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When uncontrollable resources fluctuate, Optimum Power Flo w

(OPF), routinely used by the electric power industry to re-d ispatch
hourly controllable generation (coal, gas and hydro plants ) over
control areas of transmission networks, can result in grid i nstabil-
ity, and, potentially, cascading outages. This risk arises because

OPF dispatch is computed without awareness of major uncer-

tainty, in particular fluctuations in renewable output. As a result,
grid operation under OPF with renewable variability can lea dto
frequent conditions where power line flow ratings are signifi cantly
exceeded. Such a condition, which is borne by simulations of real
grids, would likely resulting in automatic line tripping to protect
lines from thermal stress, a risky and undesirable outcome w hich

compromises stability. Smart grid goals include a commitme nt
to large penetration of highly fluctuating renewables, thus call-
ing to reconsider current practices, in particular the use o f stan-
dard OPF. Our Chance Constrained (CC) OPF corrects the prob-
lem and mitigates dangerous renewable fluctuations with min imal
changes in the current operational procedure. Assuming ava il-
ability of a reliable wind forecast parameterizing the dist ribution
function of the uncertain generation, our CC-OPF satisfies a Il the
constraints with high probability while simultaneously mi nimiz-
ing the cost of economic re-dispatch. CC-OPF allows efficien t
implementation, e.g. solving a typical instance over the 27 46-bus
Polish network in 20s on a standard laptop.

Significance statement. A critical component of modern pgwes
is the computation that determines constant generatoruiugvels
to use during the next short term (15-minute) time windolyjing
on static demand forecasts. In normal operation these fixegdud
levels are automatically adjusted in real-time in proportito de-
mand changes. The aggressive incorporation of wind geioeragn-
ders this setup problematic due to large random wind fluobwmest it
causes equipment overloads thus impacting grid stabiliky present
an effective and scientifically rigorous methodology fdtisg gen-
erator outputs in a risk aware manner; our experiments iatécthat
our methodology is both fast and effective.
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Abbreviations: OPF, Optimal Power Flow; CC-OPF, Chance Constrained Opti-
mum Power Flow; UC, Unit Commitment; AC, Alternating Current; DC, Directed
Current; PF, Power Flow; GB, Generator Bounds; TL, Thermal Limits; SOCP,
Second Order Conic Programming

mately predicted inter-day trends in demand, or even ure&gesin-
gle points of failure, such as the failure of a generator ipptng of
a single line. However, larger, unexpected disturbancespcave
quite difficult to overcome. This difficulty can be explainby the
fact that automatic controls found in the grid are largelyanfen-
gineering nature (i.e. the flywheel-directed generatgporse used
to handle short-term demand changes locally) and are jargelof
a data-driven, algorithmic and distributed nature. Indgtshould an
unusual condition arise, current grid operation relies@méan input.
Additionally, only some real-time data is actually used by grid to
respond to evolving conditions.

All engineering fields can be expected to change as computing
becomes ever more enmeshed into operations and massivatamou

of real-time data become available. In the case of the giil th
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Fig. 1. Bonneville Power Administration [1] shown in outline under 9% wind pen-
etration, where green dots mark actual wind farms. We set standard deviation to
be 0.3 of the mean for each wind source. Our CC-OPF (with 1% of overload set
as allowable) resolved the case successfully (no overloads), while the standard
OPF showed 8 overloaded lines, all marked in color. Lines shown orange are at

he power grid can be considered one of the greatest engineélr% chance of overload. There are two dark red lines which are at 50% of the

ing achievements of the 20th century, responsible for tlee ec

nomic well-being, social development, and resulting jditstabil-
ity of billions of people around the globe. The grid is ablel&diver
on these goals with only occasional disruptions throughiSaant
control sophistication and careful long-term planning.

Nevertheless, the grid is under growing stress and the peemi

of secure electrical power delivered anywhere and at ang tiray
become less certain. Even though utilities have massinested in
infrastructure, grid failures, in the form of large-scatever outages,
occur unpredictably and with increasing frequency. In gaihauto-
matic grid control and regulatory statutes achieve rolasstrof oper-
ation as conditions display normal fluctuations, in patdcapproxi-
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overload while other (dark orange) lines show values of overload around 10%.
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change amounts to a challenge; namely how to migrate to a moemswer the question of what to do about them. In other worés, w

algorithmic-driven grid in a cost-effective manner thaaliso seam-
less and gradual so as not to prove excessively disruptiesause it
would be impossible to rebuild the grid from scratch. Onenefthen-
efits of the migration, in particular, concerns the effexiimegration
of renewables into grids. This issue is critical becausgelacale in-
troduction of renewables as a generation source bringsittita risk

of large, random variability — a condition that the currertgvas not
developed to accommodate.

This issue becomes clear when we consider how the grid
generator output in “real time”. This is typically perforthat the
start of every fifteen-minute (to an hour) period, or time daw, us-
ing fixed estimates for conditions during the period. Moregisely,

generators are dispatched so as to balance load (demandjeand

erator output at minimum cost, while adhering to operatingta-
tions of the generators and transmission lines; estimdtésedypi-

cal loads for the upcoming time window are employed in thisico

putation. This computational scheme, called Optimum Pdviewr
(OPF) or economic dispatch, can fail, dramatically, whereveables
are part of the generation mix and (exogenous) fluctuation®-
newable output become large. By “failure” we mean, in pafég

instances where a combination of generator and renewalybeitsu

conspire to produce power flows that significantly exceedgvdine
ratings. When a line’s rating is exceeded, the likelihooalgr that
the line will become tripped (be taken uncontrollably ousefvice)
thus compromising integrity and stability of the grid. Ifveeal key
lines become tripped a grid would very likely become unstabid
possibly experience a cascading failure, with large lossesrviced

demand. This is not an idle assumption, since firm commitsent

major renewable penetration are in place throughout thédwéior

example, 20% renewable penetration by 2030 is a decree id.the

[2], and similar plans are to be implemented in Europe, sgedis-
cussions in [3, 4, 5]. At the same time, operational marddesyeen
typical power flows and line ratings) are decreasing and arpeto
decrease.

A possible failure scenario is illustrated in Fig. 1 usingeaam-
ple the U.S. Pacific Northwest regional grid data (2866 irg209
buses, 176 generators and 18 wind sources), where linekghigga

in red are jeopardized (flow becomes too high) with unactdypta

high probability by fluctuating wind resources positionéang the
Columbia river basin (green dots marking existing wind faymi\e
propose a solution that requires, as the only additionastment,
accurate wind forecasts; but no change in machinery orf&gnt
operational procedures. Instead, we propose an intetligey to
modify the optimization approach so as to mitigate risk;approach
isimplementable as an efficient algorithm that solves lsggde real-
istic examples in a matter of seconds, and thus is only $jighawer
than standard economic dispatch methods.

Maintaining line flows within their prescribed limits arsas a
paramount operational criterion toward grid stability.the context
of incorporating renewables into generation, a challemgerges be-

cause a nominally safe way of operating a grid may becomefeinsa,

— should an unpredictable (but persistent) change in rebleveaut-
put occur, the resulting power flows may cause a line to persiy
exceed its rating. It is natural to assess the risk of suchvantén
terms of probabilities, because of the non-deterministicavior of
e.g. wind; thus in our proposed operational solution we iy on
techniques involving both mathematical optimization aisl analy-
sis.

When considering a system under stochastic risk, an extyeme

large variety of events that could pose danger might emdrgeent
works [6, 7, 8] suggest that focusing on instantons, or riksly
(dangerous) events, provides a practicable route to risk@oand

assessment. However, there may be far too many comparaiily pr

able instantons, and furthermore, identifying such eveoiss not
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need a computationally efficient methodology that not odgntifies
dangerous, relatively probable events, but also mitigiEs.

This paper suggests a new approach for handling the two chal-
lenges, that is to say, searching for the most probablezegdns
of line overloads under renewable generation, and congauch
situations through control actions, simultaneously afidieftly in
one step. Our approach relies on methodologies recentliazed
in the optimization literature and known under the name dfde-

se@onstrained" (CC) optimization [9]. Broadly speaking, Qffimiza-
tion problems are optimization problems involving stodttaguan-
tities, where constraints state that the probability ofréate random
event is kept smaller than a target value.

To address these goals, we propose an enhancement of the stan
dard OPF to be used in the economic dispatch of the conttellab
generators. We model each bus that houses a power soureetsubj
to randomness to include a random power injection, and meftate
the standard OPF in order to account for this uncertaintye fbin-
mulation minimizes the average cost of generation overahdom
power injections, while specifying a mechanism by whiclitstard,
i.e. controllable) generators compensate in real-timedoewable
power fluctuations; at the same time guaranteeing low pibtyab
that any line will exceed its rating. This last constrainhéurally
formulated as a chance constraint — we term out approachc&han
Constrained OPF, or CC-OPF.

This paper is organized as follows. In “Models” we first déser
the various mathematical models used to describe how tideogri
erates, as well as our proposed methodology. We then prasent
“Experiments” a number of examples to demonstrate the spedd
usefulness of our approach. Finally, in “Methods” we previd-
depth technical details on our approach. Further details$ paoofs,
are provided in the “Supporting Information” (SI).

Models

Transmission Grids: Controls and Limits. The power systems we
consider in this paper ateansmission gridsvhich operate at high
voltages so as to convey power economically, with minimabés,
over large distances. This is to be contrasted wi#tribution sys-
tems typically residential, lower voltage grids used to pragbwer
to individual consumers. From the point of view of wind-pawgen-
eration, smooth operation of transmission systems is kegesieli-
able wind sources are frequently located far away from coipsion.
Transmission systems balance consumption/load and demera
using a complex strategy that spans three different timkesdaee
e.g. [10]). At any point in time, generators produce powea pte-
viously computed base level. Power is generated (and tigesin
in the Alternating Current (AC) form. An essential ingrettieoward
stability of the overall grid is that all generators operatte common
frequency. In real time, changes in loads are registerecrérg-
tors through (opposite) changes in frequency. A good exauiisfthat
where there is an overall load increase. In that case gemgnaill
marginally slow down — frequency will start to drop. Then g
called primary frequency control, normally implementedgas and
hydro plans with so-called “governor" capability will réesp as to
stop frequency drift (large coal and nuclear units are ntyrkapt on
a time constant output). This is achieved by having eaclhoretipg
generator convey more power to the system, proportionatlye fre-
guency change sensed. (In North America the proportignediéffi-
cient is normally set to 5% of the generator capacity for @ 8evia-
tion from the nominal frequency of 60Hz.) This reaction isfsand
local, leading to stabilization of frequency across thetesys how-
ever not necessarily at the nominal 60Hz value. The taskeo§ét-
ondary, or Automatic Gain Control (AGC), is to adjust the coam
frequency mismatch and thus to restore the overall balaeteegen
generation and consumption, typically in a matter of misut®nly
some of the generators in a local area may be involved in thjs s
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The final component in the strategy is the tertiary level aftom, and phase angle at nodeSee e.g. [12, 10]. The power flow equa-
executed via the OPF algorithm, typically run as frequeatiyevery tions are quadratic and thus can constitute an obstaclevabsiay
fifteen minutes (to one hour), and using estimates for loadsdthe  of OPF (from a technical standpoint, they give rise to nomesn
next time window, where base (controllable) generatoraistpre re-  ties). In transmission system analysis a linearized versfdhe AC
set. This is not an automatic step in the sense that a cormgoutat  equations is commonly used, the so-called “DC-approxionati In
performed to set these generator levels; the computatik@s timto  this approximation (a) all voltages are assumed fixed arsdaéed to
account not only load levels but also other parameters obitapce,  unity; (b) phase differences between neighboring nodeassemed

such as line transmission levels. Tertiary control comjimtawhich ~ small, V{3, j} € € : |6; — 0;] < 1, where€ stands for the set
is in the center of this paper, thus represents the shoitestscale  of the grid edges, or lines; (c) thermal losses are ignoreac{ance
where actual off-line and network wide (in contrast to auatimpri-  dominates resistance for all lines). Then, the power flow ¢ine

mary and secondary controls of frequency) optimal compartatare  {:, j}, with line susceptancg;; (= ;) is related linearly to the re-
employed. The three levels are not the only control actiesiuo  spective phase differencé;; = (3:;(0; — 0;), while the balance of
operate a transmission system. Advancing further in the 8oale, power can be stated in the following matrix form

OPF is followed by the so-called Unit Commitment (UC) congput

tion, which schedules the switching on and off of large gatien PF: B =p—d, where B=(Bjli,jeV), [2]
units on the scale of hours or even days. —Bij, {i,j} €&

A critical design consideration at each of the three corieol Vi,j:  Bij =< 2kqkjyee Pris it=7 [3]
els is that of maintaining “stability” of the grid. The mostportant , otherwise

ingredient toward stable operationsgnchrony- ultimately, all the .
generators of the network should stabilize thus lockingraf pertur- ~ Whered is the vector of the exogenous (uncontrollable) demands at
bation followed by a seconds-short transient, at the saegriéncy. €ach node (possibly equal to zero at some nodes). We alsol mode
Failure to do so not only proves inefficient but, worse, ietitens the ~@n uncontrollable demand as a negative load. The lineasipprbx-
integrity of the grid, ultimately forcing generators to siiown for ~ imation is often consldered arour]d a stationary solutiottheffull
protective reasons — thus, potentially, causing a largijeuchange AC-PF system (stationary operational point); thus elemeitthe
in power flow patterns (which may exceed equipment limite,lse- ~ Susceptance matri® account for reno_rma!lzatlon due to the base
low) and possibly also an unrecoverable generation shartagec- case solution. The GB and TL constraints in problerhare
ond stability goal is that of maintaining large voltages.isTis con- GB: Vieg: min - maz [4]
ducive to efficiency; lower voltage levels cause as a bypbdhore ’ ! S e
generation (to meet the loads) and larger current values. oNly TL: Wi, gy e & |ful < fi7*°, [5]
is this combination inefficient, but in an extreme case it maake
impossible to meet existing loads (so-called “voltageaqmk” is a
manifestation of this problem). The third stability goabrh an op-
erational perspective, is that of maintaining (line) pofl@ws within
established bounds. In long transmission lines, a large Vialwe
will cause excessive voltage drop (an undesirable outconéisa
cussed). On a comparatively shorter line, an excessivedg lpower
flow across the line will increase the line temperature topbmt
that the line sags, and potentially arcs or trips due to aipalyson-
tact. For each line there is a given parameterl|itieerating (or limit)
which upper bounds flow level during satisfactory operation

Of the three “stability" criteria described above, the fitwb
(maintaining synchrony and voltage) are a concern only iruby t
nonlinear regime which under normal circumstances occrelya
Thus, we focus on the third — observing line limits.

wherep™™ p™** are lower and upper generation boundg’**
represents the line limit (typically a thermal limit), whits assumed
to be strictly enforced in constraint (TL). This conservattondition
will be relaxed in the following. Finally, the objectivgp) to min-
imize in problem[1] is a sum of convex quadratic functions of the
components op (fixed price curve per generator). In summary, prob-
lem[1] is a convex optimization problem solved for a fixed vector
of demandsd. In practice, however, demand will fluctuate around
d; generators then respond by adjusting their output prapatly

to the overall fluctuation as discussed above in relatiomegguency
control. When some of the generation is due to renewablesgatd
OPF would model their output as constant (in the time windéw o
interest), and would manage their fluctuation by having riatole
generators adjust their output in the same way used to hdediend
variations.

) Using modern optimization toolgl] is an easily solved prob-
OPF — Standard Generation Dispatch (tertiary control). ~ OPFis a  |em. This scheme works well in current practice, as demandsotl
key underlying algorithm of power engineering, see theewvin  gypstantially fluctuate on the time scale for which OPF asplThus
[11] and e.g. [12, 10]. The task of OPF, usually executediné-  the standard practice of solvifid] in the feasibility domain defined
at periodic |nt_er\_/als, is to re-dispatch generation ove«_)rarol area py Eq. [2],[3],[4],[5], using demand forecasts based on historical
of the transmission grid, for example over the BonnevilleBoAd-  ata (and ignoring fluctuations) has produced a very raliagsult -

ministration (BPA) grid shown in Fig. 1. In outline the stand OPF  generation re-dispatch covering a span of fifteen minutes toour,
can be stated as the following constrained optimizatioblgro: depending on the system.

OPF: m?}n c(p), st (1] Chance constrained OPF: motivation.  The separation of generation

control into the hierarchy of primary, secondary and OPRiarked

PF: ?ower Flow Equ'at|or?s ) in the past because of the slow time scales of change in wodenat
TL:  Line flow (capacity) Limits resources (mainly loads). That is to say, frequency coiinal load
GB: Generation Bounds changes were well-separated. Clearly, an error in the &stear an

under-estimation of possibtéfor the next —e.g., fifteen minute— pe-
Here,p = (p:;|li € ) is the vector of controllable/re-dispatchable riod may lead to an operational problem in standard OPF; geéte
generation available at the sub$ebf nodes of the full set of grid discussions in [13, 14]. This was not considered a signifiband-
nodes,V; § C V. The above problem is endowed by three types oficap until recently, however, simply because line trips tuever-
constraints: Power flow (PF), Line Limit (TL) and Generat®ound  loading as a result of OPF-directed generator dispatch (aeestill
(GB) constraints. (PF) consists of AC Power Flow equatiohB-(  are) rare. The projected increase of renewable penetratithe fu-
PF) which are simply Kirchoff’s circuit laws stated in termfgpower  ture, accompanied by the decreasing gap between normadtmper
flows and potentials (voltages). Here, for each nodeV its voltage  and limits set by line capacities, will make these overloaghés more
U; is defined asi;e’%, wherev; and6; are the voltage magnitude frequent and generally increase risk (see [3]). One wousld slispect
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that the rare overload event in the grid of today is due targgtip
the TL limits too conservatively. In general, lowering the imits
succeeds in preventing overloads, but it also forces exebgson-
servative choices of the generation re-dispatch, potgntausing
extreme volatility of the electricity markets. (See e.ge tiscussion
in [15] on abnormal price fluctuations in ERCOT and New Zedlan
markets, which are both heavily reliant on renewables.)@&-, in-
troduced next, is less conservative (it is probabilistia) also offers
an exact and efficient algorithm for balancing the cost ofraen
with the risk of overload. We will introduce uncertain poveaurces
into the OPF. This will change the optimization problem frdeter-
ministic to probabilistic; we will seek to minimize averagest, with
the previously hard (deterministic) constraints beconaimgnce con-
straintsas explained next.

Redefining the line flow constraints.  Power lines do not fall (i.e.,
trip) instantly when their flow limits are exceeded. A linerging
flow that exceeds the line’s thermal limit will gradually heg and
possibly sag, increasing the probability of an arc (shartuif) or
even a contact with neighboring lines, with ground, withetagion
or some other object. Each of these events will result inpa ffhe
precise process is extremely difficult to calibrate (thisitgaequire,
among other factors, an accurate representation of wiedgtin and
direction in the proximity of the liné) Additionally, the rate at
which a line overheats depends on its overload which mayrdyna
ically change (or even temporarily disappear) as flows adjus to
external factors; in our case fluctuations in renewablewstp/NVhat
canbe stated with certainty is that the longer a line staysrheated
the higher the probability that it will trip — to put it diffently, if
a line remains overheated long enough, then, after a spasibpos
measured in minutes, it will trip. In summary, (thermalpping of
a line is primarily governed by the historical pattern of twerloads
experienced by the line, and thus it may be influenced by tieist
of other lines (implicitly, via changes in power flows); fuetr, exoge-
nous factors can augment the impact of overloads.

Even though an exact representation of line tripping seefns d
ficult, we can however state a practicable alternative. ligeae
would use a constraint of the form “for each line, the fractid the
time that it exceeds its limit within a certain time windowsisall”.
Direct implementation of this constraint would requirealegg dy-
namics of the grid over the generator dispatch time windovinef
terest. To avoid this complication, we propose instead elewing
static proxy of this ideal model, éhance constraintwe will require
that the probability that a given line will exceed its limstsmall. Let
fi; be the flow on line{i, 5}, where the bold face indicates that it is
a random quantity. Denote the “small probability” abovecpy and
the flow limit on line{z, 5} by f/7“*. Then the chance constraint for
each line{s, j}, is:

CCTL: V P(|f”| > f{?am) < €ij. [6]

Chance constraints [17], [18], [19] are but one possiblehorbt
ology for handling uncertain data in optimization. Broadpeaking,
this methodology fits within the general field of stochasptimiza-

derlying uncertain process. However, we would argue thatleance
constrained approach is reasonable (in fact: compellimgjaw of
the nature of the line tripping process we discussed above.

Uncertain power sources. We assume that there is a collection of
wind sources (farms), with one wind source located at eade o

a given subsew of V. For each € W, the amount of power gener-
ated by source is assumed to be of the form + w;, wherey; is
constant, assumed known from the forecast, apds a zero mean
independent random variable with standard deviation

The physical assumptions behind this model of uncertairgy a
as follows. Independence of fluctuations at different sgedue to
the fact that the wind farms are sufficiently far away fromteather.
For the typical OPF time span of 15 min and typical wind spefed o
10m/s, fluctuations of wind at the farms more tha@km apart are
not correlated. We also rely on the assumption that tramgftions
from wind to power at different wind farms is not correlated.

To formulate and calibrate our models, we make simplifyiag a
sumptions that are approximately consistent with our genéysics
understanding of fluctuations in atmospheric turbulentearticular
we assume Gaussianityaf; 2. We will also assume that only a stan-
dard weather forecast (coarse-grained on minutes and &itns) is
available, and no systematic spillage of wind in its transation to
power is applietl

We also have a strong additional —and purely computatiamea—
son for the Gaussian assumption. As we will show below, uttdsr
assumption chance constra[r] can be captured using a tractable
deterministic optimization problem; our substitute faarelard OPF
(see below for details). As we will indicate below, in theea$ non-
Gaussian distributions our approach is easily modified 0 eetain
tractability, but at the cost of relying on a conservativpragimation
of the chance constraint.

Other fitting distributions considered in the wind-modgliiter-
ature, e.g. Weibull distributions and logistic distrilmrts [21, 22],
will be discussed later in the text as wéll In particular, we will
demonstrate on out-of-sample tests that the computalyoadian-
tageous Gaussian modeling of uncertainty allows as well adeh
effects of other distributions. Our approach relies on &tsi” wind
forecast; typically this would involve obtaining a reasblyaaccurate
estimate on mean wind strength and a conservative variatiteae
tion at each farm. This robust forecast will be used to compmutr
control as indicated in the next section. The overall edgiveuld be
validated with actual data or out-of-sample simulatio®eg Discus-
sion and Methods for details.)

Affine Control. Since the power injections at each bus are fluctuat-
ing, we need a control to ensure that generation is equalrtade

at all times within the time interval between two conse@I®@PFs.
We term the joint result of the primary control and secondamytrol

the affinecontrol. The term will intrinsically assume that all gover-
nors involved in the controls respond to fluctuations in teaeayal-
ized load (actual demand which is assumed frozen minus astich

tion. Constrainf 6] can be viewed as a “value-at-risk” statement; thewind resources) in a proportional way, however with pogsdiffer-

closely-related “conditional value at risk” concept prae$ a (con-
vex) alternative, which roughly stated constrains the etqukover-
load of a line to remain smaltonditionalon there being an overload
(see [9] for definitions and detalils).

Yet another alternative would be to rely asbust optimization
In this setting we would view the output of a renewable soyres
(for example) an unknown quantity constrained to lie in aerval
[1;,u;], and formulate an optimization problem that requires (for e
ample that the flow of each line stay within its limit no matednat
the value of each renewable outguis, so long as it remains in its
corresponding intervgl;, u;]. Other variations are possible, but al-
ways with the same deterministic flavor. See e.g. [20]. Tkisegal
approach is attractive because it makes few assumptioniseonnt

4 | www.pnas.org ——

1We refer the reader to [16] for discussions of line tripping during the 2003 Northeast U.S.-
Canada cascading failure.

2Correlations of velocity within the correlation time of 15 min, roughly equivalent to the time
span between the two consecutive OPF, are approximately Gaussian. The assumption is not
perfect, in particular because it ignores significant up and down ramps possibly extending tails
of the distribution in the regime of really large deviations.

3see [3], for some empirical validation.

“Note that the fitting approach of [21, 22] does not differentiate between typical and atypical
events and assumes that the main body and the tail should be modeled using a simple dis-
tribution with only one or two fitting parameters. Generally this assumption is not justified as
the physical origin of the typical and anomalous contributions of the wind, contributing to the
main body and the tail of the distribution respectively, are rather different. Gaussian fit (of the
tail) — or more accurately, faster than exponential decay of probability in the tail for relatively
short-time (under one hour) forecast — would be reasonably consistent with phenomenological
modeling of turbulence generating these fluctuations.
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ent proportionality coefficients:

pi:ﬁi—aizwj.

JEW

type of exogenous distribution), would require a numbeeohhical
assumptions and elaborations to guarantee convergendeasilil-
ity and would be prohibitively expensive, e.g. as discusad@3].
Our technical approach is given next.

Vnodei € G : [7]

047;207

Here the quantities; > 0 anda; > 0 are design variables satisfying

(among other constram@):zec a; = 1. Notice that we do not set CC-OPF: From Stochastic Formulation to Conic Programming.
anya; to a standard (fixed) value, but instead leave the optingati Our methodology applies and develops general ideas of [#fhdo
to decide the optimal value. (In some cases it may even benadvapower engineering setting of the generation re-dispatcleunncer-
tageous to allow negative; but we decided not to consider such a tainty. We show that under the assumptions of the basic pthorer

drastic change of current policy in this study.) The germraut-
put p; combines a fixed term; and a term which varies with wind,
—Qi ) ey wj- Observe thad~, pi = >°, pi — 3, wj, that is, the
total power generated equals the average production ofthergtors
minus any additional wind power above the average case.

This affine control scheme creates the possibility of rengia
generator to produce power beyond its limits. With unbodnaind,
this possibility is inevitable, though we can restrict itdocur with
arbitrarily small probability, which we will do with addahal chance
constraints for all controllable generatoyg, € G,

P(pg™ <pg — g Z w;
JEW

maa:

CCgen: < py >1—¢q.

(8]

CC-OPF: Formal Expression. We can now formally state the main
optimization problem we introduce in this manuscript. Cefis
given by the following modification of the standard OPF peobl
[1]:

CC-OPF: minE, [¢(P)] st [9]
P,
PFAV: Power Flow Egs. (2) under average wind
CCTL: Chance constrained line limits, Eq. (6)
CCgen: Chance constrained generator bounds, Eq. (8)

whereE., [¢(p,
wind powerw. If the cost functiornc is convex quadratic (standard
practice), then so is this expectation. The expected costie and
the chance constrained conditionG&-OPF both account for fluctu-
ations in wind and also for the standard generation adjgistirthese
fluctuations via the aforementioned proportional control.

linearity, proportionality of the standard generationp@asse to fluc-
tuations, along with Gaussianity and statistical indepecé of the
wind fluctuations at different sites, the CC-OP# is reduced ex-
actly to a deterministic optimization problem, see HdO] of the
Methods. Moreover this deterministic optimization opeanda is a
convex optimization problem, more precisely, a Seconde©bne
Program (SOCP) [27, 28], allowing an efficient computatiana
plementation discussed in detail in the “Cutting Plane"s&alion of
the Appendix.

Let us emphasize that many of our assumptions leading to the
computational efficient formulation are not restrictivelailow nat-
ural generalizations. In particular, using techniquesnfi®], it is
possible to relax the phenomenologically reasonable bptoap
mately validated assumption of wind source Gaussianitiidaged
according to actual measurements of wind, see [21, 22] afied-re
ences therein). For example, using only the mean and variahc
output at each wind farm, one can use Chebyshev’s inequalif-
tain a similar though more conservative formulation. Anliioieing
[9] we can also obtain convex approximation$ & which are tighter
than Chebyshev’s inequality, for a large number of emplidstribu-
tions discussed in the literature. In any case, we will penftbelow)
out-of-sample experiments involving our controls; firsireestigate
the effect of parameter estimation errors in the Gaussiaga, and,
second, to gauge the impact of non-Gaussian wind distabsiti

a)] is the expected cost of generation over the varying

Experiments/Results

Here we will describe qualitative aspects of our affine aantn
small systems; in particular we focus on the contrast betvaten-
dard OPF and CC-OPF, on problematic features that can agise b

[23] considers the standard OPF problem under stochastic deause of fluctuating wind sources and on out-of-samplentgsti the

mands, and describes a method that compiisted generator output
levels to be used throughout the period of interest, indégeinof
demand levels. In order to handle variations in demand, ifg3¢ad
relies on the concept of slack bus A slack bus is a fixed node that
is assumed to compensate for all generation/demand misesate
when demand exceeds generation the slack bus injects théaiho
and when demand is smaller than generation the slack budslibe
generation excess. A vector of generations is acceptathle groba-
bility that each system component operates within accéptaiunds
is high — this is a chance constraint. To tackle this probl28j pro-
poses a simulation-based local optimization system ctngisf an
outer loop used to assess the validity of a control (and estirits
gradient) together with an inner loop that seeks to imprbeecon-
trol. Experiments are presented using a 5-bus and a 30-lauspde.

CC-OPF solution, including the analysis of non-Gaussiatrithu-
tions. Some of our tests involve the BPA grid, which is large;
Supplementary Information we also present a second sestsfiteat
address the scalability of our solution methodology todargses.

Failure of standard OPF. Above (see eq[1]) we introduced the so-
called standard OPF method for setting traditional genermattput
levels. When renewables are present, the natural exteostbis ap-
proach would make use of some fixed estimate of output (eganm
output) and to handle fluctuations in renewable output tiinotine
same method used to handle changes in load: ramping outjnat- of
ditional generators up or down in proportion to the net iaseeor de-
crease in renewable output. This feature could seamlesdipihdied
using today’s control structure, with each generator'potadjusted

Chance constrained optimization has also been discussed @ a fixed (preset) rate. For the sake of simplicity, in theegixpents

cently in the Unit Commitment setting — discrete-time plagn
for operation of large generation units on the scale of hetoxs
months accounting for the long-term wind-farm generatioceu-
tainty [24, 25, 26].

At first glance CC-OPF constitutes a significantly more difitic
problem than the original OPF. Not only does this formulation-
tain additional (affine control) variables not present ia ttandard
OPF, but even more significantly the chance constraints laadb-
jective render it into a stochastic optimization probleeguiring the
evaluation of expectation and the probability of overloadrdhe ex-
ogenous statistics of the wind. A direct computational apph to

below we assume that all ramping rates are equal.

Different assumptions on these fixed rates will likely proeldif-
ferent numerical results; however, this general approatails an
inherent weakness. The key point here is that mean generator
put levelsas well asin particular the ramping rates would be chosen
withoutconsidering the stochastic nature of the renewable outpt |
els. Our experiments are designed to highlight the linotatiof this
“risk-unaware” approach. In contrast, our CC-OPF prodwcesgrol
parameters (thg and thex) that are risk-aware and, implicitly, also
topology-aware — in the sense of network proximity to winahfa.

We first consider the IEEE 118-bus model with a quadratic cost

solving problem 9], as in [23], though universal (applicable to any function, and four sources of wind power added at arbitraryels

Footline Author
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Fig. 2. 118-bus case with four wind farms (green dots; brown are generators,
black are loads). Shown is the standard OPF solution against the average wind
case with penetration of 5%. Standard deviations of the wind are set to 30% of
the respective average cases. Lines in red exceed their limit 8% or more of the
time.

Fig. 3. Failure of the standard O'PF shown for a snapshot of the standard OPF
solution on Polish grid from MATPOWER [29]; full snapshot is shown in Section
I of SI. Color coding and conditions of the experiment are equivalent to these of
Fig. 2.

ing their limits over 45% of the time, and in one line over 10fthe
time. For an additional and similar experiment using thadhajrid
see the Supplementary Information.

Cost of reliability under high wind penetration. The New York
Times article “Wind Energy Bumps Into Power Grid’s Limits3Q]
discusses how transmission line congestion has forcedamp
shutdown of wind farms even during times of high wind. Our
methodology suggests, as an alternative solution to ¢meat of
wind power, an appropriate reconfiguration of standard g¢oes.
If successful, this solution can use the available wind gomithout
curtailment, and thus result in cheaper operating costs.

As a (crude) proxy for curtailment, we perform the followiexr
periment, which considers different levels of renewablegbetion.
Here, the mean power outputs of the wind sources are keptxea fi
proportion to one another and proportionally scaled so asitpto-
tal amount of penetration, and likewise with the standardations.

Fig. 4. 39-bus case under standard solution. Even with a 10% buffer on the line
flow limits, five lines exceed their limit over 5% of the time with 30% penetration
(left). The penetration must be decreased to 5% before the lines are relieved, but
at great cost (right). The CC-OPF model is feasible for 30% penetration at a cost
of 264,000. The standard solution at 5% penetration costs 1,275,020 — almost 5
times as much.

to meet 5% of demand in the case of average wind. The standard

OPF solution is safely within the thermal capacity limits &l lines

in the system. Then we account for fluctuations in wind assgmi

Gaussian and site-independent fluctuations with standanictibns
set to 30% of the respective means. The results, which arersimo
Fig. 2, illustrate that under standard OPF five lines (maikeekd)
frequently become overloaded, exceeding their limits 8%more of
the time. This situation translates into an unacceptalg hisk of
failure for any of the five red lines. This problem occurs faoidg
of all sizes; in Fig. 3 we show similar results on a 2746-buksRo
grid. In this case, after scaling up all loads by 10% to sifteéamore
highly stressed system, we added wind power to ten busesdoala
of 2% penetration. The standard solution results in sixsliexeceed-
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Fig. 5. 39-bus case. Red lines indicate high probability of flow exceeding the limit
under the standard OPF solution. Generators are shades of blue, with darker
shades indicating greater absolute difference between the chance-constrained
solution and the standard solution.
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First, we run our CC-OPF under a high penetration level. B&cae  Fig. 5. In this example, the major differences in generatdpuots
add a 10% buffer to the line limits and reduce wind penetrafi@., between the standard OPF solution and our CC-OPF models sol
curtail) so that under thetandard OPF solution line overloads are tion are not obviously associated with the different linelaiions. In
reduced to an acceptable level. Assuming zero cost for wimeep  general, it seems that it would be difficult to by-pass CC-QR&
the difference in cost for the high-penetration CC-OPFtimuand  make small local adjustments to relieve the stressed lis.the
the low-penetration standard solution are the savingsymediby our  positive side, even though CC-OPF is not local and requiresna
model (generously, given the buffers). tralized computation, it is also only slightly more diffituhan the
For the 39-bus case, our CC-OPF solution is feasible undér 30 standard OPF in terms of implementation.
of wind penetration, but the standard solution has 5 linék @jices-
sive overloads, even when solved with the 10% buffer. Redyitie
penetration to 5% relieves the lines, but more than quads(p!the
cost over the CC-OPF solution. See Figure 4. Note that tiusoagh
does not onIy_ show the adva_ntage of the CC-OPF over stand?id Oget both software (improving operations) and hardwarddng new
but also provides a quantitative measure of the advantagellac-  |ihes, sub-stations, etc), with the former obviously repreing a
ing a well-defined price tag on reliability. much less expensive and thus economically attractive mpt@ur
CC-OPF solution contributes toward this option. A natunastion

Non-locality. We have established that under fluctuating power gent-hat arises concerns the maximum level of penetration anezfely

eration, some lines may exceed their flow limits an unactépta achi%ave by upgtLading frtqm the stanq(?rdtﬁngt%ou;\ICC—I(E)PIIZ. d
fraction of the time. Is there a simple solution to this pesh| for 0 answer the question we consider the 59-bus New England sys

: P S tem (from [31]) case with four wind generators added, ane fiow
instance, by carefully adjusting (a posteriori of the seaddOPF) =~ . : :
the outputs of the generators near the violated lines? Teweamis limits scaled by .7 to simulate a heavily loaded system. Teicatic

PR ) . cost terms are set to rand(0,1) + .5. We fix the four wind ge¢oera
no. Power systems exhibit significant non-local behaviangider average outputs in a ratio of 5/6/7/8 and standard devimBb/B0%

of the mean. We first solve our model using- .02 for each line and
assuming zero wind power, and then increase total wind owtptil

the optimization problem becomes infeasible. See Figuiidh& ex-
periment illustrates that at least for the model considetesi30% of
wind penetration with rather strict probabilistic guaeed enforced
by our CC-OPF may be feasible, but in fact lies rather closéngo
dangerous threshold. To push penetration beyond the thiceistim-
possible without upgrading lines and investing in othet (atated to
wind farms themselves) hardware.

Fig. 6. 39-bus case with four wind farms (green dots; brown are generators, Changing locations for wind farms.  In this example we consider
black are loads). Lines in red are at the maximum of e = .02 chance of exceed- the effect of Changing locations of wind farms. We take theTMA

ing their limit. The three cases shown are left to right .1%, 8%, and 30% average POWER 30-bus case with line capacities scaled by 75 andhae t
wind penetration. With penetration beyond 30% the problem becomes infeasible. ’

Distribution Max. prob. violation
Normal 0.0227
° Laplace 0.0297
logistic 0.0132
Weibull, k = 1.2 0.0457
Weibull, k = 2 0.0355
_— v _— v Weibull, k = 4 0.0216
t location-scale, v = 2.5 0.0165
0.0276

Fig. 7. 30-bus case with three wind farms. The case on the left supports only Cauchy

up to 10% penetration before becoming infeasible, while the one on the right is Fig. 9. Maximum probability of overload for out-of-sample tests. These are a

feasible for up to 55% penetration. result of Monte Carlo testing with 10,000 samples on the BPA case, solved under
the Gaussian assumption and desired maximum chance of overload at 2.27%.

.5 . . :
—mean error
-4 |—standard deviation error| 7
9.7
16.21 5 Z0.25 0 0.25 05
Forecast error

Fig. 10. BPA case solved with average penetration at 8% and standard devia-
tions set to 30% of mean. The maximum probability of line overload desired is

2.27%, which is achieved with 0 forecast error on the graph. Actual wind power

Increasing penetration. Current planning for the power system in
the United States calls for 30% of wind energy penetratio2®30
[2]. Investments necessary to achieve this ambitious tanggy tar-

o
n

o
i

o o
N W

Max prob. line overload
o
[

I
<o

Fig. 8. 9-bus case, 25% average penetration from two wind sources. With shift- means are then scaled according to the x-axis and maximum probability of line
ing winds, the flow on the orange line changes direction with a large absolute overload is recalculated (blue). The same is then done for standard deviations
difference. (green).
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wind farms with average power output in a ratio of 2/3/4 arahst
dard deviations at 30% of the average. Two choices of locative
shown in figure 7. The first remains feasible for penetratiprtai
10% while the second can withstand up to 55% penetratiors @i
periment shows that choosing location of the wind farms iigcet
for achieving the ambitious goal of high renewable penietnat

Reversal of line flows.
wind sources and 25% average penetration and standardidesia
set to 30% of the average case and analyze the following tweso
what rare but still admissible wind configurations: (1) wiswlrce
(a) produces its average amount of power and source (b) staee

Discussions

This manuscript suggests a new approach to incorporaticgrun
tainty in the standard OPF setting routinely used in the pomds-
try to set generation during a time window, or period (typica5
min to one hour duration). When uncertainty associated reitfew-
able generation is quantified in terms of the probabilitytribstion
of output during the next period, we incorporate it throudiarmce
constraints - probabilistic conditions which require thay line of
the system will not be overloaded for all but a small fractidrime

Here we consider the 9-bus case with two (at most one minute per hour, for example). Additionallg thodel-

ing accounts for local frequency response of controllaleleegators
to renewable changes. The key technical result of this nuaiptiss
that the resulting optimization problem, CC-OPF, can btedtas a
convex, deterministic optimization problem. This resu$toarelies

dard deviationbelowaverage; (2) the reverse of the case (1). Thison plausible assumptions regarding the exogenous unutyriand

results in a substantial reversal of flow on a particular hewn in
Figure 8. This example suggests that when evaluating amuhipig
for grids with high-penetration of renewables one needstaveare
of potentially fast and significant structural rearrangeta®f power
flows. Flow reversals and other qualitative changes of pdiwers,
which are extremely rare in the grid of today, will becomentfig
cantly much more frequent (typical) in the grid of tomorrow.

Out-of-sample tests. We now study the performance of our method
when there are errors in the underlying distribution of wpwiver.
We consider two types of errors: (1) the true distributiomas-
Gaussian but our Gaussian fit is “close” in an appropriateesemnd
(2) the true distribution is Gaussian but with different mea stan-
dard deviation. The experiments in this section use as datths
BPA grid, which as noted before has 2209 buses and 2866 &nels,
collected wind data; altogether constituting a realig&ticase.

We first consider the non-Gaussian case, using the followg

ing probability distributions, all with fatter tails than a@ssian:
(1) Laplace, (2) logistic, (3) Weibull (three different ges), (4) t
location-scale with 2.5 degrees of freedom, (5) Cauchy. ther
Laplace and logistic distributions, we simply match the mead
standard deviation. For the Weibull distribution, we cdesishape

parameterd: = 1.2,2,4 and choose the scale parameter to match

the standard deviations. We then translate to match meanshé-t
distribution, we fix 2.5 degrees of freedom and then choosédoita-
tion and scale to match mean and standard deviation. Foraheh®
distribution, we set the location parameter to the mean &odse
the scale parameter so as to match the 95th percentiles.

We use our model and solve under the Gaussian assumption,

seeking a solution which results in no line violations foseswithin
two standard deviations of the mean, i.e. a maximum of ab@i%9a
chance of exceeding the limit. We then perform Monte Carste
drawing from the above distributions to determine the dotates
of violation. See Figure 9. The worst-performer is the hyghl
asymmetric (and perhaps unreasonable) Weibull with shapee-
ter 1.2, which approximately doubles the desired maximuamcé of
overload. Somewhat surprisingly, the fat-tailed logisticl Student’s
t distributions result in a maximum chance of overload gigantly
less than desired, suggesting that our model is too cortsenia
these cases.

Next we consider the Gaussian case with errors. We solve with

nominal values for the mean and standard deviation of wirvdepo
We then consider the rate of violation after scaling all nseand
standard deviations (separately) . While the solution isisige to
errors in the mean forecast, the sensitivity is well-bedaw/ith a
desired safety level of = 2.27% for each line, an error in the mean

linearity of the underlying power flow approximations/etjoas. In
fact, our CC-OPF is a convex (conic) optimization problenmjcki
we solve very efficiently, even on realistic large-scalédnses, us-
ing a sequential linear cutting plane algorithm.

This efficient CC-OPF algorithm becomes an instrument of our
(numerical) experiments which were performed on a numbetaof-
dard (and nonstandard) power grid data sets. Our experamest
sults are summarized as follows:

* \We observe that CC-OPF delivers feasible results wherelatdn
OPF, run for the average forecast, would fail in the sense tha
many lines would be overloaded an unacceptably large podtio
time.

Not only is CC-OPF safer than standard OPF, but it also result
in cheaperoperation. This is demonstrated by considering the
optimal cost of CC-OPF under sufficiently high wind penétrat
solution (where standard OPF would fail) and the low petietna
solution (corresponding to the highest possible penetratihere
standard OPF would not fail).

We discover that solutions produced by CC-OPF deviate fsigni
cantly from what amounts to a the naive adjustment of the- stan
dard OPF obtained by correcting dispatch just at those gearsr
which are close to overloaded lines.

We test the level of wind penetration which can be toleratid-w
out upgrading lines. This experiment illustrates thateatt for
the model tested, the 30% of wind penetration with rathéctstr
probabilistic guarantees enforced by our CC-OPF may be-feas
ble; but much lower wind penetration remains feasible urider
standard approach.

We experiment with location of wind farms and discover sgyon
sensitivity of the maximum level of penetration on the cleoic
of location - optimal choice of wind farm location is critidar
achieving the ambitious goal of high renewable penetration
Analyzing fluctuations of line flows within CC-OPF solutiod-a
missible under high wind penetration, we discover thatelfles-
tuations may be significant, in particular resulting in e of
power flows over some of the lines. This observation suggests
that flow reversals and other qualitative changes of powersflo
which are extremely rare in the grid of today, will becomengfig
icantly much more frequent (typical) in the grid of tomorrow

We also studied an out-of-sample test consisted in appi@iGg
OPF (modeling exogenous fluctuations as Gaussian) to oiger d
tributions. Overall these tests suggest that with a propkibra-
tion of the effective Gaussian distribution our CC-OPF\iEs a
rather good performance. One finds that the worst CC-OPF per-
formance is observed for the most asymmetric distributions

The nature of the problem discussed in the manuscript — prin-
cipal design of a new paradigm for computationally efficigen-

of 25% results in a maximum 15% chance of exceeding the limiteration re-dispatch that accounts for wind fluctuations evitably

The solution is quite robust to errors in the standard dridore-
cast, with a 25% error resulting in less than 6% chance ofioaér
See Figure 10.
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required incorporation of a number of assumptions and pes

tions. In particular, we made simplifying assumptions dtsiatic
forecasts and general validity of power flow linearizatidfle have

Footline Author



also focused solely on failures associated with line caigegnor-
ing other possible difficulties, for example those assedatith loss
of synchronicity and voltage variations. However, we wolilke to
emphasize that all of these assumptions made (admittetliyahdor
a first attack on the problem) also allow generalization inithe ap-
proach just sketched:

® Accounting for time evolving forecast/loads/etc. Winddoast,

expressed in terms of the mean and standard deviation airide w
farm sites, changes on the scales comparable to duratidmeof t

generation re-dispatch interval. Loads may also changeeaet
time scales. When the slowly evolving, but still not constan
wind and load forecasts are available we may keep the qtet#i-s
power flow description and incorporate this slow evolutiotime

into the chance constrained scheme. These changes willysimp

result in generalizing the conic formulation of Eq. [10] kplis
ting what used to be a single time interval into sub-intenaid
allowing the regular generation to be re-dispatched andllpar
coefficients to be adjusted more often. Ramping rate cdnitra
on the controllable generation may naturally be accountetie
temporal optimization scheme as well.

Accounting for nonlinearity in power flows. Evolution of thase
case invalidates the linearization (DC-style) hypothediswvever,

problem (see Section | of Sl for derivations and proofs)

- 24 a2 2 2P+ ¢
min Z ci | pi + o ZU] + ciopi + ci3 | [10]
€9 JEW
st. Y =1, a>0, p>0 [11]
i€G
Bo=p+p—d, D (pi+m—d)=0 [12]
1€V
n—1
forl1 <i<n—1:% Bi;d;=a, 6, =0, [13]
Jj=1
V{i,jt €&
s5; > B > on(Bh — B — 6 +06;)%  [14]
keWw

|Bi(0: — 0,)] < fi7°° — ¢~ (1 — €;/2) 55 [15]

The objective here is simplil., [c(p, «)] written explicitly; the vec-
tors p anda model our control methodology as described abadve;
is theaveragephase angle vector; the first equatior 2] amounts
to the standard DC model equation relating phase angle tepow
jections. The second constraint in [12] is a flow balanceestant:

if variations around one base case becomes significant oge mehe sum of all power injections is zero. The nature of our nt

simply adjust the linearization procedure doing it not ofe=in

will guarantee that power is balanced fomy configuration of wind

the case considered in the manuscript) but as often as needebwer.
Slow adjustment of the base case may also be included into the Constraintd 14] and[15] constitute a (deterministic) represen-

dynamical procedure mentioned one item above. Additignall
some interesting new methodologies for handling nonlitiear
have recently emerged, see [32].

Accounting for synchronization bounds. Loss of synchribyic
and resulting disintegration of the grid is probably the hazsite
contingency which can possibly take place in a power sysiéra.
prediction of those conditions under which the power gridl wi
lose synchronicity is a difficult nonlinear and dynamic peob.
However, as shown recently in [33], one can formulate anrateu
linear and static necessary condition for the loss of syordhity.

A chance-constrained version of the linear synchronipatandi-
tions can be incorporated seamlessly in our CC-OPF framewor

Finally, we see many opportunities in utilizing the CC-ORBgSI-
bly modified) as an elementary unit or an integral part of ewneme
complex problems, such as combined unit commitment (sdimgdu
large power plants normally days, weeks or even months affi2ald
with CC-OPF, planning grid expansion [34] while accountioigcost
operation under uncertainty, or incorporating CC-OPF itigating
emergency of possible cascades of outages [35, 36, 37, 38039
41, 42]. In this context, it would be advantageous to speedurp
already very efficient CC-OPF even further. See, for exanjgla,
[44]. A different methodology, relying on distributed atiibms, can
be found in [45].

Methods

CC-OPF as Deterministic (Conic) Programming.  Eq. (9) states the
problem of generation dispatch under uncertainty due tadveis
a stochastic optimization problem with chance (probatigliscon-
straints. The critical part of our approach consists in fliog a con-
vex expressions for the expectation of the objective anthi@prob-
abilities in Eq. (9), as a function of generation dispatctirozation
variables. This gives rise to the following deterministptimization

Footline Author

tation of the chance constraipg]. Here,(;; is the susceptance on
line (i,7); ok is the standard deviation of wind sourke ¢ is the
standard normal cumulative distribution functioB;" is an appro-
priate, sparse generalized inverse of the bus susceptaatci;nthe

¢ are auxiliary variables. It can be shown (see Sl) that, utider
independence assumption for the wind fluctuatians but without
requiring Gaussianity, the right-hand side of constrgii#] is the
variance of the flow on linéi, 7). Thus, at optimalityf 14] and[ 15]
will amount to

18i5 (0: — 0,)| < fi7°° — ¢~ (1 — €i/2)0ri;

whereo;; is the standard deviation of the flofiy; on line (i, 7).

Further, it can be shown that the bus anglesind line flowsf;;
both are affine combinations of the;. Thus, assuming that the;
are Gaussian, then so will be tAgand f;;. Since the left-hand side
of equation[ 16] is the absolute value of the expected flow on line
(4, 7), it follows under the Gaussianity assumption th&6] is as
claimed a valid representation of the chance constf&tit states
that the expectation of flow on ling, j) is the right multiple of a
standard deviation away from the maximuyfff“*, as per the risk
tolerance;;.

In deriving[ 15] we are thus explicitly making use of the Gaus-
sianity assumption. However, using the results in [9] one staow
that in the case of arbitrary distributions of the; (but assuming
finite variances) one can obtain a convex (corohservativeap-
proximation to the chance constraint by simply replacirgggbantity
¢~ 1(1—e;;/2) in[15] with an appropriate coefficiefit (effectively,
this approach relies on estimates from the theory of larg@atens).
Thus, even in the non-Gaussian case, our general approactinge
essentially the same.

[16]

Cutting-Plane Algorithm. The number of conic constrainfd4] is
equal to the number of lines, and in the case of a large gredcim
prove challenging. For example, in the Polish 2003-2004evipeak
case, Cplex [46] reports over 6000 conic constraints afesplving.
All of the commercial solvers [46, 47, 48] we experimentethwe-
ported numerical difficulties and were unable to solve a Séc€arder
Conic Programming (SOCP) of this size.
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In order to solve these large cases, we employedtténg-plane

The vector@ has one degree of freedom, and so webset= 0 and

algorithm Refer to the Section 2 of Sl for a detailed description.thusE£(6,) = 0. Soforalll <: <n,

The algorithm repeatedly solves linear programs that telall the
linear constraints in our formulation together with a firgt of first-
order approximations to the conic constraints. Having eblene
such problem the algorithm checks for a violated conic cairst
and if found, it approximates that conic constraint witHfiitst-order
approximation at the point of violation. We repeat this @& until
the largest violation of a conic constraint is sufficientiyadl, in our

case less tham0~%. This method is able to solve cases with thou-
sands of buses usually in just CPU seconds on a laptop comput

The following table shows typical behavior:

Iteration ~ Maxrel. error  Objective
1 1.2e-1 7.0933e6

4 1.3e-3 7.0934e6

7 1.9e-3 7.0934e6

10 1.0e-4 7.0964e6

12 8.9e-7 7.0965e6

Each row of this table shows that maximum relative error drjd@
tive value at the end of several iterations. The total rumetivas 25
seconds. Note the “flatness” of the objective. This makepitbielem
nontrivial — the challenge is to findfaasiblesolution (with respect
to the chance constraints); at the onset of the algorithmadhgputed
solution is quite infeasible and it is this attribute thatjigckly im-
proved by the cutting-plane algorithm.

Power Grid Models. The BPA grid data was extracted from [49]
(available to the authors). Corresponding wind data wasaetad
from [1]. All other power grid cases, in particular Polishi€Gr118
bus, 39 bus and 30 bus systems are publicly available froin T3t
wind-related modifications for each example are explaingtie text
above.

CC-OPF as Conic Programming

Notation. The following notation and conventions will be used

throughout. (i)n = number of busesn = number of lines. (ii) Let
B be the(n — 1) x (n — 1)-matrix obtained by removing fron®
row and columm. (Assuming the grid is connecteB,is invertible.)
(iii) In what follows we use bold font to indicate uncertaluantl-
ties. (iv) We will write § = 3=, 1, ws, 0° = >,y 07. (V) For
convenience of notation, here we assume thatybdees not hold a
generator and does not hold a wind farm, in other wondg,§ UW.
This assumption is easily attained by adding a “dummy” buish(w
zero generation, demand and wind output) and attachingdhgetgrid
with a dummy line. (vi) For a bug, let d; be itsdemand When
© ¢ D we writed; = 0. Write p; = a; = 0 for each bus that is not
under the affine control discipline. For eactith i ¢ W let u; =0

and letw; be the random variable with mean and variance equal t@ach generatoy, E (P,

0. Then,b; = b; + p; — ;S + w;, whereb; = u; — d;, is the
net power injected into the network at biusNote also that we must
always have

T R S RORE SRR 3
i€G €W i
B SRS ST 3 )
i€§ iew i
Analysis. Letb = (b1,...,bn-1)", @ = (a1,...,an-1)", 9 =
(]51, A ,ﬁn_l)T, andw = (,u1 + Wi, ... Un-1 +wn_1)T. ThUS,

given a choice of the control variablgs and a;, we have that the
(random) phase angle veci®r= (61, ...,0,_1)" satisfies:

B0 = b+ p— Sa+ w. [18]
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_ el _(BTe+p), i<,
9,’:92‘—62‘34-271'“11]_7', 0; = [19]
j=1 0, otherwise.
(B, i<n, 5 _.[[B7'ali, i<n,
g 7{ 0, otherwise. ’ 0i= 0, otherwise. [20]

onsider a line(s,j). Since the flowf;; on line (i, j) equals
;;(0; — 0;) we have that

n—1
fij :éi—éj—(57;—5j)S+Z(7Tik—7Tjk)wk7 [21]
k=1
and thereforeF(fi;) = Bi;(0; — ;) and, since thev; are pairwise
independent,
var(fij) 85> oi(min — mi — 6+ 6;)°. [22]

kew

Likewise, denoting byP, the power produced by generat@rwe
have E(P,) = pg, var(Py) = o Zjew . As a result of the
above we have:

Lemma 0.1. For a given choice of vectofsand«, each quantityd;
or fi; is an affine function of the random variables;.

Proof. Follows from egs. (19) and (20

Formulation. Let the vectorss anda (both inR™ 1) be fixed, and
consider the following system of inequalities, on variallg ¢; (all
for 1 < i < n—1)andf;;,si; (for each line(z, 7)) [we also
have the additional quantitiés andé,, as variables fixed at zero, for
convenience of notation]:

forl <i<n-—1, niéijajzai; 6, =0, [23]
=
V(i,5) B Z or(mip — i — 0 +0;) < 53y, [24]
kew
fori<i<n—1, > Byb; —p;i=b;, 0,=0, [25]
=1
V(i,5): fij — Bij(0i—0;)=0. [26]

Theorem 0.2. Consider the affine control given by a pair of vectors
p and « satisfying (17). Ther(d, 0, f, s) is feasible for (23)-(26) if
and only if: (a) for each bus, 6; = E(6;); (b) for each line(z, j),
fi; = E(fi,5); (c) for each line(i, 5), sf,]- > wvar(fi,;); (d) for
) = Pg andvar(Py) = ozg dew 0]2
Proof. Supposds, 0, f, s) is feasible for Eqs (23)-(26). By Eq. (25)
we have thatat <i <n—1,0; = [B~'(b+ p)l: = E(6:), and
by Egs. (26), (25)f;; = E(fw) for each line(z, j). Similarly,
Eqg. (20),(24),(22) implysf_j > wvar(fs,;) as desired. (d) Holds by
construction. The converse is similll
Note: it is easily seen that under the conventions for thuson-
straints (11-14) of the main text are equivalent to Eqgs.-(28),(17).
We let0 < €;; < 1 (and,0 < ¢4 < 1) denote the probabilistic
tolerance for ling(i, j) (resp., for generatay), and denote by the
(m + |G|)-vector of tolerances.
Definition 0.3. Given a vectore of tolerances, a contro(p, «) is
(1 — e)-strong, if Prob(| fi,;] > fi;7**) < e, for each line(i, 5).
and Prob(py min. < P, < pg**) > 1 — ¢4, for each generatoy.
For the next result, suppose we have a fixed corfffoky), and con-
sider Eq. (19). By expandin§ as}_, ws, we see that for any line

Footline Author



(4,7), fi,; equals a constant plus a linear combination ofidhe It

tive value of the solution computed in Step 1 is a valid lowenrx

follows that if thew;, are normally distributed, then so is each flow on the value of problem. Each problem solved in Step 1 is atlpe

value f;, ;.

Additional notation: For real0 < r < 1 we write n(r)
671 (1 7).

Lemma0.4. Let(p, «) satisfy Eq. (17). Suppos@, ) is (1 — ¢)-
strong. Then there exists a vect@y 0, f, s) feasible for Egs. (23)-
(26) such that, in addition, for all lineg&, 7),

figl < f5°°

and for all generatorgy,

Py nleg)ag [ Y 02 <py<py T —mleg)ay [ 0. [28]
jew jew

Conversely, if there exists a vect(f, 0, f, s) satisfying Egs. (23)-
(26) and Eqgs. (27)-(28) thefp, «) is (1 — 2¢)-strong.

Proof. If Prob(|fi,;] > fi7**) < ethen using Theorem 0.2 we have
that Egs. (27) hold. For the converse, we have that Eq. (2@)iéms
Prob(fi,; > fi7%%) < eandProb(fi,; < —fi7*%) < e. Likewise
with Egs. (28) .l

Comment: Eqgs. (27), together with Eq. (26), are equivalerihé
constraint Eq. (15) of the main text.

—n(eiz) sij, [27]

Cutting-Plane Algorithm

constrained, convex quadratic program. Computationa¢rxgnts
involving large-scale realistic cases show that the aflgoriis robust
and rapidly converges to an optimum.

Note that Step 3 is not redundant. The stopping conditioriep S
2 may fail because the variance estimates are incorrects(tanl),
nevertheless the paip”, ™) may already satisfy the chance con-
straints. Checking that it does, for a given lifiej), is straightfor-
ward since the flowf;; is normally distributed (Lemma 0.1) and its
mean and variance can be directly computed f(gin o).

Table 1 displays typical performance of the cutting-platyma
rithm on (comparatively more difficult) large problem instas. In
the Table, 'Polish2’ is the case described in the main t@ads$ in-
creased 10% as in the text). Polishl and Polish3 are twosther
cluded in MATPOWER [29]. All Polish cases have uniform ran-
dom costs on [0.5, 2.0] for each generator and ten arbitralio-
sen wind sources. The average wind power penetration fdiotire
cases is 8.8%, 3.0%, 1.9%, and 1.5%. ’lterations’ is the raurmob
linearly-constrained subproblems solved before the #lgaorcon-
verges. ’'Barrier iterations’ is the total number of iteoai$ of the
barrier algorithm in CPLEX over all subproblems, and 'Tingthe
total (wallclock) time required by the algorithm. For eacse, line
tolerances are set to two standard deviations and genéooances
three standard deviations. These instances all provevaiselif di-
rectly tackled by CPLEX or Gurobi.

In the case of a grid with thousands of buses and lines, thie opt

mization problem given by Egs. (17),(23)-(26),(27)-(28), equiva-

lently, Egs. (10-15) of the main text), amounts to a largaescor

vex conic programming problem. Experience with rea"sxiamm&ase Buses Generators Lines Time(s) Iterations Barrier iterations
with thousands of lines shows that commercial optimizgpiackag&eA 2209 176 2866 5.51 2 256
are unable to solve the resulting problems “out of the boxeteHmeolish1 2383 327 2896 13.64 13 535
outline a simple algorithm that proves effective and fastpaallgeblish2 2746 388 3514 30.16 25 1431
“cutting-plane” algorithm [27], [50]. From a theoreticahadpoiblish3 3120 349 3693 25.45 23 508
the algorithm is motivated and justified by the “efficient aegtion
is equivalent to efficient optimization” paradigm that urigs the
ellipsoid method [50].

Without constraints (24),(28), the optimization problema Example

linearly constrained convex quadratic programming pnobletill
somewhat large (in the case of large grids) but within thechrea
of commercial solvers. Our algorithm iteratively repladbgse
constraints with a number of linear approximations whicé ak
gorithmically discovered. For a given ling, ) write C;;(0)

Bij \/Zkew o2 (mi, — ik — 0; + 8;)?; then constraint (24) can be
written asC};(d) < s;;. Given a vector™, this constraint can be
. - " 8C;;(8* .
relaxed by the (outer) approximatian; (6*) + %(& —67) +
9GO0 (5, — 67) < sij, which is valid for alls. A similar lin-
J
earization applies to Egs. (28). This technique gives nsi¢ fol-

lowing iterative algorithm. The algorithm maintaindimear system
of inequalitiesA(p, o, 6,0, f,s)™ > b, henceforth referred to as the

As an additional experiment we studied the Polish natioridl @b-
tained from MATPOWER as explained above) under simulated 20
% renewable penetration spread over 18 wind farms, coddaaith
the 18 largest generat ors. This co-location should ledserrisk
associated with renewable fluctuation (which should beadbrtab-
sorbed” by the co-located generat ors). Figure 11 studesebult-
ing risk exposure under standard OPF. The chart shows thberuh
lines that attain several levels of overload probabilitheBituation
in the chart is unacceptable: it would lead to frequent trigmf at
least four lines.

In contrast, Figure 12 shows the performance attained by the
chance-constrained OPF in t he same setting as that of Figure
Notice the drastic reduction in overload probabilities e fystem is

master systepwhich is initialized to the set of all our constraints but Stable. Moreover, this is attained with a minor increaseost ¢less

with the conics removed; i.e. Egs. (17),(23),(25)-(2&))(2Denot-

ing by F(p, «) the objective function in Eq. (10) of the main, the

algorithm iterates through the following steps:

1. Solve min{F(p, a) A(p,, 6,0, f,s)T > b}
(p*,a”,0%,0", f*,s*) be an optimal solution.

2. If all conic constraints are satisfied up to numerical talesby
(5", 0", 8,0, f*, "), Stop.

3. Ifall chance constraints are satisfied up to numerical éolege by
(p",a”), Stop.

4. Otherwise, add the outer inequality arising from that caist
(24) which is most violated to the master system.

Let

As the algorithm iterates the master system representscaredx-
ation of the constraints Eqgs. (10-15) of the main text; tiesdbjec-

Footline Author

than one percent) while the computational time is on therasfi20
seconds.
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Fig. 11. Figure shows number of lines that are overloaded with given probabil-
ity values in simulation of 2746 bus Polish power grid using standard OPF with
20% wind penetration distributed over 18 wind farms. In particular, two lines are
overloade d half of the time, and one line is overloaded one-third of the time,
constituting a situation with unacceptable systemic risk.
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Fig. 12. Same as Figure 11, but under chance-constrained OPF. Notice that the
larg est overload probability is 200 times smaller than in the case of standard

OPF. Morevoer, the cost in crease is by less than one percent Fig. 13. Standard OPF solution on Polish grid; full rendering
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