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For motion planning problems involving many or unbounded forms of uncer-
tainty, it may not be possible to identify a path guaranteed to be feasible, requir-
ing consideration of the trade-off between planner conservatism and the risk of
infeasibility. This paper presents a novel real-time planning algorithm, chance con-
strained rapidly-exploring random trees (CC-RRT), which uses chance constraints
to guarantee probabilistic feasibility for linear systems subject to process noise
and/or uncertain, possibly dynamic obstacles. By using RRT, the algorithm enjoys
the computational benefits of sampling-based algorithms, such as trajectory-wise
constraint checking and incorporation of heuristics, while explicitly incorporating
uncertainty within the formulation. Under the assumption of Gaussian noise, prob-
abilistic feasibility at each time step can be established through simple simulation of
the state conditional mean and the evaluation of linear constraints. Alternatively,
a small amount of additional computation can be used to explicitly compute a less
conservative probability bound at each time step. Simulation results show that this
algorithm can be used for efficient identification and execution of probabilistically
safe paths in real time.

I. Introduction

An important ongoing topic in the motion planning literature is the identification of feasible
paths for autonomous systems subject to many forms of uncertainty.1 This uncertainty may be
categorized into four groups:2 (1) uncertainty in the system configuration; (2) uncertainty in the
system model; (3) uncertainty in the environment situational awareness; and (4) uncertainty in the
future environment state. To achieve safe and reliable path planning in realistic scenarios, where
many or all of these uncertainties may be present, it is expected that knowledge of this uncertainty
be incorporated into the planning problem. On the other hand, under such conditions it may not
be possible to find a guaranteed-feasible solution. If the uncertainty is unbounded, a feasible yet
large disturbance may cause the path to become infeasible. Even if the uncertainty is bounded,
the system may lack the control authority to correct for disturbances as they are realized. The
fundamental question is then how to properly trade off between planner conservatism and the risk
of infeasibility.

A useful way to capture this tradeoff is through chance constraints, which require that the
probability of constraint violation not exceed some prescribed value.3 With the appropriate formu-
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lation, it is possible to model a probabilistic state constraint in terms of a tightened, deterministic
constraint on the conditional mean of the state, representing the amount of conservatism necessary
to achieve a desired probability of feasibility.4,5 This paper considers the chance constraint formu-
lation developed in Blackmore et al.6 for a linear system in a non-convex environment subject to
Gaussian process noise; several extensions have also been developed.7,8 Concurrent work has ex-
tended the chance-constrained optimization framework to consider other kinds of uncertainty, such
as collision avoidance between uncertain agents.9 However, such formulations require use of compu-
tationally intensive optimizations, such as mixed-integer linear programs or constrained nonlinear
programs. For motion planning problems involving complex dynamics, logical constraints, and/or
high-dimensional configuration spaces, the computational complexity of such an optimization may
scale poorly, to the point of becoming intractable.

This paper presents a chance constraint formulation using incremental sampling-based meth-
ods, and in particular rapidly-exploring random trees (RRT),10 for linear systems subject to pro-
cess noise and/or uncertain, possibly dynamic obstacles. Sampling-based approaches have demon-
strated several advantages for complex motion planning problems, including efficient exploration
of high-dimensional configuration spaces, paths which are dynamically feasible by construction,
and trajectory-wise (e.g. non-enumerative) checking of possibly complex constraints. The RRT
algorithm has been demonstrated as a successful planning algorithm for complex real-world sys-
tems, such as autonomous vehicles;11 however, it does not explicitly incorporate uncertainty, as is
proposed here. Under the assumption of Gaussian noise, probabilistic feasibility at each time step
can be established through simple simulation of the state conditional mean and the evaluation of
linear constraints. Alternatively, a small amount of additional computation can be used to explic-
itly compute a less conservative probability bound at each time step. The focus of this paper is on
uncertainty in the system model and the environment situational awareness; any dynamic obstacles
are assumed to follow known, deterministic paths.

After establishing the problem statement, we first present an extension of Blackmore’s chance
constraint formulation,6 which allows uncertain, possibly dynamic obstacles in addition to system
process noise. We then incorporate this formulation into the RRT algorithm and present the chance
constrained RRT (CC-RRT) algorithm, including steps for evaluating probability of feasibility as
the tree is expanded. Heuristics are presented which leverage the probabilistic nature of this
planning tree. Simulation results show that this algorithm can be used for efficient identification
and execution of probabilistically safe paths.

II. Related Work

This paper considers extension of the RRT algorithm to achieve probabilistic robustness to
process noise, a form of model uncertainty, and uncertain obstacles, a form of environmental sensing
uncertainty. This work falls under the much larger class of problems related to motion planning
under uncertainty,1,12 which considers the various forms of uncertainty summarized above.

A particularly large subfield of approaches considers optimal policies for partially-observable
environments. Many approaches have been proposed to achieve this; we call particular atten-
tion to the use of partially-observable Markov decision processes (POMDPs).13,14 Greytak and
Hover use the same Gaussian overlap framework employed for chance constraints as part of an
A* cost function.15 However, these optimal-policy approaches tend to scale poorly for problems
with high-dimensional configuration spaces, hindering their ability to model complex dynamics and
constraints.

Much existing work on probabilistic uncertainty for randomized planners has focused exclusively
on environmental sensing uncertainty, typically in the form of uncertain maps, without considering
configuration uncertainty. Miralles and Bobi16 represent the obstacle map as a sum of Gaussians,
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and construct a minimum-probability-of-collision roadmap to guide the system via potential fields.
Burns and Brock17 use an exploration-based heuristic to traverse a probabilistic roadmap (PRM)
with probabilistic feasibility guarantees. Several other PRM formulations have been developed
which maintain probabilistic safety bounds for a 2D vehicle avoiding obstacles represented by un-
certain vertices.18,19 However, these approaches are not applicable to nonholonomic systems, which
generally cannot track the piecewise linear roadmap paths, and require a significant preprocessing
phase for roadmap construction. The proposed chance constrained RRT algorithm requires little
to no preprocessing and generates dynamically feasible paths by construction.

Several statistical RRT approaches have been proposed to model vehicles travelling on uneven
terrain. The well-known “particle-based” approach of Melchior and Simmons20 samples each tree
branch multiple times, using clustering to create nodes; however, this approach may require many
simulations per node to maintain a sufficient representation of the uncertainty. A recently-proposed
algorithm identifies a finite-series approximation of the uncertainty propagation, in order to reduce
model complexity and the resulting number of simulations needed per node.21 In contrast, the
proposed approach in this paper requires only one simulation per node, with optional additional
calculations to compute collision probability at each time step.

Recent work has focused on the problem of randomized planning subject to configuration uncer-
tainty. Pepy and Lambert22 addresses the ego-sensing problem through use of an extended Kalman
filter and simulated localization feedback, assuming a perfect system model. Pepy et al.23 seeks
guaranteed robust feasibility for a nonlinear system subject to bounded state uncertainty. However,
the approach uses a conservative box-shaped “wrapper” to approximate and bound the reachable
set at each node. By comparison, the approach considered in this paper tightens system constraints
as a direct function of the disturbance and the desired probability of feasibility.

Finally, we note the work of Prentice and Roy,24 which constructs a roadmap in the belief state
for a linear system subject to Gaussian noise. The belief roadmap is primarily used to identify paths
which maintain strong localization, rather than avoid uncertain obstacles. Though the propagation
of the system mean and covariance is very similar to this work, the roadmap dictates the use of
kinematic planning.

III. Preliminaries

A. Problem Statement

Consider a discrete-time linear time-invariant (LTI) system with process noise,

xt+1 = Axt +But + wt, (1)

x0 ∼ N (x̂0, Px0
), (2)

wt ∼ N (0, Pwt), (3)

where xt ∈ R
nx is the state vector, ut ∈ R

nu is the input vector, and wt ∈ R
nx is a disturbance vector

acting on the system. Here N (â, Pa) represents a random variable whose probability distribution
is Gaussian with mean â and covariance Pa. The disturbance wt is unknown at current and future
time steps, but has the known probability distribution (3).

The system itself is subject to two forms of uncertainty. Equation (2) represents uncertainty
in the initial state x0, corresponding to uncertain localization. Equation (3) represents a zero-
mean process noise, in the form of independent and identically distributed random variables wt

(Pwt ≡ Pw ∀ t). This noise may correspond to model uncertainty, external disturbances, and/or
other factors.

There are also constraints acting on the system state and input. These constraints are assumed
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to take the form

xt ∈ Xt ≡ X − Xt1 − · · · − XtB, (4)

ut ∈ U , (5)

where X ,Xt1, . . . ,XtB ⊂ R
nx are convex polyhedra, U ⊂ R

nu , and the − operator denotes set
subtraction. The set X defines a set of time-invariant convex constraints acting on the state, while
Xt1, . . . ,XtB represent B convex obstacles to be avoided. The time dependence of Xt allows the
inclusion of both static and dynamic obstacles.

The location of each obstacle is modeled as translationally uncertain, represented as

Xtj = X 0
j + δtj + cj ∀ j ∈ Z1,B, ∀ t (6)

cj ∼ N (0, Pcj ) ∀ j ∈ Z1,B, (7)

where the + operator denotes set translation and Za,b represents the set of integers between a and
b inclusive. In this model, X 0

j ⊂ R
nx is a convex polyhedron of known, fixed shape; δtj ∈ R

nx is
a known translation at time step t; and cj ∈ R

nx is a fixed, unknown translation represented by a
zero-mean Gaussian random variable. (All cj are assumed to be independent.) Thus (6) represents
an obstacle of known shape on a known trajectory, but subject to a fixed, unknown translation.
This is a reasonable model of real-world sensing systems, where laser range finders or other sensors
may identify an approximate location for each obstacle.

The primary objective of the planning problem is to reach the goal region Xgoal ⊂ R
nx in

minimum time,

tgoal = inf{t ∈ Z0,tf | xt ∈ Xgoal}, (8)

while ensuring the constraints (4)-(5) are satisfied at each time step t ∈ {0, . . . , tgoal} with probability

of at least psafe. In practice, since there is uncertainty in the state, we assume it is sufficient for
the distribution mean to reach the goal region Xgoal. A secondary objective may be to avoid some
undesirable behaviors, such as proximity to constraint boundaries, and can be represented through
a penalty function ψ(xt,Xt,U). With this, the motion planning problem can now be defined.

Problem 1. Given the initial state distribution (x̂0, Px0
) and constraint sets Xt and U , compute

the input control sequence ut, t ∈ Z0,tf , tf ∈ Z0,∞ that minimizes

J(u) = tgoal +

tgoal
∑

t=0

ψ(xt,Xt,U) (9)

while satisfying (1) for all time steps t ∈ {0, . . . , tgoal}, and satisfying (4)-(5) at each time step
t ∈ {0, . . . , tgoal} with probability of at least psafe.

B. Chance Constraints

This section reviews the chance constraint formulation of Blackmore et al.,6 in which all obstacles
are assumed to have static, known locations, i.e. δtj ≡ cj ≡ 0. The extension to uncertain and
possibly dynamic obstacles is considered in Section IV.

Given a sequence of inputs u0, . . . , uN−1, the distribution of the state xt, represented as the
random variable Xt, can be shown to be Gaussian:6

P (Xt|u0, . . . , uN−1) ∼ P (Xt|u0, . . . , ut−1)

∼ N (x̂t, Pxt) ∀ t ∈ Z0,N , (10)
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where N is some time step horizon. The mean x̂t and covariance Pxt can be represented either
explicitly as

x̂t = Atx̂0 +
t−1
∑

k=0

At−k−1Buk ∀ t ∈ Z0,N , (11)

Pxt = AtPx0
(AT )t +

t−1
∑

k=0

At−k−1Pw(A
T )t−k−1 ∀ t ∈ Z0,N , (12)

or implicitly as

x̂t+1 = Ax̂t +But ∀ t ∈ Z0,N−1, (13)

Pxt+1
= APxtA

T + Pw ∀ t ∈ Z0,N−1. (14)

Note that (13) updates the distribution mean x̂t using the disturbance-free dynamics, i.e. (1) with
wt ≡ 0, and that (14) is independent of the input sequence and thus can be computed a priori.

Suppose the objective is to ensure that the probability of collision with any obstacle for a
given time step does not exceed ∆ ≡ 1 − psafe; it is then sufficient to show that the probability of
collision with each of the B obstacles at that time step does not exceed ∆/B.6 The jth obstacle is
represented through the conjunction of linear inequalities

nj
∧

i=1

aTijxt < bij ∀ t ∈ Z0,N , (15)

where nj is the number of constraints defining the jth obstacle. To avoid all obstacles, the system
must satisfy B disjunctions of constraints at each time step,

nj
∨

i=1

aTijxt ≥ bij ∀ j ∈ Z1,B, ∀ t ∈ Z0,N . (16)

Consider the problem of avoiding the jth obstacle on the tth time step; to avoid the obstacle,
it is sufficient to not satisfy any one of the constraints in the conjunction (15). To collide with the
obstacle, all of the constraints in (15) must be satisfied. Thus it is true that

P (collision) = P

( nj
∧

i=1

aTijXt < bij

)

≤ P (aTijXt < bij) ∀ i ∈ Z1,nj
. (17)

To ensure that the probability of collision is less than or equal to ∆/B, it is only necessary to show
that one of the constraints for the obstacle is satisfied with probability less than or equal to ∆/B:

nj
∨

i=1

P (aTijXt < bij) ≤ ∆/B. (18)

To render this problem tractable for path planning algorithms, the key step is to convert the
probabilistic constraints (18) into tightened, deterministic constraints. For the ith constraint of
the jth obstacle at time step t, apply the change of variable

V = aTijXt − bij ; (19)
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since Xt ∼ N (x̂t, Pxt), it must also be the case that V ∼ N (v̂, Pv), where

v̂ = aTij x̂t − bij , (20)

Pv =
√

aTijPxtaij . (21)

With this change of variable, the probabilistic constraint (18) can be written as

P (V < 0) ≤ ∆/B. (22)

This probabilistic constraint can be shown to be equivalent to a deterministic constraint,6

P (V < 0) ≤ ∆/B ⇔ v̂ ≥
√
2Pverf

−1

(

1− 2
∆

B

)

, (23)

where erf(·) denotes the standard error function. Using this, the constraints (16) are probabilisti-
cally satisfied for the true state xt if the conditional mean x̂t satisfies the modified constraints

nj
∨

i=1

aTij x̂t ≥ bij + b̄ijt ∀ j ∈ Z1,B, ∀ t ∈ Z0,N , (24)

b̄ijt =
√
2Pverf

−1

(

1− 2
∆

B

)

. (25)

The term b̄ijt represents the amount of deterministic constraint tightening necessary to ensure
probabilistic constraint satisfaction. Note that since Pxt can be computed off-line, the tightened
constraints (24)-(25) can be computed off-line, as well, implying that the complexity of the nominal
formulation does not increase when chance constraints are incorporated.

IV. Chance Constraints for Environmental Uncertainty

In this section, the chance constraint formulation of Section III-B is extended to allow for
uncertain and/or dynamic obstacles. In doing so, the chance constraint formulation can incorporate
several other types of uncertainty found in common path planning scenarios (Section I).

Consider adding the obstacle uncertainty (6)-(7) to the original chance constraint formulation.
The constraints for the jth obstacle (15) can be equivalently written as

nj
∧

i=1

aTijxt < aTijcijt ∀ t ∈ Z0,tf , (26)

where cijt is a point nominally (i.e. cj = 0) on the ith constraint at time step t; note that aij is not
dependent on t, since the obstacle shape and orientation are fixed. The corresponding disjunctive
constraints (16) are then

nj
∨

i=1

aTijxt ≥ aTijcijt ∀ j ∈ Z1,B, ∀ t ∈ Z0,tf . (27)

As before, to ensure that the probability of collision is less than or equal to ∆/B, it is only necessary
to show that one of the constraints is satisfied with probability less than or equal to ∆/B:

nj
∨

i=1

P (aTijXt < aTijCijt) ≤ ∆/B, (28)
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where Cijt = cijt + cj is a random variable due to (6)-(7).
For the ith constraint of the jth obstacle at time step t apply the change of variable

V = aTijXt − aTijCijt; (29)

the probabilistic constraint is again (22). The mean and covariance for V are computed as follows:

v̂ = E[V ] = aTij x̂t − E
[

aTij(cijt + cj)
]

= aTij x̂t − aTijcijt, (30)

Pv =
√

E [(V − v̂)(V − v̂)T ]

=

√

E

[

(

aTij (Xt − x̂t)− aTijcj
)(

aTij (Xt − x̂t)− aTijcj
)T
]

=
√

aTij(Pxt + Pcj )aij . (31)

Using this, the constraints (27) can then be shown to be probabilistically satisfied through the
modification

nj
∨

i=1

aTij x̂t ≥ aTijcijt + b̄ijt ∀ j ∈ Z1,nobs
, ∀ t ∈ Z0,N , (32)

where b̄ijt is given as in (25) but uses the new definition of Pv, (31).
In summary, to extend the original chance constraint approach to include uncertain and/or

dynamic obstacles as modeled, it is sufficient to:

• Replace the right-hand side of the constraint inequality (26) with aTijcijt, where cijt tracks the
deterministic trajectory of the obstacle; and

• Replace (20) with (30), and (21) with (31).

This amounts to placing the mean along the possibly dynamic trajectory of the constraint, and
adding the translational uncertainty covariance to Pv.

V. Chance Constrained RRT

This section introduces the chance constrained RRT (CC-RRT) algorithm, an extension of
the traditional RRT algorithm which allows for probabilistic constraints. Whereas the traditional
RRT algorithm grows a tree of states which are known to be feasible, the chance constrained
RRT algorithm grows a tree of state distributions which are known to satisfy an upper bound on
probability of collision (Figure 1).

The fundamental operation in the standard RRT algorithm is the incremental growth of a tree
of dynamically feasible trajectories, rooted at the system’s current state xt.

10 A node’s likelihood
of being selected to grow the tree is proportional to its Voronoi region for a uniform sampling
distribution. As a result, the RRT algorithm is naturally biased toward rapid exploration of the
state space. The RRT algorithm allows the user a great deal of freedom in designing problem-
specific heuristics and extensions. Most importantly, the RRT algorithm employs trajectory-wise
constraint checking, allowing for the incorporation of possibly complex constraints. The CC-RRT
algorithm can leverage this by explicitly computing a bound on the probability of collision at each
node, rather than simply satisfying tightened constraints for a fixed bound (Section V-B).
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Figure 1. Diagram of the chance constrained RRT algorithm. Given an initial state distribution at the
tree root (blue), the algorithm grows a tree of state distributions in order to find a probabilistically
feasible path to the goal (yellow star). The uncertainty in the state at each node is represented as an
uncertainty ellipse. Each state distribution is checked probabilistically against the constraints (gray).
If the probability of collision is too high, the node is discarded (red); otherwise the node is kept
(green) and may be used to grow future trajectories.

To grow a tree of dynamically feasible trajectories, it is necessary for the RRT to have an
accurate model of the vehicle dynamics (1) for simulation. Since the CC-RRT algorithm grows a
tree of state distributions, in this case the model is assumed to be the propagation of the state
conditional mean (13) and covariance (14), rewritten here as

x̂t+k+1|t = Ax̂t+k|t +But+k|t, (33)

Pt+k+1|t = APt+k|tA
T + Pw, (34)

where t is the current system time step and (·)t+k|t denotes the predicted value of the variable at
time step t+ k.

Section V-A introduces the baseline RRT algorithm; this paper applies the real-time RRT
algorithm proposed by Frazzoli25 and later extended by Kuwata et al.26 Section V-B introduces the
extensions to this baseline algorithm which allow for satisfaction of probabilistic constraints in the
presence of uncertainty. Finally, Section V-C briefly discusses operation of the chance constrained
RRT algorithm in real-time, necessitating an execution loop.

A. Tree Expansion

The CC-RRT tree expansion step, used to incrementally grow the tree, is given in Algorithm 1. In
this section we discuss the baseline RRT elements as presented in this algorithm.

Each time Algorithm 1 is called, first a sample state is taken from the environment (line 2), and
the nodes nearest to this sample, in terms of some heuristic(s), are identified as candidates for tree
expansion (line 3). An attempt is made to form a connection from the nearest node to the sample
by generating a probabilistically feasible trajectory between them (lines 5–13). This trajectory is
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Algorithm 1 CC-RRT, Tree Expansion
1: Inputs: tree T , current time step t
2: Take a sample xsamp from the environment
3: Identify the M nearest nodes using heuristics
4: for m ≤M nearest nodes, in the sorted order do
5: Nnear ← current nodes
6: (x̂t+k|t, Pt+k|t)← final state distribution of Nnear

7: continue with probability ∆max(Nnear)
8: while ∆t+k(x̂t+k|t, Pt+k|t) ≤ 1− psafe and x̂t+k|t has not reached xsamp do
9: Select input ut+k|t ∈ U

10: Simulate (x̂t+k+1|t, Pt+k+1|t) using (33)-(34)
11: Create intermediate nodes as appropriate
12: k ← k + 1
13: end while
14: for each probabilistically feasible node N do
15: Update cost estimates for N
16: Add N to T
17: Try connecting N to Xgoal (lines 5-13)
18: if connection to Xgoal probabilistically feasible then
19: Update upper-bound cost-to-go of N and ancestors
20: end if
21: end for
22: end for

incrementally simulated by selecting some feasible input (line 9), then applying (33)-(34) to yield
the state distribution at the next time step. This input may be selected at the user’s discretion,
such as through random sampling or a closed-loop controller, but should guide the state distribution
toward the sample. Probabilistic feasibility is then checked, as discussed in Section V-B; trajectory
simulation continues until either the state is no longer probabilistically feasible, or the distribution
mean has reached the sample (line 8).

Even if the trajectory does not safely reach the sample, it is useful and efficient to keep prob-
abilistically feasible portions of this trajectory for future expansion. For this reason, intermediate
nodes may be occasionally inserted during the trajectory generation process (line 11). Each node
contains a trajectory segment, simulated over possibly many time steps; future connections from
this node must begin at the end of this trajectory. As a result, one or more probabilistically feasible
nodes may be generated from trajectory simulation, each of which is added to the tree (line 16).

A number of heuristics are also utilized to facilitate tree growth, identify probabilistically feasible
trajectories to the goal, and identify “better” paths (in terms of (9)) once at least one probabilis-
tically feasible path has been found. Samples are identified (line 2) by probabilistically choosing
between a variety of global and local sampling strategies, some of which may be used to efficiently
generate complex maneuvers.26 The nearest node selection scheme (lines 4-5) strategically alter-
nates between several distance metrics for sorting the nodes, including an exploration metric based
on cost-to-go and a path optimization metric based on estimated total path length.25 Each time
a sample is generated, m ≥ 1 attempts are made to connect a node to this sample before being
discarded.26 Since the primary objective is to quickly find a path to the goal, an attempt is made
to connect newly-added nodes directly to Xgoal (line 17). Finally, both lower and upper bounds on
the cost-to-go are maintained at each node. A branch-and-bound cost scheme is used (line 19) to
prune portions of the tree whose lower-bound cost-to-go is larger than the upper-bound cost-to-go
of an ancestor, since those portions have no chance of achieving a lower-cost path.25
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B. Chance Constraint Extensions

The CC-RRT algorithm extends the baseline RRT algorithm in two fundamental ways, such that it
can be used to identify a tree of trajectories which probabilistically satisfy the constraints subject
to process noise and/or uncertainty in possibly dynamic obstacles. These extensions utilize the
chance constraint formulation reviewed and developed in Sections III-B and IV. First, probabilistic
feasibility is checked for each state distribution, either by using the tightened bounds of the original
formulation (referred to as “Offline CC-RRT”) or by explicitly computing a bound on the collision
probability at each time step (referred to as “Online CC-RRT”); the distinction is discussed in
further detail below. Second, a measure of the collision probability over an entire path can be used
to bias tree growth toward low-risk portions of the tree.

1. Offline CC-RRT

The formulation presented by Blackmore et al.6 is formulated for a non-convex optimization and
applies a fixed probability bound ∆/B across all obstacles, resulting in tightened deterministic
constraints which can be computed off-line for each time step. The same approach can be used for
checking probabilistic feasibility of simulated trajectories in the CC-RRT algorithm (Algorithm 1).
Using the extensions in Section IV, one can compute whether the deterministic chance constraints
(32) are satisfied for all obstacles for a given conditional mean x̂ and covariance Px. Growth of the
simulated trajectory continues only if these deterministic chance constraints are satisfied.

2. Online CC-RRT

It is also possible to identify a more precise bound on the probability of collision specific to each time
step. This approach leverages the relationship in (23) to compute the exact probability of satisfying
each individual constraint for a given distribution N (x̂, Px) - an operation which is possible due
to iterative constraint checking in the RRT algorithm. This dynamic assignment of risk to each
constraint uses similar logic as Iterative Risk Allocation (IRA),27 which considers convex chance
constraints. However, whereas IRA iterates on the risk allocation for successive optimizations,
online CC-RRT can directly compute an appropriate risk allocation for each constraint. Through
repeated use of this operation, a bound can be computed for each time step on the probability
of collision. This bound can be of great use for heuristics within the RRT algorithm, in addition
to checking probabilistic feasibility. The tradeoff is the computational complexity introduced by
computing this bound at each time step, though the increase is sufficiently small to maintain the
approach’s suitability for on-line implementation (Section VI).

We first show that the equivalence relationship in (23) can be rewritten with both inequali-
ties written as equalities. Consider (23) for some probability γ ≡ ∆/B, γ ∈ (0, 1) and a given
distribution mean v̂ and covariance Pv, rewritten here as

P (V < 0) ≤ γ ⇔ v̂ ≥ f(γ), (35)

where f(γ) =
√
2Pverf

−1 (1− 2γ). The inverse error function increases monotonically and contin-
uously from −∞ to +∞ over its domain (−1,+1). Since Pv ≥ 0, this implies that f(γ) decreases
monotonically and continuously from +∞ to −∞ over its domain (0, 1). As a result, there must
exist some value γ̄ such that v̂ = f(γ̄). Exploiting the equivalence in (35), we have for some ǫ > 0
(where |γ̄ ± ǫ| < 1) such that

γ̄ − ǫ < P (V < 0) ≤ γ̄ + ǫ. (36)

It is then clear that as ǫ→ 0, (35) becomes the desired equivalence

P (V < 0) = γ̄ ⇔ v̂ = f(γ̄). (37)
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Solving for γ̄ yields

P (V < 0) =
1

2

(

1− erf

[

v̂√
2Pv

])

. (38)

Returning to the formulation of Section IV, consider the ith constraint of the jth obstacle at
time step t, with associated change of variable (29)-(31). Let ∆ijt(x̂, Px) denote the probability
that this constraint is satisfied for a Gaussian distribution with mean x̂ and covariance Px; using
(38), we have that

∆ijt(x̂, Px) =
1

2



1− erf





aTij x̂t − aTijcijt
√

2aTij(Pxt + Pcj )aij







 . (39)

Now define

∆t(x̂t, Pxt) ≡
B
∑

j=1

min
i=1,...,nj

∆ijt(x̂t, Pxt), (40)

used in line 8 of Algorithm 1; it can be shown that this term provides an upper bound on the
probability of a collision with any obstacle at time step t. Indeed, for time step t,

P (collision) ≤
B
∑

j=1

P (collision with obstacle j)

≤
B
∑

j=1

min
i=1,...,nj

P (aTijXt < aTijCijt)

=

B
∑

j=1

min
i=1,...,nj

∆ijt(x̂t, Pxt) = ∆t(x̂t, Pxt).

Here the first inequality uses the addition law of probability, the second inequality uses (17), the
first equality uses (38), and the second equality uses (40).

3. Nearest Node Bias

In many cases, a user may be more interested in probabilistic feasibility over an entire path rather
than at a single time step. However, the computation of the probabilistic feasibility over this
path is intractable for all but the simplest configurations, mainly due to the fact that the random
variables Xi ∀ t ∈ Z0,tf are not independent. Recent results have shown that the computation can
be simplified for a linear system with Gaussian noise by “stacking” the states and constraints,8 but
this is still computationally intensive for real-time operations of considerable duration.

In this work, we use a simple heuristic to represent the “risk“ of a tree path. Let ∆max(N)
denote the risk of the tree path from the root to node N ; it is set equal to the maximum value of ∆t

for any time step on that trajectory. With this heuristic, a path which has a moderate probability
of collision at every time step is considered to be less risky than a path which has a single time
step with a high probability of collision, and a low probability of collision at all other times.

This heuristic can be used in Algorithm 1 to bias tree growth toward lower-risk portions of the
tree. For each nearest node Nnear selected, the algorithm flips a weighted coin to decide whether
to attempt to connect to the sample. The attempt is made with probability 1 − ∆max(Nnear);
otherwise the next nearest node is considered (line 7).
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Algorithm 2 CC-RRT, Execution Loop

1: Initialize tree T with node at (x̂0, Px0
), t = 0

2: while x̂t 6∈ Xgoal do
3: Use measurements, if any, to repropagate state distributions
4: while time remaining for this time step do
5: Expand the tree by adding nodes (Algorithm 1)
6: end while
7: Use cost estimates to identify best path {Nroot, . . . , Ntarget}
8: if no paths exist then
9: Apply safety action and goto line 17

10: end if
11: Repropagate the path state distributions using (33)-(34)
12: if repropagated best path is probabilistically feasible then
13: Apply best path
14: else
15: Remove infeasible portion of best path and goto line 7
16: end if
17: t← t+∆t
18: end while

Remark 1 (conservativeness). It has been noted that (18) introduces a level of conservativeness
which increases linearly in the number of constraints.6 This can be mitigated by using (40), which
computes a separate probability of collision for each obstacle. It is also possible to heuristically
reduce conservatism by, for example, only including obstacles near the distribution mean. Though
the guarantee of probabilistic feasibility is lost, such heuristic methods cannot be easily formulated
in an optimization-based framework.

C. Execution Loop

For environments which are dynamic and uncertain, the RRT tree must keep growing during the
execution cycle to account for changes in the situational awareness.25 Given the extensive compu-
tations involved to construct the tree, as much of the tree should be retained as possible, especially
for real-time applications. Algorithm 2 shows how the algorithm executes some portion of the tree
while continuing to grow it.

The planner updates the current best path to be executed by the system every ∆t seconds.
During each cycle, for the duration of the time step, the tree is repeatedly expanded using Algorithm
1 (lines 4-6). Following this tree growth, the cost estimates are used to select the “best” path in
the tree (line 7). The cost metric may be selected at the user’s discretion, but typically involves
minimizing length/duration, risk (as captured in the heuristic ∆max), and/or other factors. Once a
path is chosen, a “lazy check”26 is performed in which the the path is repropagated from the current
state distribution using the same model dynamics (33)-(34) (line 11) and tested for probabilistic
feasibility. If this path is still probabilistically feasible, it is chosen as the current path to execute
(lines 12–13). Otherwise, the infeasible portion of the path is removed and the process is repeated
(lines 14-15) until either a probabilistically feasible path is found or the entire tree is pruned. If
the latter case occurs, the system has no path to execute, and some “safety” motion primitive is
applied to attempt to keep the vehicle in a safe state (e.g. come to a stop).

In real-world scenarios, it is expected that as the system executes a path, measurements are
received which allow it to reduce its uncertainty in its own state. Whenever these measurements
are received, it is appropriate to update the state distributions for the entire tree, as this will reduce
the uncertainty at each future time step (lines 4–5).
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Remark 2 (feedback). In the absence of feedback on sensor measurements and/or disturbance
realizations, the covariance at each node may grow quite large. In particular, for an unstable
system, the dispersion of the state distribution will continue to grow without bound. Recent results
have demonstrated the importance of incorporating feedback on such information in maintaining
manageable levels of uncertainty.9 In particular, if bounded error (deviation from nominal path)
can be guaranteed, the implication in this work is that the covariance will be bounded, as well.28

VI. Simulation Results

Simulation results are now presented which demonstrate the effectiveness of the chance con-
strained RRT approach in efficiently computing paths for motion planning problems which satisfy
probabilistic constraints. Several key points are demonstrated through these results. First, without
chance constraints, the RRT algorithm is not incorporating knowledge of the uncertainty environ-
ment, and may select paths which are excessively risky. Second, as psafe increases, the algorithm
selects more conservative paths, which are less likely to collide with an obstacle but require addi-
tional length/time to reach the goal. Finally, it is shown that this approach scales favorably in the
number of obstacles considered.

Consider the operation of a double integrator (quadrotor) in a two-dimensional non-convex
environment. The system dynamics are

xt+1 =











1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1











xt +











dt2

2
0

0 dt2

2

1 0

0 1











ut + wt,











xt =











xt

yt

vxt
vyt





















where dt = 0.1s, subject to input constraints U = {(ux, uy) | |ux| ≤ 1, |uy| ≤ 1}. The state
constraints X consist of speed bounds (|vxt | < 0.5 and |vyt | < 0.5) and obstacle avoidance constraints
at each time step; it is tacitly assumed that the vehicle is a point mass. The initial state covariance
and disturbance covariance are respectively specified as

Pw =











0.002 0.001 0 0

0.001 0.002 0 0

0 0 0.0001 0

0 0 0 0.0001











, Px0
=











0.01 0 0 0

0 0.01 0 0

0 0 0 0

0 0 0 0











.

Finally, we require that the distribution mean remain within the room bounds for each environment,
though it is not necessary to probabilistically satisfy the wall bounding constraints.

The input u is selected at each time step according to the reference law

u = K(xt − rt), K =

[

−0.3 0 −0.6 0

0 −0.3 0 −0.6

]

,

where the reference rt is moved from the parent node waypoint to the sample waypoint xsamp at 0.3
m/s. Since this controller is applied both during trajectory simulation (Algorithm 1) and execution
(Algorithm 2),28 A+BK is used in place of A in (34).

Simulations were performed using an implementation of Algorithms 1-2 in Java, run on an Intel
2.53 GHz quad-core desktop with 4GB of RAM, with ∆t = 1s. In the experiments that follow, we
assume that no measurements are taken (line 3 of Algorithm 2); thus the state distribution at each
node is fixed for all time steps. Each simulation uses one of three algorithms: nominal RRT, offline
CC-RRT, or online CC-RRT. Please refer to Section V-B for further details on the distinctions
between these algorithms.
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A. Simple Scenario

First, consider a square environment containing four obstacles in fixed, known locations (Figure
2); thus the extensions of Section IV are not needed. Five cases are considered, with 10 trials
performed for each:

• Nominal RRT

• Offline CC-RRT with psafe = 0.5

• Online CC-RRT with psafe = 0.5

• Online CC-RRT with psafe = 0.9

• Online CC-RRT with psafe = 0.99

In each trial, the planner is given 20 seconds to begin growing the tree. After this planning time has
expired, the vehicle selects the lowest-cost path in the tree to execute, then continues to perform
the RRT algorithm in real-time, simultaneously growing the tree while executing paths within it.

Figures 2–3 show a sample tree for each case after the 20 seconds of computation; in the latter
figure, a 2-σ uncertainty ellipse is also displayed for each node.a Since the nominal RRT algorithm
is naive to any disturbances which may be present, the trajectories are allowed to come arbitrarily
close to obstacles. However, since the nominal RRT algorithm also requires deterministic, not
probabilistic, constraint satisfaction, no trajectory ever intersects any of the obstacles (Figure 2).
This may not necessarily be the case for CC-RRT, especially for low values of psafe.

In the case of online CC-RRT with psafe = 0.5 (Figure 3(b)), the algorithm typically finds every
homotopically distinct path between the obstacles to the goal. In general, for psafe = 0.5, a state
distribution will probabilistically satisfy a single constraint if the distribution mean also satisfies
the constraint. As a result, generalizing back to the multi-obstacle, multi-constraint case of Figure
3(b), the observed behavior approximates the behavior of nominal RRT. As psafe increases for online
CC-RRT from 0.5 to 0.9 (Figure 3(c)), the probabilistic constraints tighten and restrict the feasible
configuration space of the vehicle. Whereas the psafe = 0.5 case identifies many paths to goal
between the obstacles, the psafe = 0.9 case only identifies two, and cannot traverse the narrowest
gap between the bottommost obstacles. Additionally, observe that the uncertainty ellipses in Figure
3(b) significantly intersect the obstacles, whereas any intersection is minimal in Figure 3(c). In the
extreme case of psafe = 0.99 (Figure 3(d)), all trajectories take the wider corridors around the
obstacles to reach the goal, at the expense of a longer path duration. Finally, note that while both
Figures 3(a) and 3(b) use psafe = 0.5 and provide the same guarantee of probabilistic feasibility,
the offline CC-RRT algorithm (Figure 3(a)) yields a much more conservative result, more closely
resembling online CC-RRT with psafe = 0.99.

Table 1 presents the averaged results over the 10 trials for each case. The nominal RRT
algorithm achieves the shortest average path to goal, but is also oblivious to the risk posed by
uncertainty in the formulation, safely reaching the goal only in a single trial. For the CC-RRT
cases, as psafe increases, the average path length increases, as does the likelihood of safely reaching
the goal. This is the expected behavior, since the CC-RRT algorithm either explicitly or implicitly
tightens the configuration space, increasing the length of the best path to goal, in order to ensure
a higher likelihood of feasibility. In particular, note that for psafe = 0.99, online CC-RRT safely
reached the goal in all trials. As seen in the figures, the performance of offline CC-RRT with
psafe = 0.5 is comparable to online CC-RRT with higher values of psafe. Finally, we observe that
while there is a modest runtime increase for offline CC-RRT and a slightly larger runtime increase
for online CC-RRT, both are competitive with the average runtime for nominal RRT.

aDue to the system’s closed-loop nature, the state distributions quickly converge to a steady-state value. As a
result, most uncertainty ellipses appear to be identical in the figures. However, there is indeed an evolution in the
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Figure 2. Sample tree (blue) generated by the nominal RRT algorithm for the simple scenario
environment. In simulation figures, the vehicle seeks to find a (probabilistically) feasible path from
its starting location (orange diamond) to the goal (green circle) while avoiding all obstacles (black).

B. Cluttered Scenario

The main driver of the computational complexity of the CC-RRT algorithm is the number of
obstacles; the purpose of this scenario is to demonstrate how the runtime scales with the number
of obstacles. In this scenario, all parameters from Section VI-A are maintained except for the
environment itself, which is replaced with a more cluttered environment (Figure 4). Whereas the
simple scenario has only 4 obstacles, the cluttered scenario has 20, an increase by a factor of 5.

An identical set of trials was performed as in Section VI-B for the same five cases. Figures
4–5 show a sample tree for each case after the 20 seconds of computation; very similar conclusions
can be drawn as from the simple scenario. Of note is the uppermost path to goal found by online
CC-RRT with psafe = 0.5 (Figure 5(b)), passing along the top of the figure. While the probability
of collision at each time step must not exceed 0.5, in practice such a path would be extremely
difficult to execute safely.

Table 2 presents the averaged results over the 10 trials for each case. The average runtime
per node has increased by a factor between 3 and 4 in each case, with the nominal RRT and
offline CC-RRT cases scaling slightly less than the online CC-RRT cases. Nonetheless, this data
provides empirical evidence that the additional computation needed for the CC-RRT algorithm
scales approximately as a fixed percentage of the nominal RRT algorithm. Otherwise, the results
are similar to the simple scenario (Table 1), with online CC-RRT again achieving feasibility across
all trials for psafe = 0.99. On the other hand, online CC-RRT performs poorly in this scenario for
psafe = 0.5, with only one trial safely reaching the goal.

uncertainty ellipse size, starting from the localization error at the root.
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(a) Offline CC-RRT with psafe = 0.5. (b) Online CC-RRT with psafe = 0.5.

(c) Online CC-RRT with psafe = 0.9. (d) Online CC-RRT with psafe = 0.99.

Figure 3. Sample tree generated by the CC-RRT algorithm for the simple scenario environment.
Each node corresponds to the state distribution mean; a 2-σ uncertainty ellipse is centered at each
node.
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Table 1. Simulation Results, Simple Scenario

Algorithm psafe Time per Path Path Safe to

Node, msa Found?b Duration, sc Goal?d

Nominal RRT N/A 1.38 10/10 27.2 1/10

Offline CC-RRT 0.5 1.51 10/10 34.3 8/10

Online CC-RRT 0.5 1.94 10/10 27.2 3/10

Online CC-RRT 0.9 2.04 10/10 34.9 7/10

Online CC-RRT 0.99 2.06 10/10 39.8 10/10

Table 2. Simulation Results, Cluttered Scenario

Algorithm psafe Time per Path Path Safe to

Node, msa Found?b Duration, sc Goal?d

Nominal RRT N/A 4.45 (×3.2) 10/10 22.6 1/10

Offline CC-RRT 0.5 4.98 (×3.3) 10/10 25.6 7/10

Online CC-RRT 0.5 7.56 (×3.9) 10/10 22.7 1/10

Online CC-RRT 0.9 7.38 (×3.6) 10/10 24.3 9/10

Online CC-RRT 0.99 7.75 (×3.8) 10/10 25.9 10/10

a Cumulative time spent in Algorithm 1 divided by the number of nodes generated.
b Number of trials where path to goal was found after initial 20 seconds of tree growth.
c Duration of initial path to goal, if one exists.
d Number of trials where system executed a path to goal without colliding with any obstacles. (Recall that psafe
refers to feasibility for a single time step, whereas this entry corresponds to feasibility across the entire path.)

C. Uncertain Obstacle Scenario

This scenario demonstrates the capability of the CC-RRT algorithm to incorporate uncertain obsta-
cles in its probabilistic feasibility computations. The environment is the same as in the first scenario
(Figure 2). The disturbance covariance is significantly reduced (from Pw to P̄w ≡ Pw/100), while
the obstacles are now uncertain and thus have their own probability distributions. (The case of an
uncertain and dynamic obstacle is omitted for brevity.) The upper-left obstacle distribution has
covariance Pa, while all other obstacle distributions have covariance Pb, where

Pa =











0.2 0 0 0

0 0.2 0 0

0 0 0 0

0 0 0 0











, Pb =
Pa

200
.

Consider running the online CC-RRT algorithm on this scenario with psafe = 0.99; even though
the process noise has been significantly reduced, the tree trajectories must be very conservative in
path selection to ensure the probability of collision at any time step does not exceed 1%. Figure 6
shows a representative tree generated by this algorithm after one minute of tree expansion. In this
figure, the 2-σ uncertainty ellipse is shown both for every obstacle and for every node; it is clear
that the only major sources of uncertainty are the residual localization error near the start and
the upper-left obstacle. Whereas trajectories can come very close to the three rightmost obstacles
and maintain probabilistic feasibility, the high uncertainty of the upper-left obstacle causes any
trajectory which comes within a box’s width of it (approximately 1m) to become probabilistically
infeasible.
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Figure 4. Sample tree generated by the nominal RRT algorithm for the cluttered scenario environ-
ment.

VII. Conclusions

This paper has presented a novel sampling-based algorithm, CC-RRT, which allows for effi-
cient computation of probabilistically feasible paths through a non-convex environment subject to
uncertainty, including process noise and uncertain, possibly dynamic obstacles. If the tightened
constraints are computed off-line for a fixed probability bound, the complexity of the CC-RRT
algorithm is essentially unchanged relative to the nominal RRT algorithm. Alternatively, a small
amount of additional computation can be used to explicitly compute a tight probability bound at
each time step, providing the user with a metric to directly control the level of conservatism in
the planning approach. Furthermore, as demonstrated through simulation results, the approach is
scalable in the number of obstacles, allowing for efficient computation of safe paths even in heavily
cluttered environments. Future work will consider alternative representations of obstacle uncer-
tainty, such as probability distributions on the obstacle vertices or obstacle process noise,9 as well
as incorporation of better approximations of path feasibility.
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node.
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