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Chance-constrained optimization of demand
response to price signals

Gianluca Dorini, Pierre Pinson, Senior Member, IEEE, Henrik Madsen

Abstract—Household-based demand response is expected to
play an increasing role in supporting the large scale integration
of renewable energy generation in existing power systems and
electricity markets. While the direct control of the consumption
level of households is envisaged as a possibility, a credible
alternative is that of indirect control based on price signals to
be sent to these end-consumers. A methodology is described here
allowing to estimate in advance the potential response of flexible
end-consumers to price variations, subsequently embedded in
an optimal price-signal generator. In contrast to some real-time
pricing proposals in the literature, here prices are estimated
and broadcast once a day for the following one, for households
to optimally schedule their consumption. The price-response is
modeled using stochastic Finite Impulse Response (FIR) models.
Parameters are estimated within a Recursive Least Squares
(RLS) framework using data measurable at the grid level,
in an adaptive fashion. Optimal price signals are generated
by embedding the FIR models within a chance-constrained
optimization framework. The objective is to keep the price signal
as unchanged as possible from the reference market price, whilst
keeping consumption below a pre-defined acceptable interval.

Index Terms—demand forecasting, demand response, price
signals, chance constrained optimization.

I. INTRODUCTION

INTEGRATION of renewable though fluctuating energy

generation, such as from wind and solar installations, is

becoming an essential part of the development of future

power systems and electricity markets. Relying on such en-

ergy sources with high variability and limited predictability

propagates risk and uncertainty to the whole electricity value

chain, challenging existing market structures and balancing

strategies. The parallel phenomenon of household-type of end

consumers becoming prosumers, both producing locally and

envisaging a more proactive usage of electricity, challenges our

traditional top-down approach to power system management.

It will similarly affect the way electricity markets are designed

and operated [1]. Such challenges in turn create opportunities,

in the sense that demand-side management is foreseen to

play a crucial role in providing the flexibility needed for

load balancing and congestion control in systems with a high

penetration of renewable energy generation. A representative

set of recent work in that direction can be found in [2]–[7].

Various entities in power systems and electricity markets

may be interested in optimally utilizing the flexibility of

household-type of electricity consumers. In contrast to the di-

rect control of households’ consumption, where two-way com-

munication is required so that the system operator may directly
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define reference signals based on consumption feedback [8],

the indirect control alternative using one-way communication

only and based on price signals to be sent to households, is

gaining increased interest. Concepts related to control in power

systems based on prices have been discussed and studied

for more than thirty years, as in [9]–[12] among others.

It has been observed that flexibility is partly controllable

by price variations as consumers become significantly price-

elastic when exposed to varying prices [13], [14]. This requires

that the price is efficiently displayed to final consumers [15].

Note that various views and definition of indirect control exist,

as underlined in [16], while some potential limitations of

dynamic price signals are also highlighted [17]. Two example

applications of indirect control by price signals may be that

of (i) a retailer aiming at revenue maximization by optimally

trading its flexibility [18], and (ii) a demand-side aggregator

wanting its pool of consumers targeting a reference in order

to provide services to the grid [19]. Indirect control based

on price signals has the advantage of neither requiring a bi-

directional communication interface, nor knowledge of the

end-user’s environment.

The work in the present paper places itself in a framework

different for other proposals in the literature, for a number

of reasons. First of all, it is considered that price signals

are optimized and broadcast once a day for the following

one, for household-type consumers to optimally plan their

consumption. They are therefore not generated in a model

predictive control framework, as in [19] for instance. In

parallel, the main objective when determining price signals

is neither to minimize imbalances by explicitly shifting con-

sumption in time, nor it is to attempt at having consumption

following a certain reference signal. It is instead to ensure

that consumption will stay as much as possible below a pre-

defined acceptable level, for instance imposed by technical

constraints at the grid level, or simply owing to market costs

considerations for the aggregator/retailer providing electricity

to these households. The importance of respecting grid-related

operational constraints in demand-side management was re-

cently exemplified for the case of electric vehicles in low-

voltage networks [20].

With these objectives in mind, our proposal is to use a

data-driven statistical approach to estimate and forecast the

dynamics of the consumers’ elasticity. This task is performed

using data measurable at grid level, removing the need to

install sensors and communication devices between each indi-

vidual consumer and the price-generating entity. This proposal

contrasts with recent studies, where price response is assumed

to be deterministic, also not being based on real data, e.g. [21],

[22]. Here price signals are subsequently generated by em-
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bedding the forecasts (and their uncertainty) within a Chance

Constrained (CC) optimization framework. The advantage of

the proposed CC optimization approach is to explicitly account

for uncertainty in the price response of consumers, as well as

for a pre-defined maximum for allowed consumption levels,

within the problem definition.

The paper is structured as following. In the first stage,

Section II describes the mathematical background for the

price-response model. This is followed in Section III by

the presentation of the price signal generator in a chance-

constrained optimization framework. The application of that

methodology to a real-world test is described in Section IV,

based on a dataset composed by more than 500 households

in Denmark subject to different price and control schemes.

It is there shown how our proposal allows smoothing and

moving consumption peaks. Concluding remarks end the paper

in Section V.

II. PRICE-RESPONSE MODEL

The mathematical background of the price-response model

follows that in [19], which extensively described a number

of models for the dynamics of demand response to price

signals. First, electricity consumption ought to be broken down

into two additive components, that is, its non-responsive and

responsive parts,

ct = f(c̃t−1, z̃t) + g(p̃t, z̃t), (1)

with

c̃t−1 = [ct−1, . . . , ct−nc
]⊤

p̃t = [pt+S , . . . , pt−L+S ]
⊤

z̃t = [zt, . . . , zt−nz
]⊤,

where nc and nz denote the finite number of lags for past

values of consumption c and external variables z influencing

consumption at time t. The price responsive component of

the end-user consumption p̃t depends on a time window of

L price values, some before and some after the target time

t. The number of future prices influencing the consumption

is specified by the term S ≥ 0. Following intuition, only

the responsive part of the consumption is expected to be

controllable with price signals.

Even though consumption is split conceptually, it is still

the overall consumption that is to be modeled and predicted,

with focus on the impact of price variations. In this paper the

generic consumption model (1) is specified in the form of a

Finite Impulse Response (FIR), see e.g. [23]. In such a form,

price and external variables (outdoor temperature for instance)

are decoupled, and the price response consequently isolated.

A FIR model for ct can be expressed as a general linear model

ct = c̃⊤t θc + p̃⊤t θp + z̃⊤t θz + ǫt = x⊤
t θ + ǫt, (2)

where ǫt is a Gaussian noise with zero mean and finite

variance, whereas θ and xt are defined as

xt = [c̃⊤t−1, p̃
⊤
t , z̃

⊤
t ]

⊤

θ = [θ⊤
c ,θ

⊤
p ,θ

⊤
z ]

⊤.

The vector of coefficients θp corresponding to the price input

variable defines the impulse response function from price to

consumption, characterizing the price-response in g.

At time t, the optimal k-step consumption prediction mini-

mizing squared errors is the conditional expectation [23]. For

the FIR model (2), this forecasting is given by

ĉt+k|t = E
{

ct+k|x̂t+k|t

}

= x̂⊤
t+k|tθ. (3)

The input vector x̂t+k|t of explanatory variables is noted as

a forecast since it may indeed include predictions of certain

variables, e.g., price and temperature at time t+ k.

In order to estimate the coefficients in the FIR model (2),

recursive and adaptive estimation is used based on Recursive

Least Squares (RLS). For an introduction to RLS estimation

in FIR models, the reader is referred to Ref. [23]. It consists in

updating the model coefficients at every time t when new data

becomes available, with the following two-step procedure,

Rt = αRt−1 + xtx
⊤
t

θ̂t = θ̂t−1 +R−1
t xt

(

yt − x⊤
t θ̂t−1

)

.
(4)

In order to avoid computational issues related to matrix inver-

sion, Rt should be initialized with sufficiently small values

and not inverted before, say, 100 matrix updates. Similarly,

the various explanatory variables whose successive values

compose x should be normalized. The vector θ̂t of model

coefficients can be initialized with a vector of zeros.

Here it is assumed that the dependency between consump-

tion, price, and the other external variables, can be described

using the general linear model (2). If for some other test cases

this assumption was not deemed acceptable, nonlinearities

could be included in different ways. For instance by using

basis functions in a linear approximation, e.g., with polyno-

mial and spline bases, or Fourier and exponential series. A

discussion of methods permitting to handle the nonlinear case,

including recursive and adaptive estimation, can be found in

Ref. [19].

III. GENERATION OF OPTIMAL PRICE SIGNALS

The price-response model discussed in Section II allows

predicting and simulating electricity consumption under mul-

tiple pricing scenarios, along with its uncertainty. It can for

instance be used by a Balance Responsible Party (BRP) as

a tool to evaluate and compare the effects of different price

variations. Formally, a BRP has the responsibility to insure

the match between supply and consumption of electric energy

in its balance area, while being financially penalized for any

deviation that may arise. Effectively here, the price-response

model can be embedded in a price signal optimization strategy,

whose purpose is to optimize prices in view of the BRP’s

objectives, as well as of the potential flexibility of consumers.

At every time t a sequence of K future price scenarios

pt+k, k = 1, . . . ,K, can be generated, and the corresponding

consumption response ct+k|t, k = 1, . . . ,K, simulated with

Eq. (2). The consumption values based on the reference

market prices p̄t+k, k = 1, . . . ,K, are denoted by c̄t+k|t, k =
1, . . . ,K. Now suppose that this reference consumption sce-

nario happens to exceed a pre-defined sequence of maximum
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consumption levels cmax
t+k, k = 1, . . . ,K, where cmax

t+k may for

instance originates from grid constraints at the distribution

level (as for the EV charging problem of [20]) or decided

upon owing to expected prohibitive balancing costs. The BRP

would then like to incentivize modifications in consumption

so as to stay as much as possible below that maximum

level, by introducing deviations in prices from its market

values. This is done here by setting up anoptimization problem

imposing a level of confidence 1−ρ on the maximum allowed

consumption level,

P
[

ct+k|t > cmax
t+k

]

< ρ, k = 1, . . . ,K (5)

where ct+k|t, k = 1, . . . ,K is the modified consumption,

induced by changes in prices. Note that there is still a

probability ρ of exceeding the constraint cmax
t+k.

Let Ft be the information set available at time t, i.e.,

containing the measurements and potentially forecasts of ex-

planatory variables needed as input to the FIR model (2).

The optimization objective to be minimized is defined as

the deviation between the potential temporal evolution of

consumption (which we refer to as trajectory or scenario)

over the K lead times if influenced by price signals, and the

consumption trajectory that would realize if no price signal

was used,

min
pt+1,...,pt+K

E

[

K
∑

k=1

(

ct+k|t − c̄t+k|t

)2
|Ft

]

. (6)

By plugging the linear form of (2) into (6), we obtain a

quadratic objective function to be minimized,

min
pt+1,...,pt+K

K
∑

k=1

(

p̃⊤t+kθp − ˜̄p⊤t+kθp

)2
, (7)

also being a direct function of the price signals

pt+1, . . . , pt+K , which are the decision variables of the

optimization problem.

Prices are also assumed to be non-negative, hence a further

constraint is imposed

pt+k ≥ 0, k = 1, . . . ,K. (8)

The optimal solution is the price signal p∗t+k, k = 1, . . . ,K
and corresponding consumption c∗t+k, k = 1, . . . ,K, attaining

the minimum of (7) whilst fulfilling the constraint in (5).

As a result of the above optimization problem, prices are

issued so that operational constraints are fulfilled with a

minimum impact over the reference household consumption,

namely the consumption that would have occurred if disre-

garding operational constraints. Note that the potential prices

variations are here neither bounded nor directly penalized,

though they could be, for instance in line with the recent

proposal in Ref. [18] where the allowed range for price vari-

ations is seen as defined through retailer-consumer contracts

or through regulation. Such aspects could be accounted for

in the above optimization problem by adding a penalization

of prices and their variations in the objective function, or by

introducing additional constraints reflecting an agreed price

range. It is also important to notice how the proposed CC

approach does not attempt to impose a specific time pattern to

the end-users consumption, as would be the case with model

predictive controllers e.g. [19]. In a way this approach is more

flexible, as it allows for any consumption pattern, provided

that the probability to exceed constraint (5) is lower than the

desired probability ρ.

This type of CC optimization formulation has been exten-

sively studied in Operations Research. Applications of CC

optimization (or CC programming), are rather broad: reservoir

operation [24], ground-flow management [25], portfolio man-

agement [26], chemical engineering [27], and power system

studies [28]–[30], among others. For extensive reviews on

the theory and applications of CC optimization problems, the

reader is referred to [31], [32]. Here we limit the discus-

sion to showing how, under the assumption of linearity and

Gaussianity, the CC is equivalent to a deterministic convex

programming problem, and to how it can thus be solved

efficiently.

Since the price-response model (2) is a linear one, assuming

that the random variables ǫt are Gaussian and independent,

the objective function (7) has a quadratic form, and the

constraints (5) can be expressed based on quantiles with

nominal proportion 1 − ρ for the predictive distribution of

consumption,

c̃⊤t+kθc + p̃⊤t+kθp + z̃⊤t+kθz +

√

Var {ǫt+k} q
N(0,1)
1−ρ < ρ (9)

where q
N(0,1)
1−ρ is the quantile with nominal proportion 1 − ρ

of a standard Gaussian variable N(0, 1). The quantile in (9)

enters a linear inequality directly influenced by the decision

variables. The resulting CC problem formulation has quadratic

objective function and linear inequality constraints. It can be

written in a compact manner as

min
pt+1,...,pt+K

K
∑

k=1

(

p̃⊤t+kθp − ˜̄p⊤t+kθp

)2

s.t. c̃⊤t+kθc + p̃⊤t+kθp + z̃⊤t+kθz

+

√

Var {ǫt+k} q
N(0,1)
1−ρ < ρ, k = 1, . . . ,K

pt+k ≥ 0, k = 1, . . . ,K

where the pt+k’s are the K decision variables, and where ρ is

an input parameter defining the probability that the operational

constraint is not respected.

The reader can easily verify the convexity of the quadratic

form of (6), hence yielding a convex optimization problem.

The optimal solution can be obtained by a straightforward

application of Interior Point (IP) methods, already extensively

employed for a number of practical applications [33], and

available as part of off-the-shelf optimization solvers.

In general an IP method is an iterative procedure, where

each step requires the calculation of the first and second order

derivatives of the objective functions and constraint functions.

For many practical applications interior-point methods can

solve the problem in a number of steps or iterations that is

almost always in the range between 10 and 100. Ignoring any

structural peculiarity of the problem (such as sparsity), each

step requires on the order of max
{

n3, n2m,F
}

operations,

where n is the number of decision variables, m is the number
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of constraints, and F is the cost of evaluating the derivatives.

Description of IP methods and descent methods, as well as

further analysis of their complexity, can be found in [34].

IV. APPLICATION TO PRICE-RESPONSIVE HEATING

SYSTEMS

A case study is presented in the following, showing how,

using the above methodological proposal, household heat-

ing can be used to bring flexibility into the power system.

Household heating systems can be seen as flexible devices,

hence endowed with inertia due to the time constants involved

in their heat dynamics. Other flexible devices that could be

considered include cooling systems, hot tap water heating,

space heating, air conditioning systems, etc. Flexible devices

have the property such that they can be turned off (or more

generally, pushed away from their reference functioning point)

during a short period of time with no or very little consequence

on the comfort of household occupants. Such feature can be

exploited to provide services to the power system in a market

environment.

The experimental data was collected in the frame of the

DEVI experiment, within the FlexPower project [14], as first

described below. Subsequently, the way the FIR models were

fitted is presented, followed by a visualization of the consump-

tion response to prices identified from the experimental data.

Finally, the chance-constrained optimization used for price

generation is illustrated.

A. The DEVI experiment

The experiment was conducted in South Jutland (Denmark)

to identify and measure the response from more than 500

households subject to different kinds of schemes for regulating

their electricity consumption.

All households in this experiment have a high consumption

of electricity for heating (more than 15000 kWh/year). In the

winter period, in fact, the electricity consumption is about 3.5

times more than in the summer period. Different regulation

methods have been used:

- Electronic housekeeper (20 households) - An installed

electronic system that shows the price signals, to which

the users can manually respond to by turning the heating

up and down;

- Email (114 households) - The users receive a daily mail

containing the prices for the next day, inducing a potential

manual response;

- SMS (35 households) - The users receive a daily SMS

containing the prices for the next day, inducing a potential

manual response;

- DEVI (16 households) - An installed system that collects

the prices and automatically regulates the heating so that

more electricity is used when prices are low and less

is used when prices are high. The individual households

have a certain degree of control over the equipment and

can e.g. decide how high and low the inside temperature

is allowed to be;

- Control group (355 households) - No specific installed

system, while not receiving any price information.

All households in the experiment eventually received elec-

tricity priced as ’spot price with financing’, which in practice

is the market price plus an overhead of 1-2 øre (hundreds of

Danish Crown). Data was collected over a period between

April 2007 and March 2009. The data points are hourly

measurements of electricity consumption, but not for the

individual households, rather as mean values for every group.

Fig. 1. Deviation in consumption between the control group and the price-
responsive groups.

The price-responsive behavior can be qualitatively observed

by confronting the consumption of the differently regulated

groups against that of the control group. Fig. 1 shows that

consumption patterns are similar during the summer period.

During the winter instead, when a significant overhead is

brought in by heating costs, the consumption of the various

regulated groups tends to be lower than for the control group.

B. Estimation of the price response

The generic model structure presented in Section II is

here adapted to case of the DEVI dataset. In line with the

experimental setup, consumption time series are considered at

an aggregated level, not for individual households.

The control group serves as a reference to monitor the

behavior of consumers not being responsive to price variations.

The hypothesis is made that for all other groups, if they were

not price-responsive, they would follow the same consumption

pattern as for the control group. The approach therefore con-

sists in modeling the control group consumption, and then the

deviation of each price-responsive groups from this reference

pattern. Furthermore, price responsiveness is assumed only for

heating, as winter electricity consumption weights more than

70% of total annual consumption.

The data available, as envisaged in an indirect control

framework, does not make distinction between heating and not

heating (seen a base consumption) usage of electricity. This

is somehow handled by the models based on the previously

formulated assumption that it is the heating part of the

consumption that is responsive to prices.
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The comfort needs of the electricity consumers vary during

the day, mostly depending on whether or not they are at home,

thus the base consumption is a time-dependent variable. Here

a simple look-up table representation is adopted, where the

time variable is classified in categories. We denote by I the

set of conditions, and with b(i, t) a Boolean function returning

1 if condition i ∈ I is true at time t, and zero otherwise. For

each t there is one and only one i ∈ I such that b(i, t) = 1.

Hence b(j, t) = 0 for all j 6= i.

The only external variable considered is a function of the

external temperature, denoted by T , being the signed deviation

of actual temperature from a reference of 17oC. This deviation

is calculated based on a weighted average of the actual

temperature observations over the previous 72 hours. If the

temperature is above 17oC, then T is set to 0. T can then be

seen as a variable directly inducing needs for electric heating.

The control group consumption cCG is described with the

linear model

cCG
t =

N
∑

i=1

θc,jc
CG
t−i+1+

+

M
∑

i=1

θT,iTt−i+1 +
∑

i∈I

θb,ib(i, t) + εCG
t ,

where εCG
t is a centered Gaussian noise with finite variance

σCG. The model complexity is chosen such that an increase

in the number of lags does not significantly improve perfor-

mance, measured by a coefficient of determination R2.

Fig. 2. Two equivalent categorization for the base consumption.

The choice of the categories I is done by combining

different types of classification, such as hour of the day, day

of the week, month, season, working day, holiday, etc. It is

important to keep in mind that the number of categories can

grow very fast. Large number of categories increases model

complexity, and affects its generalization ability. On the other

hand, different classifications may be equivalently descriptive

even though leading to significantly different number of pa-

rameters. For instance, Fig. 2 shows how the time of the
day × working-day/holiday classification, having 14

categories only, can be used instead of time of the day
× day of the week, yielding 168 categories. Both rep-

resentations, in fact, show that the daily base consumption

has two peaks, one in the morning and one in the evening

around 19:00. The peak in the morning is around 7:00 during

the working days, and around 10:00 during the non working

days.

The selected model has parameterization N = 3, M = 1,

|I| = 14, with a resulting coefficient of determination of 94%.

The reduced number of past temperature terms M should not

be surprising, as the variable T is time aggregated and thus

it represents a cumulative indicator of the energy needs for

heating.

The model, whose parameters are estimated adaptively

using a forgetting factor α = 0.995, allows for stable extended

stochastic simulations, as shown in Fig. 3. Perhaps, higher

performance could be obtained by selecting α with a proper

cross-validation exercise, like illustrated in [23]. However,

even with the actual parameterization, both the whiteness and

the Gaussianity (Fig. 4) of the residual prediction error ǫCG
t

could be confirmed.

Fig. 3. Stochastic simulation of the control group consumption. Solid line
are measured data, dashed lines are the 95% prediction interval, grey lines
are consumption scenarios obtained by Monte Carlo simulation.

The response of consumers to prices for the i-th group is

modeled as the deviation from the control group,

(

ci,t − cCG
t

)

=
R
∑

j=1

θc,i,j
(

ci,t−j − cCG
t−j

)

+

+

L
∑

j=1

θp,i,jpt−j+S +

Re
∑

j=1

θe,i,jet−j + εt

(10)
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Fig. 4. Gaussian quantile-quantile plot for the control group model residuals
ǫ
CG
t collected up to 4 Nov. 2008.

with εt a centred Gaussian noise of finite variance, and where

the terms et are the past prediction errors, thus yielding a

moving average component. The deviations in consumption

with respect to the control group is based on a certain number

S of future prices.

The optimal parameterization of the selected models was

obtained after maximization of the coefficient of determination

R2. The same parameterization was chosen for all models. The

price response term covers a time window of L = 36 hours,

with a look ahead time of S = 24 hours. The moving average

counts Re = 24 past prediction errors, whereas only one auto-

regressive term R = 1 was needed. Parameters were estimated

adaptively using a forgetting factor α = 0.995, yielding a

coefficient of determination of 77% for the electronic house-

keeper group, 82% for the DEVI group, 86% for SMS and

Email groups. Fig. 5 shows an example of scenarios obtained

by Monte Carlo simulation, along with estimated prediction

intervals, for the DEVI group. The Gaussian quantile-quantile

plots of Fig. 6 illustrate that the model residuals are very close

to being Gaussian, maybe except in the very tails for the DEVI

group.

Fig. 5. Stochastic simulation of the DEVI group consumption. The solid line
is for the measured data, dashed lines are for the 95% prediction interval, while
the grey lines are the scenarios obtained by Monte Carlo simulation.

(a) Elect Housekeepers (b) Email

(c) SMS (d) DEVI

Fig. 6. Gaussian quantile-quantile plots for the model residuals ǫ
i
t for the

various regulated groups, collected up to 4 Nov. 2008.

C. Visualization of the price response

The FIR models fitted previously may then be used to visu-

alize the nature and dynamics of the response to price signals

as identified based on the experimental data. In practice, this

is done by isolating the change in electricity consumption

induced by a unit step change in price—for instance, and

increase of 1 Danish Crown at a given time t. For that purpose,

we exploit the superposition principle, which is valid for linear

systems [23]. It translates to calculating the difference in

consumption between two simulations, one being the reference

scenario with constant electricity prices, and the other one

having the same characteristics except for a change of one

unit in the price at a given time t. Both simulations have the

same duration and initial conditions, while they ought to be

long enough to ensure convergence so that the whole price

response pattern is observed. In the present case, the results

obtained for the various groups and their associated fitted FIR

models are gathered in Fig. 7. In this figure, the step change

in price occurs at the “0” time index.

Fig. 7. Response of consumption to a step change of 1 Danish Crown in
price, as described by the FIR models fitted to the experimental data.
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All groups respond by increasing the consumption before

the price increment, and by decreasing the consumption after

the price increment. As expected, pre-heating takes place

during periods of low prices in anticipation for future higher

prices. Normally, price fluctuations take place during a short

period of time, whereas it takes a certain time for the house-

hold temperature to reach its reference. Therefore, inducing

changes in household electricity consumption by sending price

signals barely reduced their comfort. If the price remains high,

the consumer groups reduce consumption, hence they reduce

the temperature in the house and the corresponding comfort

level. The only exception is for the electronic housekeeper

group. The pre-heating in this case is significantly higher than

the other groups, but eventually, if the price stays high, the

consumption remain unchanged.

Besides the noise caused by the limited sample size of the

regulated households (i.e., the number of participants in the

regulated experiments), the rather harsh shape of the step-

response function in Fig. 7 may be also interpreted as a con-

sequence of very nature of the demand response mechanism.

Indeed, electricity consumers are not bounded to any specific

responsive mechanism (since manual), hence their individual

response can be fairly diverse.

D. Control by price using chance constrained optimization

The FIR model for the DEVI dataset, described in Sec-

tion IV-B, is here embedded within the CC approach for

the determination of optimal price signals, in turn described

in Section III. As an illustrative example, we consider a

situation where the price signal is unique, and we test the

CC optimization assuming that the price-response mechanism

is represented by the DEVI group. In fact, among the four

groups considered, DEVI is the only one equipped with

fully automatic responding devices, hence reflecting the ideal

population of flexible electricity consumers.

We address the situation where, at time t, a possible issue

with consumption reaching a level above the capacity limit is

foreseen over the range of the K lead times. Such situation is

depicted in Fig. 8, where the system capacity limit cmax
t,1 , k =

1, . . . ,K shows a drop. This passing of system capacity limits

is assessed by the BRP, using the FIR model to simulate the

end-user price response, based on the temperature forecast,

and on market prices. Consequently, the BRP iterates on

potential price signals through the CC optimization approach,

then eventually sending an optimized prize signal back to the

households.

The reference set of prices {pt,1, . . . , pt,K} is optimally

determined by imposing a level of confidence 1 − ρ of not

exceeding the pre-defined maximum allowed consumption for

the group, as in (5). Since the DEVI model described in

Section IV-B is linear, the system capacity constraints in (5)

take the linear form of (9), while the objective function (7) in

the CC optimization is quadratic. The optimal solution is found

using IP methods and the optimized set of price signals p∗
t is

sent to the households. For each value of ρ, the optimization

took less than a tenth of a second, using a standard quadratic

programming solver coded in MATLAB.

Fig. 8. Example of a scenario where pre-defined maximum consumption
level cmax

t,k
is likely to be exceeded by the participants in the DEVI group.

Market prices and electricity consumption are mutually

dependent, as they form an equilibrium. This can be ob-

served in the critical scenario of Fig. 8, where the price

peak corresponds to a higher consumption level. The CC

optimization framework is conceived in order to alter the price-

consumption equilibrium as little as possible. The impact of

the optimization on the original price signal can be observed

from Figs. 9, 10, and 11, where the CC problem is solved

for increasing levels of confidence 1 − ρ. In all cases, the

optimized price tends to anticipate the price peak, triggering

a smoother and distributed consumption response. The impact

of the optimization on the original price signal grows with the

desired level of confidence 1 − ρ assigned to the pre-defined

maximum allowed consumption level.

Fig. 9. DEVI group consumption response to CC optimized price signals,
when the confidence level is 1− ρ = 80%.

It is important to notice how peaks and fluctuations in

both the optimized price signal p∗
t and related successive

consumption values c∗t,k, k = 1, . . . ,K are similar to the

reference scenario p̄t,k, k = 1, . . . ,K, and c̄t,k, k = 1, . . . ,K.

More specifically, when 1 − ρ = 95% (the most constraining

case), there is a maximum deviation of 41% in price, and
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Fig. 10. DEVI group consumption response to CC optimized price signals,
when the level of confidence is 1− ρ = 90%.

Fig. 11. DEVI group consumption response to CC optimized price signals,
when the level of confidence is 1− ρ = 95%.

16.5% in consumption. Meanwhile, this translate to an increase

of total costs for the consumer of only 1.2% with an overall

consumption decrease of 0.22%. This suggests that, both in

terms of total costs and consumption, the price signal has

significant short-term impact, and close to negligible impact

on overall consumption and costs for the consumers. It also

shows that realistic price signals can be generated even without

imposing tight price constraints, and without attempting to

force the consumption through a specific time pattern. In the

presented CC formulation, in fact, the only price constraint

is non-negativity (Eq. (8)), whereas the consumption can have

any pattern not exceeding the pre-defined maximum constraint.

V. CONCLUDING REMARKS

The price-responsive consumption of household-type of

electricity consumers was modeled using stochastic FIR mod-

els, hence also accounting for uncertainties in their con-

sumption pattern and response to price variations. Models

parameters were adaptively estimated in a RLS framework,

permitting to track smooth changes in consumer’s response to

price variations, which may naturally change with time and

seasons in the case of electric heating. Recursivity addition-

ally allows decreasing computational costs - a nice feature

when aiming to embed predictions and scenarios in a real-

world optimization problem. Even though FIR models were

deemed sufficiently accurate for describing the dynamics of

consumption as induced by external weather variables and

price variations, it may be that more advanced modelling

approaches could be used in the future, potentially allowing for

more accurate and skillful forecasts of consumption dynamics.

This would come at a cost though, since embedding nonlinear

models and resulting forecasts in a price generator would most

certainly result in more complex optimization problems.

The price signal was optimized by embedding the FIR

model within a CC optimization framework. The CC opti-

mization problem may be defined by the BRP, setting a time

sequence of maximum admissible loads over a set of lead

times. Those maximum acceptable values may be motivated

by technical constraints at the grid level, or simply owing

to market costs considerations for the aggregator/retailer pro-

viding electricity to these households. The BRP can set the

level of confidence for the maximum consumption limits, and

the CC optimization yields an optimal price signal fulfilling

the constraints with a minimum deviation from the original

consumption pattern. The optimization criterion is based on

the consideration that market prices and consumption levels

are mutually dependent. The linearity of the price-response

models is exploited so that the CC problem is quadratic and

convex. Optimal price signals can then be readily obtained

using IP methods.

The methodology was applied to the real-world test case

of the DEVI experiment in order to show its practical ap-

plicability. The way peaks in consumption may be smoothed

in time by anticipating price peaks was illustrated. Following

intuition, the higher the level of confidence for maximum load

constraints is, the more the optimized price deviated from the

market price.

This proposal methodology comprises an alternative to

existing proposals in a model predictive control framework,

hence considering real-time dynamic pricing. Optimal deter-

mination and broadcast of prices a fair amount of time in

advance permits to plan consumption in a way that may not

be possible with real-time pricing. In practice, it is believed

that the two approaches ought to be combined: similarly to

current market organization today, demand-side management

based on price signals should consist of two stages, i.e., the

day-ahead optimization of consumption patterns in view of

dynamic operational constraints, and a real-time balancing

stage based on real-time pricing. The respective advantages

and drawbacks of these complementary approaches, both in

terms of economics and power system aspects, should be the

focus of future work.

ACKNOWLEDGMENT

The work presented was partly supported by the Danish

Public Service Obligation (PSO) Fund, under the FlexPower

project (contract no. 2010-1-0486), as well as by the iPower

platform project, supported by DSF (Det Strategiske Forskn-
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