving factor. To that end, Microsoft Research has

announced CryptoNets [35]. CryptoNets is an HE-based methodol-

ogy that allows secure evaluation (inference) of encrypted queries

over already trained neural networks on the cloud servers. Queries

from the clients can securely be classified by the trained neural net-

work model on the cloud server without inferring any information

about the query and the result. In ğ6.1, we show how Chameleon

improves over CryptoNets and other previous works. In addition,

we evaluate Chameleon for privacy-preserving classification based

on Support Vector Machines (SVMs) in ğ6.2.

Our Contributions. In brief, we summarize our main contribu-

tions as follows:

• We introduce Chameleon, a novel mixed SFE framework

based on ABY [34] which brings benefits upon efficiency,

scalability, and practicality by integrating sequential GCs,

fixed-point arithmetic, as well as STP-based protocols for

precomputing OTs and generating arithmetic and Boolean

multiplication triples, and an optimized STP-based vector

dot product protocol for vector/matrix multiplications.

• We provide detailed performance evaluation results of

Chameleon compared to the state-of-the-art frameworks.

Compared to ABY, Chameleon requires up to 321× and 256×

less communication for generating arithmetic and Boolean

multiplication triples, respectively.

• We give a proof-of-concept implementation and experimen-

tal results on deep and convolutional neural networks. Com-

paring to the state-of-the-art Microsoft CryptoNets [35], we

achieve a 110x performance improvement. Comparing to the

recent work of [62], we achieve a 3.5x performance improve-

ment using a comparable configuration.

1Amazon AWS AI (https://aws.amazon.com/amazon-ai/)
2Google Cloud Machine Learning Engine (https://cloud.google.com/ml-engine/)
3Microsoft Azure Machine Learning Services (https://azure.microsoft.com/

services/machine-learning-services/)

2

https://aws.amazon.com/amazon-ai/
https://cloud.google.com/ml-engine/
https://azure.microsoft.com/services/machine-learning-services/
https://azure.microsoft.com/services/machine-learning-services/

2 PRELIMINARIES

In this section, we provide a concise overview of the basic protocols

and concepts that we use in the paper. Intermediate values are

kept as shares of a secret. In each protocol, secrets are represented

differently. We denote a share of value x , in secret type T , and held

by party i as ⟨x⟩Ti .

2.1 Oblivious Transfer Protocol

Oblivious Transfer (OT) is a building block for secure computation

protocols. The OT protocol allows a receiver party R to obliviously

select and receive a message from a set of messages that belong

to a sender party S, i.e., without letting S know what was the

selected message. In 1-out-of-2 OT, S has two l-bit messages x0,x1
and R has a bit b indicating the index of the desired message. After

performing the protocol, R obtains xb without learning anything

about x1−b and S learns no information about b. We denote n

parallel 1-out-of-2 OTs on l-bit messages as OTn
l
.

The OT protocol requires costly public-key cryptography that as

a result significantly degrades the performance of secure computa-

tions. A number of methods have been proposed to extend a small

number of OTs using less costly symmetric key cryptography and

a constant number of communication rounds to a larger number of

OTs [6, 13, 49]. Although the OT extension methods significantly

reduce the cost compared to that of the original OT, the cost is still

prohibitively large for complex secure computation that relies heav-

ily on OT. However, with the presence of a semi-trusted third party,

the parties can perform OT protocols with very low cryptographic

computation as explained in ğ4.5.

2.2 Garbled Circuit Protocol

One of the most efficient solutions for generic secure two-party

computation is Yao’s Garbled Circuit (GC) protocol [83] that re-

quires only a constant number of communication rounds. In the GC

protocol, two parties, Alice and Bob, wish to compute a function

f (a,b) where a is Alice’s private input and b is Bob’s. The func-

tion f (., .) has to be represented as a Boolean circuit consisting

of two-input gates, e.g., AND, XOR. Alice randomly generates a

k-bit binary string R for the garbling process where k is a security

parameter, usually set to k = 128 [14]. For each wirew in the circuit,

Alice generates and assigns two k-bit strings, called labels, X 0
w and

X 1
w representing 0 and 1 Boolean values. Next, she encrypts the

output labels of a gate using the two corresponding input labels as

the encryption keys and creates a four-entry table called garbled

table for each gate. The garbled table’s rows are shuffled according

to the point-and-permute technique [68] where the four rows are

permuted by using the Least Significant Bit (LSB) of the input labels

as the permutation bits. Alice sends the garbled tables of all the

gates in the circuit to Bob along with the labels corresponding to

her input a. Bob also obliviously receives the labels for his inputs

from Alice through an OT. He then decrypts the garbled tables one

by one to obtain the output labels. Finally, Bob achieves the final

output labels of the circuit’s output bits and Alice has the mapping

of the labels to 0 and 1 Boolean values. They can learn the output

of the function by sharing this information.

2.3 GMW Protocol

The Goldreich-Micali-Wigderson (GMW) protocol is a simple and

interactive secure multi-party computation protocol [41, 42]. In the

two-party GMW protocol, Alice and Bob compute f (a,b) using the

secret-shared values, where a is Alice’s private input and b is Bob’s.

Similar to the GC protocol, the function f (., .) has to be represented

as a Boolean circuit. In GMW, the Boolean value of a wire in the

circuit is shared between the parties. Alice has ⟨v⟩B0 and Bob has

⟨v⟩B1 and the actual Boolean value is v = ⟨v⟩B0 ⊕ ⟨v⟩
B
1 . Since the

XOR operation is associative, the XOR gates in the circuit can be

evaluated locally and without any communication between the

parties. The secure evaluation of AND gates requires interaction

and communication between the parties. The communication for

the AND gates in the same level of the circuit can be done in parallel.

Suppose an AND gate x ∧ y = z (where ∧ is the AND operation)

where Alice has shares ⟨x⟩B0 and ⟨y⟩B0 , Bob has shares ⟨x⟩B1 and

⟨y⟩B1 , and they wish to obtain shares ⟨z⟩B0 and ⟨z⟩B1 respectively.

As shown in [34], the most efficient method for evaluating AND

gates in the GMW protocol is based on Beaver’s multiplication

triples [11]: Multiplication triples are random shared-secrets a, b,

and c such that ⟨c⟩B0 ⊕ ⟨c⟩
B
1 = (⟨a⟩B0 ⊕ ⟨a⟩

B
1) ∧ (⟨b⟩B0 ⊕ ⟨b⟩

B
1). The

triples can be generated offline using OTs (cf. [78]) or by a semi-

trusted third party (cf. ğ3.3). During the online phase, Alice and

Bob use the triples to mask and exchange their inputs of the AND

gate: ⟨d⟩Bi = ⟨x⟩
B
i ⊕ ⟨a⟩

B
i and ⟨e⟩Bi = ⟨y⟩

B
i ⊕ ⟨b⟩

B
i . After that, both

can reconstruct d = ⟨d⟩B0 ⊕ ⟨d⟩
B
1 and e = ⟨e⟩B0 ⊕ ⟨e⟩

B
1 . This way, the

output shares can be computed as ⟨z⟩B0 = (d ∧ e) ⊕ (⟨b⟩B0 ∧ d) ⊕

(⟨a⟩B0 ∧ e) ⊕ ⟨c⟩
B
0 and ⟨z⟩B1 = (⟨b⟩B1 ∧ d) ⊕ (⟨a⟩B1 ∧ e) ⊕ ⟨c⟩

B
1 .

2.4 Additive Secret Sharing

In this protocol, a value is shared between two parties such that

the addition of two secrets yields the true value. All operations are

performed in the ring Z2l (integers modulo 2l) where each number

is represented as an l-bit integer. A ring is a set of numbers which

is closed under addition and multiplication.

In order to additively share a secret x , a random number within

the ring is selected, r ∈R Z2l , and two shares are created as ⟨x⟩
A
0 = r

and ⟨x⟩A1 = x −r mod 2l . A party that wants to share a secret, sends

one of the shares to the other party. To reconstruct a secret, one

needs to only add two shares x = ⟨x⟩A0 + ⟨x⟩
A
1 mod 2l .

Addition, subtraction, and multiplication by a public constant

value η (z = x ◦ η) can be done locally by the two parties without

any communication; party i computes the share of the result as

⟨z⟩Ai = ⟨x⟩
A
i ◦η mod 2l , where ◦ denotes any of the aforementioned

three operations. Adding/subtracting two secrets (z = x +− y) also

does not require any communication and can be realized as ⟨z⟩Ai =

⟨x⟩Ai +− ⟨y⟩
A
i mod 2l . Multiplying two secrets, however, requires

one round of communication. Furthermore, the two parties need

to have shares of precomputed Multiplication Triples (MTs). MTs

refer to a set of three shared numbers such that c = a × b. In the

offline phase, party i receives ⟨a⟩Ai , ⟨b⟩
A
i , and ⟨c⟩

A
i (see ğ4.4). By

having shares of a MT, multiplication is performed as follows:

(1) Party i computes ⟨e⟩Ai = ⟨x⟩
A
i − ⟨a⟩

A
i and

⟨f ⟩Ai = ⟨y⟩
A
i − ⟨b⟩

A
i .

(2) Both parties communicate to reconstruct e and f .

3

(3) Party i computes its share of multiplication as

⟨z⟩Ai = f × ⟨a⟩Ai + e × ⟨b⟩
A
i + ⟨c⟩

A
i + i × e × f

For more complex operations, the function can be described as

an Arithmetic circuit consisting of only addition and multiplication

gates where in each step, a single gate is processed accordingly.

3 THE CHAMELEON FRAMEWORK

Chameleon comprises of an offline phase and an online phase. The

online phase is a two-party execution model that is run between

two parties who wish to perform secure computation on their

data. In the offline phase, a Semi-honest Third Party (STP) creates

correlated randomness together with random seeds and provides it

to the two parties as suggested in [47]. We describe how the STP

can be implemented in ğ3.3 and its role in ğ4.2.

The online phase consists of three execution environments: GC,

GMW, and Additive Secret Sharing (A-SS). We have described the

functionality of GC and GMW protocols in ğ2 and we detail our

implementations of these protocols in ğ4.1.We implemented two dif-

ferent protocols for the multiplication operation on additive shares:

a protocol based onMultiplication Triples (MT) that we described in

ğ2.4 and an optimized version of the Du-Atallah (DA) protocol [36]

(ğ4.2). In ğ3.1, we explain how the online phase works. In order to

support highly efficient secure computations, all operations that

do not depend on the run-time variables are shifted to the offline

phase. The only cryptographic operations in the online phase are

the Advanced Encryption Standard (AES) operations that are used

in GC for which dedicated hardware acceleration is available in

many processors via the AES-NI instruction set.

The offline phase includes performing four different tasks: (i)

precomputing all required OTs that are used in GC and type conver-

sion protocols; providing a very fast encryption-free online phase

for OT, (ii) precomputing Arithmetic Multiplication Triples (A-MT)

used in the multiplication of additive secret shares, (iii) precom-

puting Boolean Multiplication Triples (B-MT) used in the GMW

protocol, and lastly, (iv) precomputing vector dot product shares

(VDPS) used in the Du-Atallah protocol [36]. In order to reduce the

communication in the offline phase from the STP to the two parties,

we use the seed expansion technique [33] for generating A-MTs

and B-MTs (ğ4.4). We also introduce a novel technique that reduces

the communication for generating VDPSs (ğ4.2).

3.1 Chameleon Online Execution Flow

In this section, we provide a high-level description of the execution

flow of the online phase. As discussed earlier, linear operations such

as ADD, SUB, and MULT are executed in A-SS. The dot product of

two vectors of size n is also executed in A-SS which comprises n

MULTs and n − 1 ADDs. Non-linear operations such as CMP, EQ,

MUX and bitwise XOR, AND, OR operations are executed in the

GMW or GC protocol depending on which one is more efficient.

Recall that in order to execute a function using the GMW or GC

protocol, the function has to be described as a Boolean circuit.

However, the most efficient Boolean circuit description of a given

function is different from GMW to the GC protocol: In the GC pro-

tocol, the computation and communication costs only depend on

the total number of AND gates (NAND) in the circuit. Regardless of

the number of XOR gates, functionality, and depth of the circuit,

GC executes in a constant number of rounds. Communication is a

linear function of the number of AND gates (2× k ×NAND). Due to

the Half-Gates optimization (cf. ğ4.1), computation is bounded by

constructing the garbled tables (four fixed-key AES encryptions)

and evaluating them (two fixed-key AES encryptions). The GMW

protocol, on the other hand, has a different computation and com-

munication model. It needs only bit-level AND and XOR operations

for the computation but one round of communication is needed per

layer of AND gates. Therefore, the most efficient representation

of a function in the GMW protocol is the one that has minimum

circuit depth; in other words, the minimum number of sequentially

dependent layers of AND gates. As a result, when the network

latency is high or the depth of the circuit is high, we use GC to

execute non-linear functions, otherwise GMW will be utilized. The

computation and communication costs for atomic operations are

given in ğ5.

The program execution in Chameleon is described as different

layers of operations where each layer is most efficiently realized

in one of the execution environments. The execution starts from

the first layer and the corresponding execution environment. Once

all operations in the first layer are finished, Chameleon switches

the underlying protocol and continues the process in the second

execution environment. Changing the execution environment re-

quires that the type (A, B, or Y) of the shared secrets should be

changed in order to enable the second protocol to continue the

process. One necessary condition is that the cost of the share type

translation must not be very high to not diminish the efficiency

achieved by hybrid execution. For converting between the different

sharing types, we use the methods from the ABY framework [34]

which are based on highly efficient OT extensions.

Communication Rounds. The number of rounds that both

parties need to communicate in Chameleon depends on the number

of switches between execution environments and the depth of the

circuits used in the GMW protocol. We want to emphasize that the

number of communication rounds does not depend on the size of

input data. Therefore, the network latency added to the execution

time is quickly amortized over a high volume of input data.

3.2 Security Model

Chameleon is secure against honest-but-curious (HbC), a.k.a. semi-

honest, adversaries. This is the standard security model in the

literature and considers adversaries that follow the protocol but

attempt to extract more information based on the data they re-

ceive and process. Honest-but-curious is the security model for

the great majority of prior art, e.g., Sharemind [18], ABY [34], and

TinyGarble [81].

The Semi-honest Third Party (STP) can be either implemented

using a physical entity, in a distributed manner using MPC among

multiple non-colluding parties, using trusted hardware like hard-

ware security modules or smartcards [33], or using trusted execu-

tion environments like Intel SGX [7]. In case the STP is implemented

as a separate physical computation node, our framework is secure

against semi-honest adversaries with an honest majority. The lat-

ter is identical to the security model considered in the Sharemind

4

framework [18]. In ğ7 we list further works based on similar as-

sumptions. Please note that we introduce a new and more practical

computational model that is superior to Sharemind since only two

primary parties are involved in the online execution. This results

in a significantly faster run-time while better matching real-world

requirements.

3.3 Semi-honest Third Party (STP)

In Chameleon, the STP is only involved in the offline (setup) phase

in order to generate correlated randomness [47]. It is not involved

in the online phase and thus does not receive any information

about the two parties’ inputs nor the program being executed. The

only exception is computing VDPS for the Du-Atallah protocol in

which the STP needs to know the size of the vectors in each dot

product beforehand. Since the security model in Chameleon is HbC

with honest majority, some information can be revealed if the STP

colludes with either party.

In order to prevent the STP from observing communication

between the two parties and therefore being able to extract, e.g.,

their private inputs during OTs, one can simply add (authenticated)

encryption to the communication channel. Likewise it is advised to

encrypt communication between the STP and the two parties so

they cannot reconstruct the opposite party’s private inputs from

observed and receivedmessages.While thesemeasures do not result

in real security against malicious adversaries, they significantly

enhance the guarantees provided by the plain HbC model and

therefore increase practical security against real-world threads.

4 CHAMELEON DESIGN AND
IMPLEMENTATION

In this section, we provide a detailed description of the different

components of Chameleon. Chameleon is written in C++ and ac-

cepts the program written in C++. The implementation of the GC

and GMW engines are covered in ğ4.1 and A-SS engine in ğ4.2.

ğ4.3 illustrates how Chameleon supports signed fixed-point rep-

resentation. The majority of cryptographic operations is shifted

from the online phase to the offline phase. Thus, in ğ4.4, we de-

scribe the process of generating Arithmetic/Boolean Multiplication

Triples (A-MT/B-MT). ğ4.5 provides our STP-based implementation

for fast Oblivious Transfer and finally the security justification of

Chameleon is given in ğ4.6.

4.1 GC and GMW Engines

Chameleon’s implementation of the GC protocol is based on the

methodology presented in [81]. Therefore, the input to the GC en-

gine is the topologically sorted list of Boolean gates in the circuit as

an .scd file. We synthesized GC-optimized circuits and created the

.scd file for many primitive functions. A user can simply use these

circuits by calling regular functions in the C++ language. We include

most recent optimizations for GC: Free XOR [52], fixed-key AES

garbling [14], Half Gates [84], and sequential circuit garbling [81].

Our implementation of the GMW protocol is based on the ABY

framework [34]. Therefore, the function description format of GMW

is an .aby file. All the circuits are depth-optimized as described

in [32] to incur the least latency during the protocol execution.

Chameleon users can simply use these circuits by calling a function

with proper inputs.

4.2 A-SS Engine

In Chameleon, linear operations, i.e., ADD, SUB, MULT, are per-

formed using additive secret sharing in the ring Z2l . We discussed

in ğ2.4 how to perform a single MULT using a multiplication triple.

However, there are other methods to perform a MULT: (i) The

protocol of [16] has very low communication in the online phase.

However, in contrast to our computation model, it requires STP

interaction with the other two parties in the online phase. (ii) The

Du-Atallah protocol [36] is another method to perform multiplica-

tion on additive shared values which we describe next.

The Du-Atallah Multiplication Protocol [36]. In this proto-

col, two parties P0 (holding x) and P1 (holding y) together with a

third party P2 can perform multiplication z = x × y. At the end of

this protocol, z is additively shared between all three parties. The

protocol works as follows:

(1) P2 randomly generates a0,a1 ∈R Z2l and sends a0 to P0 and

a1 to P1.

(2) P0 computes (x + a0) and sends it to P1. Similarly, P1 com-

putes (y + a1) and sends it to P0.

(3) P0, P1, and P2 can compute their share as ⟨z⟩A0 = −a0× (y+

a1), ⟨z⟩
A
1 = y × (x + a0), and ⟨z⟩

A
2 = a0 × a1, respectively.

It can be observed that the results are true additive shares of z:

⟨z⟩A0 + ⟨z⟩
A
1 + ⟨z⟩

A
2 = z. Please note that this protocol computes

shares of a multiplication of two numbers held by two parties in

cleartext. In the general case, where both x and y are additively

shared between two parties (P0 holds ⟨x⟩A0 , ⟨y⟩
A
0 and P1 holds

⟨x⟩A1 , ⟨y⟩
A
1), the multiplication can be computed as z = x × y =

(⟨x⟩A0 + ⟨x⟩
A
1) × (⟨y⟩A0 + ⟨y⟩

A
1). The two terms ⟨x⟩A0 × ⟨y⟩

A
0 and

⟨x⟩A1 × ⟨y⟩
A
1 can be computed locally by P0 and P1, respectively.

Two instances of the Du-Atallah protocol are needed to compute

shares of ⟨x⟩A0 × ⟨y⟩
A
1 and ⟨x⟩A1 × ⟨y⟩

A
0 . Please note that Pi should

not learn ⟨x⟩A1−i and ⟨y⟩
A
1−i , otherwise, secret values x and/or y are

revealed to Pi . At the end, P0 has

⟨x⟩A0 × ⟨y⟩
A
0 ,
〈

⟨x⟩A0 × ⟨y⟩
A
1

〉A

0
,
〈

⟨x⟩A1 × ⟨y⟩
A
0

〉A

0

and P1 has

⟨x⟩A1 × ⟨y⟩
A
1 ,
〈

⟨x⟩A0 × ⟨y⟩
A
1

〉A

1
,
〈

⟨x⟩A1 × ⟨y⟩
A
0

〉A

1

where ⟨z⟩A0 and ⟨z⟩A1 are the summation of each party’s share, re-

spectively.

The Du-Atallah protocol is used in Sharemind [18] where there

are three active computing nodes that are involved in the online

phase, whereas, in Chameleon, the third party (STP) is only involved

in the offline phase. This problem can be solved since the role of P2
can be shifted to the offline phase as follows: (i) Step one of the Du-

Attallah protocol can be computed in the offline phase for as many

multiplications as needed. (ii) In addition, P2 randomly generates

another l-bit number a2 and computes a3 = (a0 × a1) − a2. P2
sends a2 to P0 and a3 to P1 in the offline phase. During the online

phase, both parties additionally add their new shares (a2 and a3) to

their shared results: ⟨z⟩A0,new = ⟨z⟩
A
0 +a2 and ⟨z⟩

A
1,new = ⟨z⟩

A
1 +a3.

This modification is perfectly secure since P0 has received a true

5

Table 1: Summary of properties of the Du-Atallah multipli-

cation protocol and the protocol based on Multiplication

Triples in ğ2.4. (i, j) means P0 and P1 have to perform i and j

multiplications in plaintext, respectively. Offline and online

communications are expressed in number of bits. The size of

online communication corresponds to data transmission in

each direction. ∗Initial sharing of x is also considered.

Protocol # MULT ops Online Comm. Offline Comm. Rounds

Multiplication Triple (3,4) 2 · l 3 · l 2∗

Du-Atallah (1,2) l 2 · l 1

random number and P1 has received a3 which is an additive share

of (a0 × a1). Since a2 has uniform distribution, the probability

distribution of a3 is also uniform [18] and as a result, P1 cannot

infer additional information.

Optimizing the Du-Atallah Protocol. As we will discuss in

ğ6, in many cases, the computation model is such that one operand

x is held in cleartext by one party, e.g., P0, and the other operand

y is shared among two parties; P0 has ⟨y⟩
A
0 and P1 has ⟨y⟩

A
1 . This

situation repeatedly arises when the intermediate result is multi-

plied by one of the party’s inputs which is not shared. In this case,

only one instance of the Du-Atallah protocol is needed to compute

x × ⟨y⟩A1 . As analyzed in this section, employing this variant of the

Du-Atallah protocol is more efficient than the protocol based on

MTs. Please note that in order to utilize MTs, both operands need

to be shared among the two parties first, which, as we argue here,

is inefficient and unnecessary. Table 1 summarizes the computa-

tion and communication costs for the Du-Atallah protocol and the

protocol based on MTs (ğ2.4). As can be seen, online computation

and communication are improved by factor 2x. Also the offline

communication is improved by factor 3x. Unfortunately, using the

Du-Atallah protocol in this format will reduce the efficiency of

vector dot product computation in Chameleon. Please note that

it is no longer possible to perform a complete dot product of two

vectors by two parties only since the third share (⟨z⟩A2 = a0 × a1)

is shared between two parties (P0 and P1). However, this problem

can be fixed by a modification which we describe next.

Du-Atallah Protocol and Vector Dot Product. We further

modify the optimized Du-Atallah protocol such that the complete

vector dot product is efficiently processed. The idea is that instead

of the STP additively sharing its shares, it first sums its shares

and then sends the additively shared versions to the two parties.

Consider vectors of size n. The STP needs to generate n different

a0 and a1 as a list for a single vector multiplication. We denote the

ith member of the list as [a0]i and [a1]i . Our modification requires

that the STP generates a single l-bit value a2 and sends it to P0.

The STP also computes

a3 =

n−1
∑

i=0

[a0]i × [a1]i − a2

and sends it to P1. We call a2 and a3 the Vector Dot Product Shares

or VDPS. This requires that the STP knows the size of the array

in the offline phase. Since the functionality of the computation is

not secret, we can calculate the size and number of all dot products

in the offline phase and ask for the corresponding random shares

from the STP.

Reducing Communication. A straightforward implementa-

tion of the offline phase of the Du-Atallah protocol requires that

the STP sends n random numbers of size l ([a0]i and [a1]i) to P0
and P1 for a single dot product of vectors of size ∼ n. However,

we suggest reducing the communication using a Pseudo Random

Generator (PRG) for generating the random numbers as was pro-

posed in [33]. Instead of sending the complete list of numbers to

each party, the STP can create and send random PRG seeds for

each string to the parties such that each party can create [a0]i and

[a1]i locally using the PRG. For this purpose, we implement the

PRG using Advanced Encryption Standard (AES), a low-cost block

cipher, in counter mode (AES CTR-DRBG). Our implementation

follows the description of the NIST Recommendation for DRBG

[8]. From a 256-bit seed, AES CTR-DRBG can generate 263 indistin-

guishable random bits. If more than 263 bits are needed, the STP

sends more seeds to the parties. The STP uses the same seeds in

order to generate a2 and a3 for each dot product. Therefore, the

communication is reduced from n × l bits to sending a one-time

256-bit seed and an l-bit number per single dot product.

Performance evaluation. For an empirical performance eval-

uation of our optimized VDP protocol, we refer the reader to ğ6.2:

the evaluated SVM classification mainly consists of a VDP com-

putation together with a negligible subtraction and comparison

operation.

4.3 Supporting Signed Fixed-point Numbers

Chameleon supports Signed Fixed-point Numbers (SFN) in addition

to integer operations. Supporting SFN requires that not only all

three secure computation protocols (GC, GMW, and Additive SS)

should support SFN but the secret translation protocols should

be compatible as well. We note that the current version of the

ABY framework only supports unsigned integer values. We have

added an abstraction layer to the ABY framework such that it

supports signed fixed-point numbers. The TinyGarble framework

can support this type if the corresponding Boolean circuit is created

and fed into the framework.

All additive secret sharing protocols only support unsigned inte-

ger values. However, in this section, we describe how such protocols

can be modified to support signed fixed-point numbers. Modification

for supporting signed integers can be done by representing numbers

in two’s complement format. Consider the ring Z2l which consists

of unsigned integer numbers {0, 1, 2, ..., 2l−1 − 1, 2l−1, ..., 2l − 1}.

We can perform signed operations only by interpreting these num-

bers differently as the two’s complement format: {0, 1, 2, ..., 2l−1 −

1,−2l−1, ...,−1}. By doing so, signed operations work seamlessly.

In order to support fixed-point precision, one solution is to inter-

pret signed integers as signed fixed-point numbers. Each number is

represented in two’s complement format with the Most Significant

Bit (MSB) being the sign bit. There are α and β bits for integer and

fraction parts, respectively. Therefore, the total number of bits is

equal to γ = α + β + 1. While this works perfectly for addition and

subtraction, it cannot be used for multiplication. The reason is that

when multiplying two numbers in a ring, the rightmost 2 × β bits

of the result now correspond to the fraction part instead of β bits

6

and β bits from MSBs are overflown and discarded. Our solution

to this problem is to perform all operations in the ring Z2l where

l = γ + β and after each multiplication, we shift the result β bit to

the right while replicating the sign bit for β MSBs.

In addition to the support of computation engines, share trans-

lation protocols also work correctly. Share translation from GC to

GMWworks fine as it operates on bit-level and is transparent to the

number representation format. Share translation from GC/GMW

to additive either happens using a subtraction circuit or OT. In

the first case, the result is valid since subtraction of two signed

fixed-point numbers in two’s complement format is identical to

subtracting two unsigned integers. In the second case, OT is on

bit-level and again transparent to the representation format. Finally,

share translation from additive to GC/GMW is correct because it

uses an addition circuit which is identical for unsigned integers

and signed fixed-point numbers.

Floating Point Operations. The current version of Chameleon

supports floating point operations by performing all computations

in the GC protocol. Since our GC engine is based on TinyGarble,

our performance result is identical to that of TinyGarble, hence, we

do not report the experimental results of floating-point operations.

A future direction of this work can be to break down the primitive

floating point operations, e.g., ADD, MULT, SUB, etc. into smaller

atomic operations based on integer values. Consequently, one can

perform the linear operations in the ring and non-linear opera-

tions in GC/GMW, providing a faster execution for floating-point

operations.

Most methods for secure computation on floating and fixed point

numbers proposed in the literature were realized in Shamir’s secret

sharing scheme, e.g. [2, 26, 55, 73, 85], but some of them also in GC

[73], GMW [32], and HE [63] based schemes. The quality of the

algorithms varies from self-made to properly implemented IEEE

754 algorithms, such as in [32, 73]. The corresponding software

implementations were done either in the frameworks Sharemind

[18] and PICCO [85], or as standalone applications. For fixed-point

arithmetics, Aliasgari et al. [2] proposed algorithms that outperform

even integer arithmetic for certain operations. As a future direction

of this work, we plan to integrate their methodology in Chameleon.

4.4 Generating Multiplication Triples

As we discussed in ğ2.4, each multiplication on additive secret

shares requires an Arithmetic Multiplication Triple (A-MT) and one

round of communication. Similarly, evaluating eachANDgate in the

GMWprotocol requires a BooleanMultiplication Triple (B-MT) [33].

In the offline phase, we calculate the number of MTs (NA-MT and

NB-MT). The STP precomputes all MTs needed and sends them

to both parties. More precisely, to generate A-MTs, the STP uses

a PRG to produce five l-bit random numbers corresponding to

a0,b0, c0,a1, and b1. We denote the ith triple with [.]i . Therefore,

the STP completesMTs by computing c1’s as [c1]i = ([a0]i+[a1]i)×

([b0]i + [b1]i) − [c0]i . Finally, the STP sends [a0]i , [b0]i , and [c0]i
to the first party and [a1]i , [b1]i , and [c1]i to the second party for

i = 1, 2, ...,NA-MT. Computing B-MTs is also very similar with the

only differences that all numbers are 1-bit and [c1]i is calculated as

[c1]i = ([a0]i ⊕ [a1]i) ∧ ([b0]i ⊕ [b1]i) ⊕ [c0]i .

Reducing Communication. A basic implementation of pre-

computing A-MTs and B-MTs requires communication of 3 × l ×

NA-MT and 3 × NB-MT bits from the STP to each party, respectively.

However, similar to the idea of [33] presented in ğ4.2, we use a PRG

to generate random strings from seeds locally by each party. To

summarize the steps:

(1) STP generates two random seeds: seed0 for generating

[a0]i , [b0]i , and [c0]i and seed1 for [a1]i and [b1]i .

(2) STP computes [c1]i = ([a0]i + [a1]i) × ([b0]i + [b1]i) − [c0]i
for i = 1, 2, ...,NA−MT .

(3) STP sends seed0 to the first party and seed1 together with

the list of [c1]i to the second party.

After receiving the seeds, the parties locally generate their share

of the triples using the same PRG. This method reduces the com-

munication from 3 × l × NA-MT to 256 and 256 + l × NA-MT bits for

the first and second parties, respectively. The STP follows a simi-

lar process with the same two seeds to generate B-MTs. Figure 1

illustrate the seed expansion idea to generate MTs [33].

STP

P1

P0

R
seed0

seed1

R

seed0

seed1

PRG

PRG

[c1]i

PRG

PRG

[a0]i , [b0]i , [c0]i

[a1]i , [b1]i [c1]i

[a0]i , [b0]i , [c0]i

[a1]i , [b1]i

Figure 1: Seed expansion process to precompute A-MTs/B-

MTs with low communication.

4.5 Fast STP-aided Oblivious Transfer

Utilizing the idea of correlated randomness [47], we present an

efficient and fast protocol for Oblivious Transfer that is aided by

the Semi-honest Third Party (STP). Our protocol comprises a setup

phase (performed by the STP) and an online phase (performed

by the two parties). The protocol is described for one 1-out-of-2

OT. The process repeats for as many OTs as required. In the setup

phase, the STP generates random masks q0, q1 and a random bit

r and sends q0, q1 to the sender and r , qr to the receiver. In the

online phase, the two parties execute the online phase of Beaver’s

OT precomputation protocol [12] described in Figure 2. Please

note that all OTs in Chameleon including OTs used in GC and

secret translation from GC/GMW to Additive are implemented as

described above.

Reducing Communication. Similar to the idea discussed in

ğ4.4, the STP does not actually need to send the list of (q0,q1) to

the sender and r to the receiver. Instead, it generates two random

seeds and sends them to the two parties. The STP only needs to

send the full list of qr to the receiver.

4.6 Security Justification

The security proof of Chameleon is based on the following propo-

sitions: (i) the GC execution is secure since it is based on [81]. (ii)

The security proof of GMW execution and share type translation

7

Sender Receiver

Has: messages q0,q1 Has: message qr and r

Input: messagesm0,m1 Input: choice bit b

Output: - Output:mb

b′

←− b ′ = r ⊕ b

(s0, s1) =




(q0 ⊕m0,q1 ⊕m1) if b
′
= 0

(q0 ⊕m1,q1 ⊕m0) if b
′
= 1

(s0,s1)
−→ mb = sr ⊕ qr

Figure 2: Beaver’s OT precomputation protocol [12].

directly follows the one of [34]. (iii) All operations in A-SS are per-

formed in the ring Z2l which is proven to be secure in [18]. Our

support for SFN only involves the utilization of a bigger ring and

does not change the security guarantees, and finally (iv) our opti-

mizations for reducing the communication between the STP and the

two parties are secure as we use a PRG instantiation recommended

by the NIST standard [8].

5 BENCHMARKS OF ATOMIC OPERATIONS

Evaluation Setup.We benchmark different atomic operations of

Chameleon and compare them with three prior art frameworks:

TinyGarble [81], ABY [34], and Sharemind [18]. The result for ABY

is reported for three different scenarios: GC-only, GMW-only, and

Additive SS-only. We run our experiments for a long term security

parameter (128-bit security) on machines equipped with Intel Core

i7-4790 CPUs @ 3.6GHz and 16GB of RAM. The CPUs support

fast AES evaluations due to AES-NI. The STP is instantiated as

a separate compute node running a C/C++ implementation. The

communication between the STP and its clients as well as between

the clients is protected by TLS with client authentication. All parties

run on different machines within the same Gigabit network.4

Atomic Operations. The detailed run-times and communica-

tion for arithmetic and binary operations are shown in Table 2 and

in Table 3, respectively. Table 4 additionally shows the run-times

for conversions between different sharings.5 All reported run-times

are the average of 10 executions with less than 15% variance.

For TinyGarble, ABY, and Chameleon we ran the frameworks

ourselves. Unlike TinyGarble and ABY, Sharemind lacks built-in

atomic benchmarks and is a commercial product that requires con-

tracting even for academic purposes. Thus, we give the results from

the original paper [18] and justify why Chameleon performs better

on equal hardware.

As can be seen, Chameleon outperforms all state-of-the-art

frameworks. Run-times and communication for arithmetic op-

erations in Chameleon are only given in A-SS since from the ABY

results and Table 4 it follows that even for a single addition or

4We do not include WAN benchmarks of atomic operations for the following
reason: Due to higher latency, GC-based circuit evaluation with constant rounds is
preferred instead of GMW for binary operations. However, since the atomic bench-
marks do not measure input sharing (for which GC uses STP-aided OT generation),
no difference is visible to prior art.

5With exception of the B2A conversion, the required communication of Chameleon
for conversion operations equals ABY [34] since STP-aided OT generation, as required
for B2Y and A2Y conversions, does not reduce the amount of communication (cf
Table 5).

multiplication operation it is worthwhile to perform a protocol

conversion. The remaining atomic operations for Chameleon are

given in Boolean sharing where we observe major improvements

over ABY due to our efficient B-MT precomputation.6 Regarding

conversion operations, the B2A performance in Chameleon benefits

from reduced communication of fast STP-aided A-MTs (c.f ğ4.4).

Likewise, the performance of the B2Y and A2Y conversion benefits

from fast STP-aided OTs (cf. ğ4.5).

Although, the experimental setup of Sharemind is computation-

ally weaker than ours, we emphasize that Chameleon is more effi-

cient because of the following reasons: (i) To compute each MULT

operation, Sharemind requires 6 instances of the Du-Atallah proto-

col while our framework needs only 2. (ii) In Sharemind, bit-level

operations such as XOR/AND require a bit-extraction protocol

which is computationally expensive. Please note that these costs

are not reported by [18] and hence are not reflected in Table 2. (iii)

Operations such as CMP, EQ, and MUX can most efficiently be

realized using GC/GMW protocols and as a result, Chameleon can

perform these operations faster. The highlighted area for specific

operations using ABY-A means that ABY does not perform those

operations in additive SS. The highlighted area in Table 3 for Share-

mind means that the corresponding information is not reported in

the original paper.

The computation run-times for TinyGarble include base OTs,

online OTs, garbling/evaluating, and data transmission. This is

why the run-time for MULT is not significantly higher than other

operations where they require orders of magnitude fewer gates.

However, in Chameleon, we precompute all OTs which reduces

the computation run-time. Note that the shown run-times and

communication results for Chameleon represent the worst case,

namely for the party that receives additional data from the STP

besides the required seeds for OT and MT generation.7

Communication in the Setup (Offline) Phase. The commu-

nication cost (number of bits) of the setup phase in Chameleon

is compared to the ABY framework [34] in Table 5. To gener-

ate a single B-MT, Chameleon requires only a constant-size data

transmission to one party and 256× less communication to the

other party compared to ABY. When generating a single A-MT, the

required communication to the other party is reduced by factor

273×/289×/321× compared to ABY for a bitlength of 16/32/64, re-

spectively. This is a significant enhancement since in most machine

learning applications, the main bottleneck is the vector/matrix mul-

tiplication which requires a large amount of A-MTs.

6 MACHINE LEARNING APPLICATIONS

Many applications can benefit from our framework. Here, we cover

two important applications in greater detail due to the space con-

straints. In particular, we show how Chameleon can be leveraged

in Deep Learning (ğ6.1) and classification based on SVMs (ğ6.2).

6The benchmarking methodology inherited from ABY omits input sharing, which
is why no improvement for GC-based operations is measurable compared to ABY.

7An improved implementation could equally distribute computation and commu-
nication among the two parties by dividing the data sent by the STP evenly, thereby
further reducing the runtimes.

8

Table 2: RUN-TIMES (in milliseconds unless stated otherwise) for different atomic operations and comparison with prior

art. Each experiment is performed for 1,000 operations on 32-bit numbers in parallel. The detailed performance results for

ABY [34] are provided for three different modes of operation: GC, GMW, and Additive. Minimum values marked in bold.

TinyGarble [81] ABY-GC [34] ABY-GMW [34] ABY-A [34] Sharemind [18] Chameleon

Op Online Offline Online Offline Online Offline Online Online Offline Online

ADD 1.57 s 11.71 2.73 25.78 4.73 0.00 0.00 1 µs 0.00 0.00

MULT 2.31 s 423.82 112.29 174.52 14.25 10.46 0.59 17 4.24 0.13

XOR 0.00 0.00 0.00 0.00 0.00 1 µs 0.00 0.00

AND 1.58 s 11.83 2.34 9.27 0.52 17 1.50 0.56

CMP 1.57 s 11.90 2.63 17.39 1.63 2.5 s 2.46 1.48

EQ 1.56 s 11.60 2.42 9.11 1.15 5 s 1.54 1.09

MUX 1.59 s 11.91 2.49 1.06 0.68 34 1.52 0.63

Table 3: COMMUNICATION (in kilobytes unless stated otherwise) for different atomic operations and comparison with prior

art. Each experiment is performed for 1,000 operations on 32-bit numbers in parallel. The detailed performance results of the

ABY framework [34] is provided for three modes of operation: GC, GMW, and Additive. Minimum values marked in bold.

TinyGarble [81] ABY-GC [34] ABY-GMW [34] ABY-A [34] Sharemind [18] Chameleon

Op Total Offline Online Offline Online Offline Online Total Offline Online

ADD 7936 992 0 3593 76 0 0 0 0 0

MULT 318 K 47649 0 37900 840 1280 16 192 8 16

XOR 0 0 0 0 0 0 0 0

AND 8192 1024 0 1028 16 192 12 8

CMP 8192 1024 0 2851 45 23 33

EQ 7936 992 0 995 16 8 12

MUX 8192 1024 0 33 8 384 8 4

Table 4: Run-Times (in milliseconds) for conversion opera-

tions and comparisonwith prior art. Each experiment is per-

formed for 1,000 operations on 32-bit numbers in parallel.

Minimum values marked in bold.

ABY [34] Chameleon

Op Offline Online Offline Online

Y2B 0.00 0.00 0.00 0.00

B2A 9.47 2.44 3.45 2.33

B2Y 17.05 1.30 13.24 1.15

A2Y 19.75 14.03 15.83 12.91

Table 5: Communication (in bits) in the setup phase in

Chameleon compared to prior art ABY [34].

ABY [34] Chameleon Improvement

OT 128 128 -

B-MT 256 1 256×

A-MT (bitlength ℓ = 16) 4,368 16 273×

A-MT (bitlength ℓ = 32) 9,248 32 289×

A-MT (bitlength ℓ = 64) 20,544 64 321×

6.1 Deep Learning

We evaluate our framework on Deep Neural Networks (DNNs) and

a more sophisticated variant, Convolutional Deep Neural Networks

(CNNs). Processing both CNNs and DNNs requires the support

for signed fixed-point numbers. We compare our results with the

state-of-the-art Microsoft CryptoNets [35], which is a customized

solution for this purpose based on homomorphic encryption, as

well as other recent solutions.

Deep Neural Networks. Deep learning is a very powerful

method for modeling and classifying raw data that has gained

a lot of attention in the past decade due to its superb accuracy.

Deep Learning automatically learns complex features using arti-

ficial neural networks. While there are many different DNNs and

CNNs, they all share a similar structure. They are networks of

multiple layers stacked on top of each other where the output of

a layer is the input to the next layer. The input to DNNs is a fea-

ture vector which we denote as x. The input is passed through the

intermediate layers (hidden layers). The output vector of the Lth

layer is shown as x(L) where x
(L)
i denotes the ith element. The

length of the vector can change after each layer. The length of the

intermediate result vector at layer L is shown as NL = length(x(L)).

A DNN is composed of a series of (i) Fully Connected (FC) layer: the

output x(L) is the matrix multiplication of input vector x(L−1) and

a matrix weightW, that is, x(L) = x(L−1) ·W. In general, the size

of the input and output of the FC layer is shown as FCNL−1×NL .

(ii) Activation layer (Act): which applies an activation function f (.)

on the input vector: x
(L)
i = f (x

(L−1)
i). The activation function is

usually Rectified Linear Unit (ReLu), Tangent-hyperbolic (Tanh),

or Sigmoid functions [35, 79].

The input to a CNN is a picture represented as a matrix X where

each element corresponds to the value of each pixel. Pictures can

have multiple color channels, e.g., RGB, in which case the picture

is represented as a multidimensional matrix, a.k.a, tensor. CNNs are

similar to DNNs but they can potentially have additional layers:

(i) Convolution (C) layer which is essentially a weighted sum of

łsquare regionž of size sq in the proceeding layer. To compute the

next output, the multiplication window on the input matrix is

moved by a specific number, called stride (st). The matrix weight is

9

Ker nels

Input Im age

3

1

4

5

Five Im ages of Si ze

ReLu

Vector of Si ze

Reshape

ReLu(xi)

ReLu(xi)
Vector of Si ze

ReLu(xi)

ReLu(xi)

ReLu arg max Output Label

Vector of Si ze

In fer ence LabelFul l y ConnectedFul ly Connected Act ivat i on LayerAct ivat i on LayerConvolut i onal LayerInput Im age

Cl ient Input

Ser ver Inputs

FC weights

FC weights

Reconst . OutputGMWA-SSAddi t ive Shar ing Inputs A2GMW GMW2A A-SS GMW GMW2A A-SSA2GMW A2GC GC

Cl ient Output

2

Figure 3: Architecture of our Convolutional Neural Network trained for the MNIST dataset. The upper bar illustrates which

protocol is being executed at each phase of the CNN. The lower bar shows different layers of the CNN from the deep learning

perspective.

called kernel. There can be Nmap (called map count) kernels in the

convolution layer. (ii) Mean-polling (MeP) which is the average of

each square region of the proceeding layer. (iii) Max-polling (MaP)

is the maximum of each square region of the proceeding layer. The

details of all layers are provided in Table 6.

Many giant technology companies such as Google, Microsoft,

Facebook, and Apple have invested millions of dollars in accurately

training neural networks to serve in different services. Clients that

want to use these services currently need to reveal their inputs that

may contain sensitive information to the cloud servers. Therefore,

there is a special need to run a neural network (trained by the cloud

server) on an input from another party (clients) while keeping both

the network parameters and the input private to their respective

owners. For this purpose, Microsoft has announced CryptoNets [35]

that can process encrypted queries in neural networks using homo-

morphic encryption. Next, we compare the performance result of

Chameleon to CryptoNets and other more recent works.

Table 6: Different types of layers in DNNs and CNNs.

Layer Functionality

FC x
(L)
i =

∑NL−1−1
j=0 W

(L−1)
i j × x

(L−1)
j

Act x
(L)
i = f (xL−1i)

C x
(L)
i j =

∑sq−1

a=0

∑sq−1

b=0
W

(L−1)
ab

× xL−1
(i ·st+a) (j ·st+b)

MeP x
(L)
i j = Mean(xL−1

(i+a) (j+b)
), a,b ∈ {1, 2, ..., sq }

MaP x
(L)
i j = Max(xL−1

(i+a) (j+b)
), a,b ∈ {1, 2, ..., sq }

Comparison with Previous Works. A comparison of recent

works is given in Table 7 and described next. We use the MNIST

dataset [58] (same as Microsoft CryptoNets) containing 60,000 im-

ages of hand-written digits. Each image is represented as 28 × 28

pixels with values between 0 and 255 in gray scale. We also train the

same NN architecture using the Keras library [29] running on top

of TensorFlow [1] using 50,000 images. We achieve a similar test ac-

curacy of ∼ 99% examined over 10,000 test images. The architecture

of the trained CNN is depicted in Figure 3 and composed of (i) C

layer with a kernel of size 5×5, stride 2, and map count of 5. (ii)Act

layer with ReLu as the activation function. (iii) A FC980×100 layer.

(iv) Another ReLu Act layer, and (v) another FC100×10 layer. The

lower bar in Figure 3 shows the different layers of the CNN while

the upper bar depicts the corresponding protocol that executes each

part of the CNN.

The output of the last layer is a vector of ten numbers where each

number represents the probability of the image being each digit (0-

9). We extract the maximum value and output it as the classification

result. The trained CNN is the server’s input and the client’s input

is the image that is going to be classified. More precisely, the trained

model consists of the kernels’ values and weights (matrices) of the

FC layers. The output of the secure computation is the classification

(inference) label.

The performance results are provided in Table 7 compared with

Microsoft CryptoNets and most recent previous works. We re-

port our run-time as Offline/Online/Total. As can be seen, our

Chameleon framework is 110x faster compared to the customized

solution based on homomorphic encryption of CryptoNets [35].

They have performed the experiments on a similar machine (Intel

Xeon ES-1620 CPU @ 3.5GHz with 16GB of RAM). Please note

that in CryptoNets [35], numbers are represented with 5 to 10 bit

precision while in Chameleon, all numbers are represented as 64

bit numbers. While the precision does not considerably change

the accuracy for the MNIST dataset, it might significantly reduce

the accuracy results for other datasets. In addition, the CryptoNets

10

Table 7: Comparison of secure deep learning frameworks, their characteristics, and performance results in the LAN setting.

Framework Methodology
Non-linear Activation

and Pooling Functions

Classification Timing (s)
Communication

Message Size (MB)
Classification

Accuracy
Offline Online Total Offline Online Total

Microsoft CryptoNets [35] Leveled HE ✗ - - 297.5 - - 372.2 98.95%

DeepSecure [75] GC ✓ - - 9.67 - - 791 99%

SecureML [66] Linearly HE, GC, SS ✗ 4.70 0.18 4.88 - - - 93.1%

MiniONN (Sqr Act.) [62] Additively HE, GC, SS ✗ 0.90 0.14 1.04 3.8 12 15.8 97.6%

MiniONN (ReLu + Pooling) [62] Additively HE, GC, SS ✓ 3.58 5.74 9.32 20.9 636.6 657.5 99%

EzPC [28] GC, Additive SS ✓ - - 5.1 - - 501 99%

Chameleon (This Work) GC, GMW, Additive SS ✓ 1.34 1.36 2.70 7.8 5.1 12.9 99%

framework neither supports non-linear activation nor pooling func-

tions. However, it is worth-mentioning that CryptoNets can process

a batch of images of size 8,192 with no additional costs. Therefore,

the CryptoNets framework can process up to 51,739 predictions

per hour. Nonetheless, it is necessary that the system batches a

large amount of images and processes them together. This, in turn,

might reduce the throughput of the network significantly. A sim-

ilar recent solution based on leveled homomorphic encryption is

called CryptoDL [45]. In CryptoDL, several activation functions

are approximated using low degree polynomials and mean-pooling

is used as a replacement for max-pooling. The authors state up to

163,840 predictions per hour for the same batch size as in Cryp-

toNets. Unfortunately, it remains unclear how CryptoDL performs

for single instances that may occur when streaming inputs for real-

time classification. Also note that in Chameleon one can implement

and evaluate virtually any activation and pooling function.

The DeepSecure framework [75] is a GC-based framework for

secure Deep Learning inference. They report a classification run-

time of 9.67 s to classify images from the MNIST dataset using

a CNN similar to CryptoNets. They utilize non-linear activation

and pooling functions. Chameleon is 3.6x faster and requires 61x

less communication compared to DeepSecure when running an

identical CNN.

SecureML [66] is a framework for privacy-preserving machine

learning. Similar to CryptoNets, SecureML focuses on linear activa-

tion functions. The MiniONN [62] framework reduces the classifica-

tion latency on an identical network from 4.88 s to 1.04 s using sim-

ilar linear activation functions. MiniONN also supports non-linear

activation functions and max-pooling. They report classification

latency of 9.32 s while successfully classifying MNIST images with

99% accuracy. For a similar accuracy and network, Chameleon has

3.5x lower latency and requires 51x less communication.

For the evaluation of the very recent EzPC framework [28], the

authors implement the CNN from MiniONN in a high-level lan-

guage. The EzPC compiler translates this implementation to stan-

dard ABY input while automatically inserting conversions between

GC and A-SS. This results in a total run-time of 5.1 s for classifying

one image. However, note that we require 39x less communication.

Table 7 shows that the total run-time of the end-to-end execution

of Chameleon for a single image is only 2.7 s. However, Chameleon

can easily be scaled up to classify multiple images at the same time

using a CNN with non-linear activation and pooling functions. For

a batch size of 100, our framework requires only 0.21 s processing

time and 12.9MB communication per image providing up to 17,142

Table 8: Classification time (in seconds) of Chameleon for

different batch sizes of theMNIST test image set in theWAN

setting (100Mbit/s bandwidth, 100ms round-trip time).

Classification Time (s) Communication (MB)

Batch Size Offline Online Total Offline Online Total

1 4.41 3.49 7.90 7.8 5.1 12.9

10 10.00 10.65 20.65 78.4 50.5 128.9

100 69.38 84.09 153.47 784.1 505.3 1289.4

predictions per hour in the LAN setting. Table 8 furthermore shows

the required run-times and communication for different batch sizes

when performing the classification task in a WAN setting where

we restrict the bandwidth to 100Mbit/s with a round-trip time of

100ms.

Further RelatedWorks. One of the earliest solutions for obliv-

iously evaluating a neural network was proposed by Orlandi et

al. [70]. They suggest adding fake neurons to the hidden layers in

the original network and evaluating the network using HE. Cha-

banne et al. [27] also approximate the ReLu non-linear activation

function using low-degree polynomials and provide a normaliza-

tion layer prior to the activation layer. However, they do not report

experimental results. Sadeghi and Schneider proposed to utilize

universal circuits to securely evaluate neural networks and fully

hide their structure [77]. Privacy-preserving classification of elec-

trocardiogram (ECG) signals using neural networks has been ad-

dressed in [10]. The recent work of Shokri and Shmatikov [79] is

a Differential Privacy (DP) based approach for distributed train-

ing of a Neural Network and they do not provide secure DNN or

CNN inference. Due to the added noise in DP, any attempt to im-

plement secure inference suffers from a significant reduction in

accuracy of the prediction. Phong et al. [57] propose a mechanism

for privacy-preserving deep learning based on additively homo-

morphic encryption. They do not consider secure deep learning

inference (classification). There are also limitations of deep learn-

ing when an adversary can craft malicious inputs in the training

phase [72]. Moreover, deep learning can be used to break semantic

image CAPTCHAs [80].

6.2 Support Vector Machines (SVMs)

One of the most frequently used classification tools in machine

learning and data mining is the Support Vector Machine (SVM).

An SVM is a supervised learning method in which the model is

created based on labeled training data. The result of the training

11

phase is a non-probabilistic binary classifier. The model can then

be used to classify an input data x which is a d-dimensional vector.

In Chameleon, we are interested in a scenario where the server

holds an already trained SVM model and the user holds the query

x. Our goal is to classify the user’s query without disclosing the

user’s input to the server or the server’s model to the user.

The training data, composed of N d-dimensional vectors, can be

viewed as N points in a d-dimensional space. Each point i is labeled

as either yi ∈ {−1, 1}, indicating which class the data point belongs

to. If the two classes are linearly separable, a (d − 1)-dimensional

hyperplane that separates these two classes can be used to clas-

sify future queries. A new query point can be labeled based on

which side of the hyperplane it resides on. The hyperplane is called

decision boundary. While there can be infinitely many such hyper-

planes, a hyperplane is chosen that maximizes the margin between

the two classes. That is, a hyperplane is chosen such that the dis-

tance between the nearest point of each class to the hyperplane

is maximized. Those training points that reside on the margin are

called support vectors. This hyperplane is chosen to achieve the

highest classification accuracy. Figure 4 illustrates an example for a

two-dimensional space. The optimal hyperplane can be represented

using a vector w and a distance from the origin b. Therefore, the

optimization task can be formulated as:

minimize ∥w∥ s.t. yi (w · xi − b) ⩾ 1, i = 1, 2, ...,N

The size of the margin equals M = 2
∥w∥

. This approach is called

hard-margin SVM.

M

M
a
rgin

w

b
Class -1

Class 1

Decisi
on

Boundr y

Suppor t
Vector s

Figure 4: Classification using Support Vector Machine

(SVM).

An extension of the hard-margin SVM, called a soft-margin SVM,

is used for scenarios where the two classes are not linearly separable.

In this case, the hinge lost function is used to penalize if the training

sample is residing on the wrong side of the classification boundary.

As a result, the optimization task is modified to:

1

N

N
∑

i=1

max (0, 1 − yi (w · xi − b)) + λ∥w∥
2

where λ is a parameter for the tradeoff between the size of the

margin and the number of points that lie on the correct side of the

boundary.

Table 9: Experimental results for classification using SVM

models for different feature sizes.

Classification Time (ms) Communication (kB)

Feature Size Offline Online Total Offline Online Total

10 8.91 0.97 9.88 3.2 3.3 6.5

100 9.49 0.99 10.48 3.9 4.7 8.7

1000 10.28 1.14 11.42 11.1 19.1 30.3

For both soft-margin and hard-margin SVMs, the performed

classification task is similar. The output label of the user’s query is

computed as:

label ∈ {−1, 1} = sign(w · x − b)

We run our experiments using the same setup described in ğ5.

The results of the experiments are provided in Table 9 for feature

vector sizes of 10, 100, and 1,000.

Comparison with Previous Works. Bos et al. [19] study

privacy-preserving classification based on hyperplane decision,

Naive Bayes, and decision trees using homomorphic encryption.

For a credit approval dataset with 47 features, they report a run-time

of 217ms and 40 kB of communication, whereas, Chameleon can

securely classify a query with 1,000 features in only 11.42ms with

30.3 kB of communication. Rahulamathavan et al. [74] also design

a solution based on homomorphic encryption for binary as well

as multi-class classification based on SVMs. In the case of binary

classification, for a dataset with 9 features, they report 7.71 s execu-

tion time and 1.4MB communication. In contrast, for the same task,

Chameleon requires less than 10ms execution time and 6.5 kB of

communication. Laur et al. [56] provide privacy-preserving train-

ing algorithms based on general kernel methods. They also study

privacy-preserving classification based on SVMs but they do not

report any benchmark results. Vaidya et al. [82] propose a method

to train an SVMmodel where the training data is distributed among

multiple parties. This scenario is different than ours where we are

interested in the SVM-based classification. As a proof-of-concept,

we have focused on SVM models for linear decision boundaries.

However, Chameleon can be used for non-linear decision bound-

aries as well.

7 RELATED WORK

Chameleon is essentially a two-party framework that uses a Semi-

honest Third Party (STP) to generate correlated randomness in the

offline phase. In the following, we review the use of third parties in

secure computation as well as other secure two-party and multi-

party computation frameworks.

Third Party-Based Secure Computation. Regarding the in-

volvement of a third party in secure two-party computation, there

have been several works that consider an outsourcing or server-

aided scenario, where the resources of one ormore untrusted servers

are employed to achieve sub-linear work in the circuit size of a func-

tion, evenworkload distribution, and output fairness. Realizing such

a scenario can be done by either employing fully-homomorphic

encryption (e.g., [5]) or extending Yao’s garbled circuit protocol

(e.g., [50]). Another important motivation for server-aided SFE is

to address the issue of low powered mobile devices, as done in

12

[22ś25, 65]. Furthermore, server-aided secure computation can be

used to achieve stronger security against active adversaries [44].

The secure computation framework of [47, Chapter 6] also uti-

lizes correlated randomness. Beyond passive security and one STP,

this framework also covers active security and multiple STPs.

GC-based Frameworks. The first implementation of the GC

protocol is Fairplay [64] that allows users to write the program in

a high-level language called Secure Function Definition Language

(SFDL) which is translated into a Boolean circuit. FariplayMP [15] is

the extension of Fairplay to the multiparty setting. FastGC [48] re-

duces the running time and memory requirements of the GC execu-

tion by introducing pipelining. TinyGarble [81] is one of the recent

GC frameworks that proposes to generate compact and efficient

Boolean circuits using industrial logic synthesis tools. TinyGarble

also supports sequential circuits (cyclic graph representation of

circuits) in addition to traditional combinational circuits (acyclic

graph representation). Our GC engine implementation is based on

TinyGarble. ObliVM [61] provides a domain-specific programming

language and secure computation framework that facilitates the

development process. Frigate [67] is a validated compiler and cir-

cuit interpreter for secure computation. Also, the authors of [67]

test and validate several secure computation compilers and report

the corresponding limitations. PCF (Portable Circuit Format) [53]

has introduced a compact representation of Boolean circuits that

enables better scaling of secure computation programs. Authors

in [54] have shown the evaluation of a circuit with billion gates in

the malicious model by parallelizing operations.

Secret Sharing-based Frameworks. The Sharemind frame-

work [18] is based on additive secret sharing over the ring Z232 .

The computation is performed with three nodes and is secure in the

honest-but-curious adversary model where only one node can be

corrupted. SEPIA [21] is a library for privacy-preserving aggrega-

tion of data for network security and monitoring. SEPIA is based on

Shamir’s secret sharing scheme where computation is performed

by three (or more) privacy peers. VIFF (Virtual Ideal Functionality

Framework) [30] is a framework that implements asynchronous

secure computation protocols and is also based on Shamir’s secret

sharing. PICCO [85] is a source-to-source compiler that generates

secure multiparty computation protocols from functions written

in the C language. The output of the compiler is a C program that

runs the secure computation using linear secret sharing. SPDZ [31]

is a secure computation protocol based on additive secret sharing

that is secure against n − 1 corrupted computation nodes in the

malicious model. Recent work of [3, 4, 40] introduces an efficient

protocol for three-party secure computation. In general, for se-

cret sharing-based frameworks, three (or more) computation nodes

need to communicate in the online phase and in some cases, the

communication is quadratic in the number of computation nodes.

However, in Chameleon, the third node (STP) is not involved in the

online phase which reduces the communication and running time.

While Chameleon offers more flexibility compared to secret-

sharing based frameworks, it is computationally more efficient

compared to Sharemind and SEPIA. To perform each multiplica-

tion, Sharemind needs 6 instances of the Du-Atallah protocol [18]

while Chameleon needs 1 (when one operand is shared) or 2 (in

the general case where both operands are shared). In SEPIA [21],

all operations are performed modulo a prime number which is

less efficient compared to modulo 2l and also requires multiple

multiplications for creating/reconstructing a share.

Mixed Protocol Frameworks. TASTY [43] is a compiler that

can produce mixed-protocols based on GC and homomorphic

encryption. Several application-specific mixed-protocol solutions

have been proposed for privacy-preserving ridge-regression [69],

matrix factorization [69], iris and finger-code authentication [17],

and medical diagnostics [9]. However, Chameleon provides a uni-

fied framework that utilizes three different secure computation

protocols for efficient realization of virtually any application.

Recently, a new framework for compiling two-party protocols

called EzPC [28] was presented. EzPC uses ABY as its cryptographic

back-end: a simple and easy-to-use imperative programming lan-

guage is compiled to ABY input. An interesting feature of EzPC

is its łcost awarenessž, i.e. its ability to automatically insert type

conversion operations in order to minimize the total cost of the re-

sulting protocol. However, they claim that ABY’s GC engine always

provides better performance for binary operations than GMW and

thus convert only between A-SS and GC.

Our framework extends the ABY framework [34]. Specifically,

we add support for signed fixed-point numbers which is essential

for almost all machine learning applications such as processing deep

neural networks. In addition to combinational circuits, Chameleon

also supports sequential circuits by incorporating TinyGarble-

methodology [81] which provides more scalability. Our framework

provides a faster online phase and more efficient offline phase in

terms of computation and communication due to the usage of a

STP. Moreover, we implement a highly efficient vector dot product

protocol based on correlated randomness generated by a STP.

Automatic Protocol Selection. The authors of [51] propose

two methods, one heuristic and one based on integer programming,

to find an optimal combination of two secure computation protocols,

HE and GC. The current version of Chameleon does not provide

automatic protocol selection. However, we find the solution of [51]

and the aforementioned EzPC [28] valuable as a future direction

of this work; although, the methods must be modified in order to

choose between the three secure computation protocols that are

used in Chameleon: additive secret sharing, GC, and GMW.

8 CONCLUSION

We introduced Chameleon, a novel hybrid (mixed-protocol) secure

computation framework based on ABY [34] that achieves unprece-

dented performance by (i) integrating sequential garbled circuits,

(ii) providing an optimized vector dot product protocol for fast ma-

trix multiplications, and (iii) employing a semi-honest third party in

the offline phase for generating correlated randomness that is used

for pre-computing OTs and multiplication triples. In contrast to

previous state-of-the-art frameworks, Chameleon supports signed

fixed-point numbers.We evaluated our framework on convolutional

neural networks where it can process an image of hand-written dig-

its 110x faster compared to the prior art Microsoft CryptoNets [35]

and 3.5x faster than the most recent MiniONN [62].

Acknowledgements. This work has been co-funded by the DFG

as part of project E3 within the CRC 1119 CROSSING and by the

German Federal Ministry of Education and Research (BMBF) as well

13

as by the Hessen State Ministry for Higher Education, Research

and the Arts (HMWK) within CRISP.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale
Machine Learning. In Operating Systems Design and Implementation (OSDI).

[2] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. 2013. Secure
Computation on Floating Point Numbers. In NDSS.

[3] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel
Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. 2017. Optimized Honest-
Majority MPC for Malicious Adversaries - Breaking the 1 Billion-Gate Per Second
Barrier. In IEEE S&P.

[4] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
2016. High-Throughput Semi-Honest Secure Three-Party Computation with an
Honest Majority. In CCS.

[5] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. 2012. Multiparty Computation with Low Communi-
cation, Computation and Interaction via Threshold FHE. In EUROCRYPT.

[6] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.
More efficient oblivious transfer and extensions for faster secure computation.
In CCS.

[7] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, Ahmad-
Reza Sadeghi, Guillaume Scerri, and Bogdan Warinschi. 2017. Secure multiparty
computation from SGX. In FC.

[8] Elaine Barker and John Kelsey. 2015. NIST Special Publication 800-90A Revision 1:
Recommendation for Random Number Generation Using Deterministic Random Bit
Generators. Technical Report.

[9] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-
Reza Sadeghi, and Thomas Schneider. 2009. Secure evaluation of private linear
branching programs with medical applications. In ESORICS.

[10] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and
Thomas Schneider. 2011. Privacy-Preserving ECG Classification With Branching
Programs and Neural Networks. TIFS 6, 2 (2011).

[11] Donald Beaver. 1991. Efficient multiparty protocols using circuit randomization.
In CRYPTO.

[12] Donald Beaver. 1995. Precomputing oblivious transfer. In CRYPTO.
[13] Donald Beaver. 1996. Correlated pseudorandomness and the complexity of private

computations. In STOC.
[14] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.

Efficient garbling from a fixed-key blockcipher. In IEEE S&P.
[15] Assaf Ben-David, Noam Nisan, and Benny Pinkas. 2008. FairplayMP: a system

for secure multi-party computation. In CCS.
[16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. 2016. Optimizing Semi-Honest

Secure Multiparty Computation for the Internet. In CCS.
[17] Marina Blanton and Paolo Gasti. 2011. Secure and efficient protocols for iris and

fingerprint identification. In ESORICS.
[18] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A framework

for fast privacy-preserving computations. In ESORICS.
[19] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Machine

Learning Classification over Encrypted Data. In NDSS.
[20] Justin Brickell, Donald E Porter, Vitaly Shmatikov, and Emmett Witchel. 2007.

Privacy-preserving remote diagnostics. In CCS.
[21] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos.

2010. SEPIA: Privacy-preserving aggregation of multi-domain network events
and statistics. USENIX Security (2010).

[22] Henry Carter, Charles Lever, and Patrick Traynor. 2014. Whitewash: outsourcing
garbled circuit generation for mobile devices. In ACSAC.

[23] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler. 2013.
Secure Outsourced Garbled Circuit Evaluation for Mobile Devices. In USENIX
Security.

[24] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler. 2015.
Outsourcing Secure Two-Party Computation as a Black Box. In CANS.

[25] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler. 2016.
Secure outsourced garbled circuit evaluation for mobile devices. Journal of
Computer Security (2016).

[26] Octavian Catrina and Amitabh Saxena. 2010. Secure Computation with Fixed-
Point Numbers. In FC.

[27] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. 2017. Privacy-Preserving Classification on Deep Neural
Network. IACR Cryptology ePrint Archive 2017/035 (2017).

[28] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. 2017. EzPC: Programmable, Efficient, and Scalable Secure Two-Party

Computation. IACR Cryptology ePrint Archive 2017/1109 (2017).
[29] Francois Chollet. 2015. keras. https://github.com/fchollet/keras. (2015).
[30] Ivan Damgård, Martin Geisler, Mikkel Krùigaard, and Jesper Buus Nielsen. 2009.

Asynchronous multiparty computation: Theory and implementation. In PKC.
[31] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty

computation from somewhat homomorphic encryption. In CRYPTO.
[32] Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi,

Thomas Schneider, and Shaza Zeitouni. 2015. Automated synthesis of optimized
circuits for secure computation. In CCS.

[33] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2014. Ad-Hoc Secure
Two-Party Computation on Mobile Devices using Hardware Tokens.. In USENIX
Security.

[34] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation.. In NDSS.

[35] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. CryptoNets: Applying neural networks to encrypted
data with high throughput and accuracy. In ICML.

[36] Wenliang Du and Mikhail J Atallah. 2001. Protocols for secure remote database
access with approximate matching. In E-Commerce Security and Privacy.

[37] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald La-
gendijk, and Tomas Toft. 2009. Privacy-Preserving Face Recognition. In PETS.

[38] David Evans, Yan Huang, Jonathan Katz, and Lior Malka. 2011. Efficient privacy-
preserving biometric identification. In NDSS.

[39] Joan Feigenbaum, Benny Pinkas, Raphael Ryger, and Felipe Saint-Jean. 2004.
Secure computation of surveys. In EU Workshop on Secure Multiparty Protocols.

[40] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-
Throughput Secure Three-Party Computation for Malicious Adversaries and
an Honest Majority. In EUROCRYPT.

[41] Oded Goldreich. 2009. Foundations of cryptography: volume 2, basic applications.
Cambridge university press.

[42] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental
game. In STOC.

[43] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. 2010. TASTY: tool for automating secure two-party computations.
In CCS.

[44] Amir Herzberg and Haya Shulman. 2012. Oblivious and Fair Server-Aided Two-
Party Computation. In ARES.

[45] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017. CryptoDL: Deep
Neural Networks over Encrypted Data. (2017).

[46] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. 2012.
Secure two-party computations in ANSI C. In CCS.

[47] Yan Huang. 2012. Practical Secure Two-Party Computation. Ph.D. Dissertation.
University of Virginia.

[48] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster Secure
Two-Party Computation Using Garbled Circuits.. In USENIX Security.

[49] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious
transfers efficiently. In CRYPTO.

[50] Seny Kamara, Payman Mohassel, and Ben Riva. 2012. Salus: a system for server-
aided secure function evaluation. In CCS.

[51] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer. 2014. Automatic
protocol selection in secure two-party computations. In ACNS.

[52] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved garbled circuit: Free
XOR gates and applications. In ICALP.

[53] Benjamin Kreuter, Abhi Shelat, Benjamin Mood, and Kevin RB Butler. 2013.
PCF: A Portable Circuit Format for Scalable Two-Party Secure Computation.. In
USENIX Security.

[54] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. 2012. Billion-Gate Secure
Computation with Malicious Adversaries.. In USENIX Security.

[55] Toomas Krips and Jan Willemson. 2014. Hybrid model of fixed and floating point
numbers in secure multiparty computations. In ISC.

[56] Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. 2006. Cryptographically
private support vector machines. In SIGKDD.

[57] Yoshinori Aono Le Trieu Phong, Takuya Hayashi, Lihua Wang, and Shiho Mo-
riai. [n. d.]. Privacy-Preserving Deep Learning via Additively Homomorphic
Encryption. ([n. d.]).

[58] Yann LeCun, Corinna Cortes, and Christopher Burges. 2017. MNIST dataset.
http://yann.lecun.com/exdb/mnist/. (2017).

[59] Yehuda Lindell and Benny Pinkas. 2000. Privacy Preserving Data Mining. In
CRYPTO.

[60] Yehuda Lindell and Benny Pinkas. 2002. Privacy Preserving Data Mining. J.
Cryptology 15, 3 (2002), 177ś206.

[61] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
ObliVM: A programming framework for secure computation. In IEEE S&P.

[62] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. 2017. Oblivious Neural Network
Predictions via MiniONN transformations. In CCS. http://ia.cr/2017/452.

[63] Ximeng Liu, Robert H Deng, Wenxiu Ding, Rongxing Lu, and Baodong Qin.
2016. Privacy-preserving outsourced calculation on floating point numbers. TIFS
(2016).

14

https://github.com/fchollet/keras
http://yann.lecun.com/exdb/mnist/
http://ia.cr/2017/452

[64] Dahlia Malkhi, NoamNisan, Benny Pinkas, and Yaron Sella. 2004. Fairplay-Secure
Two-Party Computation System.. In USENIX Security.

[65] Payman Mohassel, Ostap Orobets, and Ben Riva. 2016. Efficient Server-Aided
2PC for Mobile Phones. In PoPETs.

[66] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning.. In IEEE S&P.

[67] BenjaminMood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor.
2016. Frigate: A validated, extensible, and efficient compiler and interpreter for
secure computation. In IEEE EuroS&P.

[68] Moni Naor, Benny Pinkas, and Reuban Sumner. 1999. Privacy preserving auctions
and mechanism design. In ACM Conference on Electronic Commerce.

[69] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and
Nina Taft. 2013. Privacy-preserving ridge regression on hundreds of millions of
records. In IEEE S&P.

[70] Claudio Orlandi, Alessandro Piva, and Mauro Barni. 2007. Oblivious Neural Net-
work Computing via Homomorphic Encryption. EURASIP Journal on Information
Security 2007, 1 (2007).

[71] Margarita Osadchy, Benny Pinkas, Ayman Jarrous, and Boaz Moskovich. 2010.
SCiFI - A System for Secure Face Identification. In IEEE S&P.

[72] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Adver-
sarial Settings. In IEEE EuroS&P.

[73] Pille Pullonen and Sander Siim. 2015. Combining secret sharing and garbled
circuits for efficient private IEEE 754 floating-point computations. In FC.

[74] Yogachandran Rahulamathavan, Raphael C.-W. Phan, Suresh Veluru, Kanap-
athippillai Cumanan, and Muttukrishnan Rajarajan. 2014. Privacy-Preserving

Multi-Class Support Vector Machine for Outsourcing the Data Classification in
Cloud. TDSC 11, 5 (2014).

[75] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. 2017. DeepSecure:
Scalable Provably-Secure Deep Learning. arXiv preprint arXiv:1705.08963 (2017).

[76] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. 2009. Efficient
Privacy-Preserving Face Recognition. In ICISC.

[77] Ahmad-Reza Sadeghi and Thomas Schneider. 2009. Generalized Universal Circuits
for Secure Evaluation of Private Functions with Application to Data Classification.
In ICISC.

[78] Thomas Schneider and Michael Zohner. 2013. GMW vs. Yao? Efficient Secure
Two-Party Computation with Low Depth Circuits. In FC.

[79] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In
CCS.

[80] Suphannee Sivakorn, Iasonas Polakis, and Angelos D. Keromytis. 2016. I am
Robot: (Deep) Learning to Break Semantic Image CAPTCHAs. In IEEE EuroS&P.

[81] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider,
and Farinaz Koushanfar. 2015. TinyGarble: Highly Compressed and Scalable
Sequential Garbled Circuits. In IEEE S&P.

[82] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. 2008. Privacy-preserving SVM
classification. Knowledge and Information Systems 14, 2 (2008), 161ś178.

[83] Andrew Yao. 1986. How to generate and exchange secrets. In FOCS.
[84] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a Whole.

In EUROCRYPT.
[85] Yihua Zhang, Aaron Steele, and Marina Blanton. 2013. PICCO: a general-purpose

compiler for private distributed computation. In CCS.

15

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Oblivious Transfer Protocol
	2.2 Garbled Circuit Protocol
	2.3 GMW Protocol
	2.4 Additive Secret Sharing

	3 The Chameleon Framework
	3.1 Chameleon Online Execution Flow
	3.2 Security Model
	3.3 Semi-honest Third Party (STP)

	4 Chameleon Design and Implementation
	4.1 GC and GMW Engines
	4.2 A-SS Engine
	4.3 Supporting Signed Fixed-point Numbers
	4.4 Generating Multiplication Triples
	4.5 Fast STP-aided Oblivious Transfer
	4.6 Security Justification

	5 Benchmarks of Atomic Operations
	6 Machine Learning Applications
	6.1 Deep Learning
	6.2 Support Vector Machines (SVMs)

	7 Related Work
	8 Conclusion
	References

