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Abstract Existing approaches to constrained dynamic pro-

gramming are limited to formulations where the constraints

share the same additive structure of the objective function

(that is, they can be represented as an expectation of the

summation of one-stage costs). As such, these formulations

cannot handle joint probabilistic (chance) constraints, whose

structure is not additive. To bridge this gap, this paper presents

a novel algorithmic approach for joint chance-constrained

dynamic programming problems, where the probability of

failure to satisfy given state constraints is explicitly bounded.

Our approach is to (conservatively) reformulate a joint chance

constraint as a constraint on the expectation of a summation

of indicator random variables, which can be incorporated

into the cost function by considering a dual formulation of

the optimization problem. As a result, the primal variables

can be optimized by standard dynamic programming, while

the dual variable is optimized by a root-finding algorithm

that converges exponentially. Error bounds on the primal

and dual objective values are rigorously derived. We demon-

strate algorithm effectiveness on three optimal control prob-

lems, namely a path planning problem, a Mars entry, de-

scent and landing problem, and a Lunar landing problem.
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Fig. 1 Autonomous landing of the Curiosity rover on Mars using the

Sky Crane maneuver. (Image credit: NASA/JPL-Caltech)

All Mars simulations are conducted using real terrain data

of Mars, with four million discrete states at each time step.

The numerical experiments are used to validate our theoret-

ical and heuristic arguments that the proposed algorithm is

both (i) computationally efficient, i.e., capable of handling

real-world problems, and (ii) near-optimal, i.e., its degree of

conservatism is very low.

Keywords Dynamic programming · Constrained Stochastic

optimal control · Chance-constrained optimization · Markov

decision processes · Path planning

1 Introduction

1.1 Problem description and motivation

Autonomy is poised to play an increasingly important role

in robotic space exploration. Indeed, autonomy is already

playing an important role in current Mars missions. For ex-

ample, the entry, descent, and landing (EDL) phase of the

2012 Mars Science Laboratory (MSL) mission, which in-

volved a complex Skycrane maneuver [37] (see Figure 1),
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was performed completely autonomously, as the 14-minute

speed-of-light delay between Earth and Mars exceeded the

7-minute duration of the EDL phase. Autonomous path plan-

ning and hazard avoidance enabled Mars rovers to go be-

yond the sight of ground operators [9]. Also, an automated

scientific data collection system called the Autonomous Ex-

ploration for Gathering Increased Science (AEGIS) [16] is

being used onboard the Opportunity rover.

On the other hand, risk management in most space mis-

sions is largely a manual process. In the Mars Exploration

Rovers (MER) mission, for example, ground operators de-

cided whether or not to perform a trajectory correction ma-

neuver before atmospheric entry by checking if the prob-

ability of safe landing was above a pre-specified threshold,

which was set to 91% for Spirit and 96% for Opportunity [21].

As an additional example, when driving Mars rovers through

rocky terrain, paths are pre-planned by ground operators with

careful consideration of the uncertainty in rover position.

In order to continue advancing the frontier of robotic

space exploration, there is a clear need for an on-board risk

management capability. Indeed, in the Keck Institute Space

Studies (KISS) Workshop on Resilient Space Systems in

2012, experts from NASA centers and academia concluded

that risk-aware on-board decision making will significantly

benefit the future missions recommended by NASA’s Plan-

etary Science Decadal Survey [28], including Comet Sur-

face Sample Return, Saturn Probe, and Trojan Tour and Ren-

dezvous [26]. The workshop also identified chance-constrained

planning as a core component of the proposed Resilient Space-

craft Executive, as demonstrated later on in [25].

Specifically, in many applications, risk requirements are

formulated as bounds on the probability of success, as exem-

plified by the 91% and 96% bounds previously described for

MER EDL. Among the various risk-aware decision making

approaches such as [12,43,14,17], the chance-constrained

optimization framework, originally proposed in [13], nat-

urally fits this formulation, as one can explicitly impose a

bound on the probability of success in a stochastic problem

setting.

Accordingly, this paper focuses on chance-constrained

dynamic programming (CCDP) for three reasons. First, like

standard DP, the solution to CCDP is a closed-loop con-

trol policy, which explicitly maps states into control inputs.

Given a stochastic state transition model, an optimal con-

trol policy can be computed off-line, stored in a look-up ta-

ble, and then executed in real-time even on computationally-

limited vehicles such as spacecraft. Second, CCDP can per-

form sequential decision making over multiple time steps.

For example, future Mars EDL maneuvers will aim at re-

jecting uncertainty by active feedback control in three differ-

ent stages: entry-phase targeting, powered-descent guidance

(PDG) [1], and hazard detection and avoidance (HDA) [20].

Third, CCDP can also be used for trade analysis. For ex-

ample, in a mission to reach a specific target on a planetary

surface, increased rover mobility would relax the require-

ment on landing accuracy. In fact, in our previous work, we

designed the Combined EDL and Mobility Analysis Tool

(CEMAT) to perform such a trade based on a DP formula-

tion [23,22].

1.2 Literature review

CCDP was initially studied in the 1970s [4,3], in the context

of water management. These studies, however were field-

specific and lacked a theoretical justification. A problem sim-

ilar to CCDP, which entails dynamic programming under

“reliability constraints,” was studied in [38]. In this formula-

tion, the objective was to limit the expected number of fail-

ures and the approach was to employ a Lagrangian method

to transform the constrained problem into an unconstrained

counterpart. More generally, a number of diverse approaches

have been proposed to address constrained Markov Deci-

sion Processes (MDP), including linear programming and

Lagrangian methods. An authoritative overview is provided

in [2]. A major assumption in the existing literature on con-

strained MDP is that the constraints must share the same ad-

ditive structure of the objective function (that is, they can be

represented as an expectation of the summation of one-stage

costs). Unfortunately, this assumption precludes the applica-

tion of existing tools to the problem of chance-constrained

MDP (since the structure of chance constraints is not addi-

tive), as also pointed out in [38]. One possibility to circum-

vent this issue is to consider penalty-based MDPs, whereby

one achieves risk aversion by imposing an arbitrary cost

penalty on failure states. Unfortunately, stakeholders usu-

ally desire explicit constraints on the probability of failure,

as is the case for most space missions.

Over the last decade, due to major breakthroughs in em-

bedded optimization and a need to explicitly bound failure

probabilities, chance-constrained optimization has been in-

tensively studied within the Model Predictive Control (MPC)

community [40,18,24,10,15,30,35,32], under the name of

Chance-Constrained MPC (CCMPC). Successful applications

include building climate control [31,46] and electrical power

grids [34,41,42,45]. A chance-constrained extension to stan-

dard optimal control methods such as LQR and LQG has

also been studied in [19,39]. From this perspective, the ob-

jective of this paper is to integrate into dynamic program-

ming (DP) the rich insights obtained from the MPC com-

munity, and develop a general CCDP framework that can be

applied to a broad range of stochastic optimal control prob-

lems.
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1.3 Contributions

Specifically, the contributions of this paper are threefold.

First, we propose an algorithm for CCDP, whereby a joint

chance constraint is (conservatively) transformed into an ex-

pectation over a summation of indicator random variables,

which enjoys the same additive structure of the cost func-

tion and can be incorporated into the cost function by con-

sidering a dual formulation of the optimization problem. The

algorithm evaluates the dual objective function by minimiz-

ing the Lagrangian via standard dynamic programming (i.e.,

Bellman’s recursion), given a fixed dual variable. The dual

variable is then optimized via a root-finding algorithm, namely

the Brent’s method [5], which has an exponential conver-

gence rate and a complexity that does not change with pri-

mal problem’s size. Simulations show that the algorithm typ-

ically converges within 10 to 30 iterations.

Second, we derive bounds on the suboptimality of both

the primal and dual objective values, which provide rigorous

stopping criteria for the root finding method. The technical

hurdle in our analysis is that the dual objective function is,

in general, non-differentiable.

Finally, we demonstrate our algorithm on a path plan-

ning problem, a Mars entry, descent and landing problem,

and a Lunar landing problem. Mars simulations are con-

ducted using real terrain data of Mars, with four million dis-

crete states at each time step. These numerical experiments

support our theoretical and heuristic arguments that the pro-

posed algorithm is both (i) computationally efficient, i.e.,

capable of handling real-world problems, (ii) near-optimal,

i.e., its degree of conservatism is very low.

The rest of the paper is organized as follows. In Section

2 we present known concepts from optimization, on which

we will rely extensively in this paper. In Section 3 we formu-

late the problem we wish to solve, i.e., CCDP, together with

a reformulation that allows us to apply dual optimization

techniques. In Section 4 we present a dual formulation of

CCDP, exact and approximate optimality conditions, related

suboptimality bounds, and, finally, the proposed algorithm

for CCDP. In Section 5 we present numerical experiments.

Finally, we draw our conclusions in Section 6.

2 Background

Given a convex function f(x) : Rn → R, a vector d ∈ R
n

is said to be a subgradient of f at a point x ∈ R
n if

f(z) ≥ f(x) + (z − x)′d, for all z ∈ R
n. (1)

If instead f is a concave function, a vector d is said to be a

subgradient of f at x if −d is a subgradient of the convex

function −f at x [6, Appendix B]. The set of all subgra-

dients of a convex (or concave) function f at x ∈ R
n is

referred to as the subdifferential of f at x, and is denoted by

∂f(x). Intuitively, subdifferentiability is a generalization of

differentiability to non-differentiable functions. In fact, one

can show that f is differentiable at x with gradient ∇f(x)

if and only if it has ∇f(x) as its unique subgradient at x [6,

Appendix B].

A fundamental result in convex optimization is that a

point x minimizes a convex function f over a convex set

X ⊂ R
n if and only if there exists a subgradient d ∈ ∂f(x)

such that ([6, Appendix B])

d′(z − x) ≥ 0, for all z ∈ X. (2)

Equation (2) generalizes the optimality condition for the case

where f is differentiable, that is ∇f(x)′(z − x) ≥ 0 for all

z ∈ X . In the special case where X = R
n, one obtains

a basic necessary and sufficient condition for unconstrained

optimality of x:

0 ∈ ∂f(x).

We next discuss basic properties concerning dual formu-

lations of optimization problems. Consider the optimization

problem

min f(x) (3)

subject to gj(x) ≤ 0, j = 1, . . . , r, (4)

where f : Rn → R, gj : Rn → R are given functions. We

refer to this problem as the primal problem and we denote

its value with f∗. The dual of the above problem is given by

max q(λ) (5)

subject to λj ≥ 0, j = 1, . . . , r, (6)

where

q(λ) := inf
x∈Rn







f(x) +
r

∑

j=1

λj gj(x)







.

The function q(λ) is referred to as the dual function. The

function L(x, λ) := f(x) +
∑r

i=1 λj gj(x) is referred to as

the Lagrangian. We denote the the value of the dual problem

as q∗. Let λ := (λ1, . . . , λr).

It turns out that the dual problem is always a concave

problem (concave cost, convex constraint set) even if the

primal is not convex [6, Chapter 6]. An important result con-

necting primal and dual problems is the weak duality theo-

rem, according to which q∗ ≤ f∗ [6, Chapter 6]. If q∗ = f∗

we say that there is no duality gap, while if q∗ < f∗ we say

that there is a duality gap.

For a given λ ∈ R
r, let xλ be a value minimizing the

Lagrangian, i.e.,

xλ := argmin
x∈Rn

L(x, λ).

A useful fact is that g(xλ) is a subgradient of the dual func-

tion q at λ, that is g(xλ) ∈ ∂q(λ) [6, Chapter 6]. This result

will be exploited in Section 4.
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3 Formulation of Joint Chance-Constrained DP

3.1 Problem Statement

We consider a discrete-time stochastic dynamic system, whose

state at time k is represented by a vector xk ∈ X . The state

space X can be continuous, discrete, or hybrid. We assume

the following general dynamical model:

xk+1 = f(xk, uk, wk)

uk ∈ Uk(xk) ⊆ U

wk ∼ pk(wk), k = 0, . . . , N − 1,

where uk is a control input constrained to belong to a pos-

sibly state-dependant control set Uk(xk), U is the control

space, wk is a disturbance with a known probability distri-

bution (density) function pk(wk), and N is the number of

decision stages. We assume that the state xk is directly ob-

servable with no uncertainty at time k, and the initial state

x0 is given. We define a control policy µk as a map from

states to controls, i.e., µk : X 7→ Uk(xk) for k = 0, . . . , N .

A policy sequence is denoted by:

µ = {µ0, µ1, . . . , µN−1}.

Given an initial state x0, the objective is to find an optimal

policy sequence µ
⋆ that achieves the following:

1. Satisfaction of a joint chance constraint: The proba-

bility that the state stays within a feasible region Xk ⊆
X over the control horizon N is at least 1 − ∆, where

∆ ∈ [0, 1] is a user-specified risk bound.

2. Minimization of a cost function: Given a one-stage

cost function gk : X × U 7→ R and a terminal cost

function gN : X 7→ R, the expected total cost over the

control horizon is minimized.

The problem we are interested in can then be formulated

as follows:

Problem 1: Joint Chance-Constrained Optimal Control

min
µ

E

{

gN (xN ) +
N−1
∑

k=0

gk(xk, µk(xk))

}

(7)

subject to Pr

{

N
∧

k=1

xk ∈ Xk

∣

∣

∣
x0

}

≥ 1−∆. (8)

Existing constrained DP/MDP methods, such as those

presented in [38,8], only consider the case where the con-

straint function is in the same form as the objective function

(i.e., terminal cost plus summation over one-stage costs).

Hence, they are not directly applicable to Problem 1 as the

left hand side of (8) has a form different from that of the

objective function (7); in other words, it does not have an

additive structure.

3.2 Reformulation via Boole’s Approximation

Our technical approach is to reformulate the joint chance

constraint (8) into a constraint over an expectation of a sum-

mation of indicator random variables, so that a Lagrangian-

based approach can be applied. An indicator random vari-

able Ik(xk) is defined as follows:

Ik(xk) :=

{

1, if xk /∈ Xk,

0, otherwise.
(9)

In other words, Ik(xk) is equal to one if xk is infeasible. Us-

ing indicator random variables and Boole’s inequality, Prob-

lem 1 can be approximated as follows:

Problem 2: Approximation of Problem 1

min
µ

E

{

gN (xN ) +

N−1
∑

k=0

gk(xk, µk(xk))

}

(10)

subject to E

{

N
∑

k=1

Ik(xk)
∣

∣

∣
x0

}

≤ ∆. (11)

The following theorem holds:

Theorem 1 (Conservatism of Problem 2) Problem 2 is a

conservative approximation of Problem 1. In other words, a

feasible solution to Problem 2 is guaranteed to be a feasible

solution to Problem 1.

Proof We prove this theorem by showing that (11) is a suf-

ficient condition for (8). Indeed, the probability of the event

{xk /∈ Xk} is equal to the expectation of the random vari-

able Ik(xk), that is

Pr {xk /∈ Xk | x0} = E{Ik(xk) | x0}.

Using the above equation, the left hand side of (8) can be

lower bounded as

Pr

{

N
∧

k=1

xk ∈ Xk | x0

}

= 1− Pr

{

N
∨

k=1

xk /∈ Xk | x0

}

≥ 1−
N
∑

k=1

Pr {xk /∈ Xk | x0}

= 1−
N
∑

k=1

E{Ik(xk) | x0}

= 1− E

{

N
∑

k=1

Ik(xk) | x0

}

.

(12)

In the second step we used Boole’s inequality, i.e., Pr[A ∪
B] ≤ Pr[A] + Pr[B]. Equation (12) implies that (11) is a

sufficient condition for (8), which proves the theorem.
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Note that in Problem 2 the constraint has an additive

structure, hence Problem 2 is much easier to solve than Prob-

lem 1. Accordingly, our approach is to solve Problem 2 as a

conservative approximation to Problem 1. Specifically, Prob-

lem 2 falls within the class of constrained Markov Decision

Processes (CMDP), discussed extensively in [2]. In this pa-

per we exploit the fact that Problem 2 has a single constraint,

and design a tailored, exponentially-converging solution ap-

proach that relies on root-finding methods. The Boole’s ap-

proximation used in the derivation of Problem 2 is the same

approximation used in [35] within the context of chance-

constrained MPC. It has been shown that the conservatism

introduced by this approximation is, in practice, very small.

More specifically, it has been shown that, under the assump-

tion that failures occur independently between time steps,

the conservatism measured by the difference between the

left hand side and the right hand side of the inequality in

(12) is of the order of O(∆2) [33]. In most practical cases,

the risk bound ∆ is set to a small value, which implies (at

least under the assumption of independent failures) that the

degree of conservatism is moderate. This aspect will be veri-

fied numerically in Section 5. Furthermore, previous works [11,

35] showed that the Boole’s approximation yields substan-

tially less conservatism compared to other approaches, such

as those in [10,18,24,29].

4 An Approximation Algorithm for CCDP

In this section we develop a computationally-efficient algo-

rithm to solve Problem 2. Our approach, which relies on dual

optimization, is inspired by a number of earlier works on

constrained MDP [8,38,44]. The key difference is that in

this paper we derive conditions that allow users to explicitly

specify a tolerance for the suboptimality of the dual opti-

mization problem. This is important as the dual objective

function is often non-differentiable, and hence it is difficult

to obtain an exact solution.

Specifically, in this section we first formulate the dual of

Problem 2 (Section 4.1). Then, we proceed to a discussion of

exact and approximate optimality conditions (Section 4.2).

Finally, exploiting the suboptimality bounds derived in Sec-

tion 4.3, we present an algorithm that provides a conserva-

tive, approximate solution to Problem 2 (Section 4.4). This

solution, in turn, represents a conservative, approximate so-

lution for Problem 1 (CCDP).

4.1 Dual of Problem 2

To formulate the dual of Problem 2, we define a step-wise

Lagrangian as

Lλ
k(xk, uk) :=







g0(x0, u0) if k = 0,

gk(xk, uk) + λIk(xk) if k = 1, . . . , N−1,

gN (xN ) + λIN (xN ) if k = N,

where λ ≥ 0 is a dual variable. With this definition, the dual

of Problem 2 can be written as

Problem 3: Dual of Problem 2

max
λ≥0

min
µ

E

{

N
∑

k=0

Lλ
k(xk, µk(xk))

}

− λ∆.

The objective function in Problem 3 can be written as

q(λ) := Jλ
0 (x0)− λ∆, where

Jλ
0 (x0) := min

µ
E

{

N
∑

k=0

Lλ
k(xk, µk(xk))

}

. (13)

Thus, Problem 3 can be compactly written as maxλ≥0 q(λ).

Note that, for a given λ, Jλ
0 (x0) can be efficiently solved via

standard dynamic programming. Specifically, Jλ
0 (x0) can be

computed by performing the following backward recursion:

Jλ
N (xN ) = Lλ

N (xN ), (14)

Jλ
k (xk) = min

uk∈Uk(xk)
E
wk

{

Lλ
k(xk, uk)+Jk+1 (f(xk, uk, wk))} ,

(15)

for k = 0, 1, . . . N − 1. In the next section we discuss opti-

mality conditions for the dual objective function q(λ), which

will be exploited to derive an iterative algorithm for the so-

lution of Problem 2.

4.2 Optimality and Approximate Optimality Conditions for

the Dual Problem

The goal of this subsection is to obtain approximate optimal-

ity conditions for Problem 3, which will then be leveraged

in our iterative solution algorithm. Let us start with three ad-

ditional definitions. First, let λ⋆ be an optimal dual solution

for Problem 3. Second, for a given λ, let µλ be an opti-

mal solution for the optimization problem in equation (13),

where

µ
λ = {µλ

0 , µ
λ
1 , . . . µ

λ
N}.

Finally, we define a risk-to-go function, rλ0 (x0), as the left

hand side of equation (11) given the optimal policy µ
λ, that

is

rλ0 (x0) := E

{

N
∑

k=1

Ik(xk) | x0,µ
λ

}

. (16)

In the rest of the paper, we simply denote the risk-to-go

function by rλ0 , as the initial state is assumed to be given

and equal to x0. Intuitively, rλ0 represents the conditional

probability of failure1 when the optimal policy µ
λ is applied

1 Strictly speaking, the risk-to-go function rλ0 (x0) does not repre-

sent the probability of failure, but an upper bound on it, due the refor-

mulation from Problem 1 to Problem 2.
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starting from the given initial state x0. The risk-to-go func-

tion can be computed via the following backward recursion:

rλN (xN ) := IN (xN ),

rλk (xk) := Ik(xk)+

∫

wk

rλk+1

(

f(xk, µ
λ
k , wk)

)

pk(wk)dwk,

for k = 0, 1, . . . N − 1. If the distribution is discrete, the in-

tegral should be replaced with a summation. It is straightfor-

ward to verify that rλ0 is monotonically not increasing with

respect to λ. Note that, once a dual solution λ is given, the

value of the primal problem (i.e., Problem 2) corresponding

to a policy µ
λ, denoted by hλ, can be readily computed as

hλ = q(λ)− λ(rλ0 −∆). (17)

We are now in a position to discuss optimality conditions

for Problem 3. According to the results in Section 2, the dual

problem is concave, in particular the dual objective function

q(λ) is concave (the constraint set, that is λ ≥ 0, is clearly

convex). Note that q(λ) is possibly non-differentiable. Ac-

cording to equation (2), a dual variable λ∗ maximizes q(λ)

over λ ≥ 0 if and only if there exists a subgradient d ∈
∂q(λ∗) such that

d′(λ− λ∗) ≤ 0, for all λ ≥ 0. (18)

(Recall that q(λ) is concave, so the sign in equation (2) is

reversed.) From the discussion at the end of Section 2, one

has

rλ0 −∆ ∈ ∂q(λ). (19)

To gain intuition about our proposed algorithm, assume

that λ∗ > 0 (see Figure 2). In this case, equations (18) and

(19) imply that a necessary and sufficient condition for dual

optimality is

0 ∈ ∂q(λ). (20)

This motivates our approach whereby we use a root-finding

algorithm, such as the bisection method or Brent’s method,

to iteratively compute an interval, denoted by [λL, λU ], such

that

0 < rλ
L

0 −∆, rλ
U

0 −∆ ≤ 0, and (21)

(λL − λU )(rλ
U

0 −∆) ≤ ǫd. (22)

Given equations (19) and (20) and the fact that rλ0 is mono-

tonically not increasing, equation (21) ensures that λ∗ ∈
[λL, λU ] (see Figure 2). Equation (22) is a complementary

slackness condition ensuring that the approximation error in

the dual objective function is bounded by an arbitrarily small

design constant ǫd – this fact will be rigorously proven in

Theorem 2. Figure 3 represents graphically the role of the

complementary slackness condition. Note that the optimal

policy corresponding to λL (slightly) violates the chance

0

𝑞 𝜆

λ λ

𝜕𝑞

λ⋆
𝑞⋆

λ⋆λ𝐿 λ𝑈
Fig. 2 Dual objective function (left) and its subgradient (right). The

dual objective function is always concave. The subgradient contains

zero at the optimum, λ⋆.

constraint, while the optimal policy corresponding to λU re-

spects it. Hence, once the bisection algorithms has found an

interval [λL, λU ] that satisfies the complementary slackness

condition, we use λU as a conservative, approximate solu-

tion to Problem 3.

The special case λ∗ = 0 is treated separately by the solu-

tion algorithm (see Lines 1–4 in Algorithm 1). We note that

the case λ∗ = 0 corresponds to the trivial case where the

constraint is not active (i.e., the solution to the unconstrained

problem is also a solution to the constrained problem).

Many standard root-finding algorithms, including the bi-

section method and Brent’s method, have demonstrated ex-

ponential convergence rates [5]. This translates into an ex-

ponential convergence rate for our iterative algorithm for

dual optimization. Numerical experiments confirming this

statement will be provided in Section 5.2 (Figure 8). We

highlight the advantage of this approach over subgradient

methods [7], which represent a general solution approach

for dual optimization problems. The convergence of subgra-

dient methods is known to be very slow - it requires O(1/ǫ2)

iterations to find an ǫ-suboptimal solution. In contrast, the

bisection method requires only O(log2(1/ǫ)) iterations, and

the Brent’s method is at least as fast as the bisection method.

A root-finding algorithm can be readily used in our case as

we reduced the joint chance-constrained optimization prob-

lem to a special case of a CMDP with a single constraint

(Problem 2).

Next, we prove in Section 4.3 that indeed equation (22)

ensures that the approximation error for the dual objective

function is bounded by ǫd, and we also provide a subopti-

mality bound for the primal objective. Then, in Section 4.4

we provide an algorithm that computes (with an exponential

convergence rate) an interval [λL, λU ] fulfilling conditions

(21) and (22), and hence provides an approximate solution

to Problem 2 with provable suboptimality bounds.

4.3 Suboptimality Bounds

The approximate primal solution, hλU

, is in general differ-

ent from the optimal solution of Problem 2, denoted by h⋆.
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λ

𝑞⋆𝑞(𝜆𝑈)
ℎ⋆

ℎ(𝜆𝑈)
Primal error

𝜖𝑑𝑞(𝜆𝐿) Dual error

𝜖𝑝ℎ(𝜆)

𝑞(𝜆)
0 λ𝑈λ⋆λ𝐿

(1,𝑟0𝜆𝑈 − Δ)
Primal opt. sol.

Dual opt. sol.

Fig. 3 Graphical interpretation of Theorem 2. The numbers ǫp and ǫd
bound the primal and dual errors, respectively.

Since we pose Problem 2 as a minimization, hλU

≥ h⋆, as

illustrated in Figure 3. The suboptimality in the approximate

primal solution is due to the following two factors:

1. approximation error of the dual solution (i.e., λU − λ⋆),

as discussed in the previous subsection, and

2. duality gap.

As for the first factor, the approximation error in the dual ob-

jective function is q⋆ − q(λU ) ≥ 0, where q⋆ is the optimal

dual objective value. Regarding the second factor, a duality

gap exists in general unless Problem 2 is a convex optimiza-

tion problem. The following theorem provides bounds on

the primal and dual optimization errors.

Theorem 2 (Suboptimality Bounds) Let λU be an approx-

imate dual solution that satisfies equations (21) and (22).

Then, the following holds:

1. the suboptimality of the dual objective value is bounded

according to

q⋆ − q(λU ) ≤ ǫd. (23)

2. the suboptimality of the primal objective value, corre-

sponding to the feasible solution µλU , is bounded ac-

cording to

hλU

− h⋆ ≤ ǫp, (24)

where

ǫp := min
(

−λU (rλ
U

0 −∆), hλU

− hλL

− λL(rλ
L

0 −∆)
)

.

Proof We start by proving the first claim. Since the dual ob-

jective function q(λ) is concave, one has, for all subgradi-

ents d ∈ ∂q(λU ),

q⋆ ≤ q(λU ) + (λ⋆ − λU ) d,

see equation (1). Since rλ0 is monotonically non-increasing,

equation (21) implies

λL ≤ λ⋆ ≤ λU .

By using (19) and equation (22) one readily obtains

q⋆ ≤ q(λU ) + (λ⋆ − λU )(rλ
U

0 −∆)

≤ q(λU ) + (λL − λU )(rλ
U

0 −∆) ≤ q(λU ) + ǫd,

which proves the first claim, that is equation (23).

We prove, now, the second claim. Since q⋆ and h⋆ are

the optimal dual and primal objective values, by the weak

duality theorem (see Section 2), one has

max
(

q(λU ), q(λL)
)

≤ q⋆ ≤ h⋆.

Therefore,

hλU

− h⋆ ≤ min
(

hλU

− q(λU ), hλU

− q(λL)
)

= min
(

−λU (rλ
U

0 −∆),

hλU

− hλL

− λL(rλ
L

0 −∆)
)

.

where the equality follows from equation (17).

See Figure 3 for a graphical interpretation of Theorem

2. Note that rλ
U

0 −∆ is the slope of a tangent line to q(λ) at

λU .

4.4 An Approximation Algorithm for CCDP

We next present an algorithm to compute an approximate

solution to Problem 2. Specifically, the algorithm computes

a value λU that satisfies conditions (21) and (22), as well as

the policy sequence µ
λU

. Recall that the feasibility of µλU

is guaranteed by equation (21), and a bound on the approxi-

mation error is provided in Theorem 2.

The algorithm is given in pseudo-code in Algorithm 1.

The algorithm starts by dealing with two special cases. First,

Lines 1 – 4 consider the special case λ⋆ = 0 (see the dis-

cussion in Section 4.2). Second, Lines 5 – 8 are aimed at

identifying the case where no feasible solution to the primal

optimization problem (Problem 2) exists. For this purpose,

the algorithm solves (via standard dynamic programming)

the optimization problem:

∆min = min
µ

E

{

N
∑

k=1

Ik(xk) | x0

}

.

Note that the objective function in the above optimization

problem is the same as that in the constraint of Problem 2.

Hence, ∆min represents the minimum risk-to-go that can be

achieved by any possible policy. If ∆min is larger than the

specified risk bound ∆, then Problem 2 is infeasible.
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If a given problem does not fall into the above two spe-

cial cases, then there exists a λ+ such that rλ
+

0 (x0)−∆ ≤ 0.

In Line 9, λU is initialized with such a λ+. Lines 10 – 20 are

the main loop of the algorithm. Line 11 computes one step

of a root-finding algorithm, namely Brent’s method, in order

to obtain λ ∈ [λL, λU ]. Then, in Line 12, the optimal policy

µ
λ is obtained by computing Jλ

0 (x0) with this λ. Lines 13

– 17 update [λL, λU ] so that (21) is always satisfied. The

algorithm terminates whenever inequality (22) is satisfied,

and returns the policy corresponding to λU .

By construction the algorithm is guaranteed to compute

a dual variable λU that satisfies conditions (21) and (22), and

hence a policy µ
λU

that is feasible for Problem 2 and with a

rigorous suboptimality bound as given in Theorem 2.

Algorithm 1 Chance-Constrained Dynamic Programming

Input: Error tolerance ǫd > 0

Output: Policy µ
λU

that is feasible for Problem 2 (if a feasible solu-

tion exists) and with suboptimality bounds given in Theorem 2.

1: Compute J0
0 (x0) {Special case for λ⋆ = 0}

2: if r00(x0)−∆ ≤ 0 then

3: return µ
0

4: end if

5: Solve

∆min = min
µ

E

{

N
∑

k=1

Ik(xk) | x0

}

.

{Feasibility check}
6: if ∆min > ∆ then

7: return Infeasible

8: end if

9: [λL λU ]← [0, λ+]

10: while (λL − λU ){rλ
U

0 (x0)−∆} > ǫd do

11: λ← Brent’s method with [λL, λU ]
12: Compute Jλ

0 (x0) and obtain µ
λ

13: if rλ0 (x0)−∆ = 0 then

14: return µ
λ

15: else if rλ0 (x0)−∆ < 0 then

16: λU ← λ

17: else

18: λL ← λ

19: end if

20: end while

21: return µ
λU

5 Simulation results

We demonstrate the proposed algorithm on three problems:

path planning, Mars EDL, and Lunar landing. The algorithm

is implemented in MATLAB. Computation time is evaluated

on a machine with an Intel Core 2 CPU clocked at 2.93 GHz

and 2 GB of memory.

5.1 Path Planning

In this example, we consider a two-dimensional rectangular

state space discretized into a 100x100 grid, where the edge

length of each cell corresponds to a unit length. The follow-

ing dynamics are assumed:

xk+1 = xk + uk + wk

‖uk‖2 ≤ dk, wk ∼ N (0, σ2I),

where dk and σ are constant parameters, N (0, Σ) is a zero-

mean Gaussian distribution with covariance matrix Σ, and

I is the two-dimensional identity matrix. We set dk = 6 and

σ = 1 for Figure 4(a), and dk = 5 and σ = 1.67 for Figure

4(b) and Table 1. The control input and disturbance are also

discretized using the same interval as the state variable.

The dynamic programming problem is formulated with

50 time steps, i.e., N = 50. We choose the locations of the

start state x0 and the goal state xG randomly. The terminal

cost is:

gN (xN ) :=

{

0 if xN = xG,

1 otherwise,

while the stage cost is proportional to the path length of each

step, that is

gk(xk, uk) := α‖uk‖,

where α > 0 is a constant. This constant must be set to a

very small value in order to avoid a trivial solution that stays

at the start state at all time steps. Here we use α = 10−5.

An illustrative example of the path planning problem is

shown in Figure 4(a). The lines shown in the figure are the

nominal paths with different risk bounds ∆, while the black

blocks represent infeasible state regions. Here, a nominal

path means a state sequence x0, . . . , xN that is obtained by

applying the resulting control policy µ
λ to the system with-

out disturbances. When a 10% risk of failure is allowed, the

nominal path goes through a narrow gap between the obsta-

cles in order to minimize path length. With 1% and 0.1%

risk bounds, the nominal paths go through a wider gap in or-

der to avoid excessive risk. When the risk bound is 0.01%,

an even longer nominal path is chosen.

Next, we run the proposed algorithm in a state space

with five randomly placed rectangular obstacles. Figure 4(b)

shows an example of the state space as well as the resulting

nominal paths. The simulation is run 100 times with three

different risk bounds. The means and the standard deviations

of the cost function values and the computation times are

shown in Table 1. The change in cost between different ∆

is relatively small because the stage cost (i.e., path length)

is significantly smaller than the terminal cost (i.e., penalty

of failure to reach the goal at the final time step), due to the

very small value of α.
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(a)

(b)

Fig. 4 Application of the proposed chance-constrained dynamic pro-

gramming algorithm to path planning problems with 50 time steps.

Table 1 Averages and standard deviations of the costs and computa-

tion times for different risk bounds. For each case, 100 simulations are

conducted with random location of obstacles.

Risk bound Cost

Length of

nominal path

Computation

time [sec]

∆ = 1% 0.88551± 0.0176 82.58± 25.10 17.2± 5.4
∆ = 0.1% 0.88555± 0.0175 86.74± 27.94 14.9± 4.6
∆ = 0.01% 0.88556± 0.0175 87.21± 28.11 12.2± 4.7

Finally, in order to evaluate the conservatism of the pro-

posed algorithm, we obtained the approximate solution, λU ,

for the map shown in Figure 4(b) with ∆ = 0.1, 0.01, and

0.001. The resulting risk-to-go (rλ
U

0 ) as well as the actual

probability of failure (Pfail) evaluated by Monte-Carlo sim-

ulations with 10,000 samples are shown in Table 2. As ex-

pected, for all cases, ∆ > rλ
U

0 > Pfail. The difference be-

tween ∆ and rλ
U

0 is due to the nonconvexity of the problem

as well as the tolerance of the zero-finding method. The dif-

ference between rλ
U

0 and Pfail is due to the conservative ap-

proximation using Boole’s inequality in (12). The results in

Table 2 are consistent with our claim that the conservatism

Planned 

Projected 

Actual 

Entry 

1. EDL (entry, descent and landing) targeting 

2. Powered-descent guidance  

3. Hazard detection  

     and avoidance 
Rocks = hazards 

       

Fig. 5 A future Mars entry, descent, and landing scenario.

introduced by the proposed algorithm is moderate. More im-

portantly, since we only employed conservative approxima-

tions, the resulting solution always respects the given chance

constraint.

Table 2 Empirical evaluation of the conservatism of the proposed al-

gorithm. Optimal control policy is obtained for the map shown in Fig-

ure 4(b) with ∆ = 0.1, 0.01, and 0.001. The risk-to-go with the ap-

proximate optimal solution, λU , is shown in the second column. The

actual probability of failure shown in the third column is evaluated by

Monte-Carlo simulations with 10,000 samples.

Risk bound (∆) Risk-to-go (rλ
U

0 ) Prob. of failure

10% 8.70% 8.05%
1% 0.95% 0.81%
0.1% 0.09% 0.06%

5.2 Mars EDL Scenario

We next demonstrate the proposed algorithm on the Mars

EDL scenario shown in Figure 5. As we discussed in the in-

troduction, future Mars lander/rover missions aim to reduce

the uncertainty by using several new active control technolo-

gies, consisting of the following three stages: entry-phase

targeting, powered-descent guidance (PDG) [1], and haz-

ard detection and avoidance (HDA) [20], as shown in Fig-

ure 5. Each control stage is capable of making corrections

to the predicted landing position by a certain distance, but

each stage is subject to execution errors, which deviates the

spacecraft away from the planned landing position.

We employ the same dynamics model as [23], except

that we assume stochastic disturbances at all stages while

[23] assumed set bounded disturbances at the PDG and HDA

stages. At the kth stage, xk represents the projected land-

ing location without further control, as shown as the dashed

lines in Figure 5. By applying a control at the kth stage,

the lander can correct the projected landing location to uk,

which must be within an ellipsoid centered around xk. At
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the end of the kth control stage, the projected landing loca-

tion xk+1 deviates from uk due to a disturbance wk, which is

assumed to have a Gaussian distribution. State x3 is the final

landing location. This EDL model is described as follows:

xk+1 = uk + wk,

(uk − xk)
TDk(uk − xk) ≤ d2k, wk ∼ N (0, Σk),

where Dk and Σk are positive definite matrices, and dk is a

scalar constant. In this simulation, Dk is set to be the 2-D

identity matrix, and dk is set as follows:

d0 = 3000 m, d1 = 20 m, d2 = 6 m.

We assume that the covariance matrix Σk is a diagonal ma-

trix with all diagonal elements being equal to σ2
k, where σk

is the standard deviation. The 3-σ of each stage is:

3σ0 = 500 m, 3σ1 = 10 m, 3σ2 = 2 m.

The state space X is a 2 km-by-2 km square, which is dis-

cretized at a one meter resolution. As a result, the problem

has four million states at each time step. The control and the

disturbance are also discretized at the same resolution. The

infeasible areas are specified using the data from the HiRISE

(High Resolution Imaging Science Experiment) camera on

the Mars Reconnaissance Orbiter. We use the real landscape

of a site named “East Margaritifer” on Mars.

Figure 7(a) shows the Lagrangian of the terminal stage,

Lλ
3 . The blue flat areas are infeasible areas for landing due

to either steep slope or existence of obstacles, such as rocks.

We only consider the terminal cost gN (xN ), which is equal

to the minimum driving distance in order to visit a specified

number of science targets starting from the landing site. The

method to obtain the minimum driving distance is described

in detail in [23]. We place nine science targets, represented

by squares in Figure 7(a) and labeled as A, B, ..., I.

Figure 6(a) shows the dual objective function q(λ) for

a case with a 1% risk bound. The function is concave and

achieves its maximum at λ = 725.2. The probability of fail-

ure, rλ0 (x0), is 0.990% and is within the risk bound. The

expected cost is hλ = 637.81 m. Using Theorem 2, the sub-

optimality bound on the expected cost is ǫp = 7.25 × 10−2

m. The optimal EDL target u0 is shown in Figure 7(b) as

well as a circle representing the three sigma of the distur-

bance w0. The optimal EDL target is near the science target

D.

With a smaller risk bound, ∆ = 0.1%, the optimal EDL

target moves to a location near science target E, as shown

in Figure 7(c). This is because, although the cost around

science target E is higher than around target D, there are

fewer obstacles in its proximity, and hence target E involves

a smaller risk of landing failure. As a result, the expected

cost increases to hλ = 644.82 m, with a suboptimality bound

of ǫp = 6.73 × 10−1 m. With an even smaller risk bound,

∆ = 0.01%, the optimal EDL target location changes only

slightly, as shown in Figure 7(c). The expected cost is hλ =
645.54 m, and the suboptimality bound is ǫp = 5.46× 10−3

m.

An interesting aspect to note is that, when the risk bound

is ∆ = 0.1%, the resulting probability of failure with the

optimal policy is rλ0 (x0) = 0.0160%, which is significantly

smaller than the given risk bound. Such a large gap between

∆ and rλ0 (x0) is explained by Figure 6(b), which plots rλ0 (x0)

against λ. Note that the function is discontinuous at around

λ = 800, which corresponds to a non-differentiable point

of the dual objective function, shown in Figure 6(a). Since

there is no λ that achieves rλ0 (x0) = 0.1%, the algorithm

chooses a dual variable λ that is slightly right of the discon-

tinuous point in order to satisfy the chance constraint. Such

a discontinuous change in rλ0 (x0) occurs due to a “jump” of

the optimal EDL target from D to E, as shown in Figures

7(b) and 7(c). On the other hand, rλ0 (x0) is nearly continu-

ous when it crosses 0.01 and 0.0001. As a result, the prob-

abilities of failure for ∆ = 1% and 0.01% are rλ0 (x0) =

0.990% and 0.0094%, respectively, which are relatively close

to the risk bounds.

The exponential convergence of Algorithm 1 is demon-

strated in the semi-log plots in Figure 8. Note that a straight

line in a semi-log plot represents an exponential relation-

ship. In this simulation, we set the risk bound ∆ = 0.1%

and the convergence tolerance ǫd = 10−3. Figure 8(a) plots

the dual suboptimality bound, which corresponds to the left

hand side of (22), against the number of dual iterations (i.e.,

the number of times Jλ
0 (x0) is computed). The algorithm

terminates when the dual suboptimality bound goes below

ǫd. Figure 8(b) plots the width of the search interval of the

root-finding method, that is λ − λ. It is shown in the plots

that both the suboptimality bound and the search interval

decrease exponentially and converge within 23 iterations in

this case.

In order to evaluate the computation time and the num-

ber of iterations, we run the algorithm 40 times with ran-

domly located science targets. We set ∆ = 0.1% and ǫd =

10−3. The average and the standard deviation of the compu-

tation time are 188.1 ± 76.1 seconds, while the statistics of

the number of iterations are 16.1± 5.8.

5.3 Lunar Landing Scenario

Optimal planning of Lunar landing is an interesting prob-

lem since the availability of low-energy transfer trajecto-

ries adds another dimension to the decision space. Low-

energy transfer trajectories exploit the four-body dynamics

between Earth, Moon, Sun, and the spacecraft [36]. As op-

posed to direct transfer trajectories, such as those used by

the Apollo program, low-energy transfer trajectories require

significantly smaller ∆V (i.e., less amount of propellant) but
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A 
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D 

E 

F 

G 

H 

I 

(a) Jλ
N (xN );∆ = 1%, λ = 725.2

D 

(b) J
′λ
0 (u0);∆ = 1%, λ = 725.2

E 

(c) J
′λ
N (u0);∆ = 0.1%, λ = 801.0

E 

(d) J
′λ
N (u0);∆ = 0.01%, λ = 910.5

Fig. 7 (a) The Lagrangian function Jλ
N = Lλ

N (xN ) at the final stage with the dual solution λ = 725.2. The blue flat areas are the infeasible

regions (i.e., obstacles), penalized with a cost λ. The Lagrangian values at the feasible locations represent the required distance to traverse after

landing. Squares are science targets, to which the rover must drive after landing. (b)-(d) Expected cost at the initial stage as a function of u0,

J
′λ
0 (u0) := E{Jλ

1 (f(x0, u0, w0))}, with ∆ = 1%, 0.1%, and 0.01%, respectively. The red ×-mark is the optimal EDL target u0, while the

red circle represents 3σ of the disturbance in the first stage wo. The dual solution λ is shown above each figure. The dimension of the map is 2000

x 2000 meters, which is discretized at a 1-meter resolution.

can involve significantly longer transfer times. Such trajec-

tories were employed by multiple missions, including JAXA’s

Hiten in 1990 and NASA’s GRAIL in 2011. Figure 9 shows

the trajectories taken by the two GRAIL spacecraft, which

took 112 and 113 days, respectively, to complete the trans-

fer.

An additional benefit of low-energy transfer trajectories

is that some of them allow a lander to arrive on the surface

with a large elevation angle, resulting in smaller landing el-

lipses, as illustrated in Figure 10. In general, by allowing

a longer transfer time, options with a greater elevation an-

gle become available. The orientation of the ellipse is deter-

mined by the azimuth angle.

The resulting optimal Lunar landing problem is formu-

lated as a CCDP with an additional decision variable with

respect to the Mars EDL problem, namely, trajectory selec-

tion. In order to solve the problem, we first generate a table

that contains a finite number of trajectory options. Each op-

tion specifies elevation and azimuth angles at arrival, trans-

fer time, and required ∆V . In addition to the chance con-

straint, we also impose a constraint on the transfer time by

removing the options for which the transfer times are greater

than an upper bound. We use the same terrain as Section 5.2.

The latitude and longitude of the landing site is assumed to

be 0◦ and 310◦, respectively. The risk bound is set to be

∆ = 10%. With this setup, we use CCDP to obtain the opti-
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(a) Dual objective q(λ), ∆ = 1% (b) Risk-to-go function rλ0 (x0)

Fig. 6 (a) The dual objective function q(λ) with ∆ = 0.01. Note that

the function is concave, as predicted by the theory. The dual solution

obtained by the proposed algorithm is λ = 725.16. (b) The risk-to-

go function, rλ0 (x0). Note the discontinuous feature of the plot. This

is because, although the dual objective q(λ) is continuous, it is not

differentiable at a countable number of points. The plot is generated by

solving the primal problem with different values of λ with a uniform

interval of 10.

(a) (λ− λ)(rλ0 −∆) (b) λ− λ

Fig. 8 Exponential convergence of Algorithm 1. (a) The dual error

bound, (λ − λ)(rλ0 (x0) − ∆), which gives an upper bound on the

error in the dual objective value (Theorem 2). The stopping condition

(22) requires that the dual error is below ǫd. (b) The width of the search

interval [λ λ], in which the dual optimal solution λ⋆ is guaranteed to

exist. Note that the plots are in a semi-log scale.

Fig. 9 Low-energy transfer trajectory used by GRAIL [27].

mal control policy with various settings of the upper bound

on the transfer time.

Figure 11 shows some sample results. With only 10 day

transfer time allowed, the best elevation angle is 40◦, result-

ing in the highly elliptical landing ellipse as shown in the

figure. The expected surface driving distance to visit the two

Dispersion in trajectory

Major axis of

landing ellipse

Elevation angle

Lander

Fig. 10 At a given level of trajectory dispersion of a lander, the major

axis of the landing ellipse becomes smaller by arriving at a greater

elevation angle.

(a) tT ≤ 10 days, θE = 40◦, E{d} = 676.5 m

(b) tT ≤ 100 days, θE = 73◦, E{d} = 648.5 m

Fig. 11 Lunar landing problem result.

pre-specified targets is 676.5 m. On the other hand, when

100 day transfer time is allowed, a trajectory option with 73◦

elevation angle becomes available. Even though the landing

target is not significantly different from the previous case,

the smaller landing ellipse results in a reduced expected sur-

face driving distance.
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Fig. 12 Suboptimality of the primal objective value, as well as the pri-

mal suboptimality bound, of 100 solutions for the simplified Mars EDL

scenario with randomly placed scientific targets. The vertical axis of

the plot represents the observed suboptimality, that is hλ − h⋆, while

the horizontal axis represents the primal suboptimality bound, ǫp. The-

orem 2 is empirically validated by the fact that all samples are below

the 45◦ line, shown with a the dotted line.

5.4 Suboptimality bound

Finally, we empirically validate Theorem 2. We consider a

variant of the Mars EDL scenario, where only one time step

(EDL targeting) is considered. With this simplified problem

setting, the exact optimal solution can be found by a brute-

force approach (i.e., finding the best µ0 among four mil-

lion options). We compare the approximate primal objective

value hλ, obtained from the proposed chance-constrained

dynamic programming algorithm, with the optimal primal

objective value h⋆, obtained from the brute-force approach.

The simulation is run 100 times with randomized location of

science targets and a risk bound ∆ = 0.1%. Figure 12 plots

the observed suboptimality, i.e., hλ −h⋆, against the subop-

timality bound given by Theorem 2, ǫp = −λ (rλ0 (x0)−∆).

In all the 100 runs, the error is less than the error bound.

Furthermore, in 24 runs, the suboptimality is exactly zero,

meaning that the solution of the proposed algorithm is the

exact optimal solution.

6 Conclusion

This paper presented a novel chance-constrained dynamic

programming algorithm, which outputs a control policy that

minimizes an expected cost while guaranteeing that the prob-

ability of constraint violation is within a user-specified risk

bound. Through a careful reformulation of the problem us-

ing Boole’s inequality and dual optimization, the original

problem is converted into a combination of standard dy-

namic programming and root-finding problems, which are

solved iteratively. Although the obtained solution is subopti-

mal, such suboptimality is practically quite moderate. Appli-

cations to path planning, Mars EDL, and Lunar landing are

shown in simulation, together with the numerical verifica-

tion of our theoretical results. Future work towards on-board

deployment includes validation of the algorithm with more

complex dynamics and probability distributions, as well as

development of a compact representation of the control pol-

icy (e.g., through table look-ups) for systems with limited

on-board resources.
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