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Abstract This paper studies the problem of constructing robust classifiers when the training
is plagued with uncertainty. The problem is posed as a Chance-Constrained Program (CCP)
which ensures that the uncertain datapoints are classified correctly with high probability. Un-
fortunately such a CCP turns out to be intractable. The key novelty is in employing Bernstein
bounding schemes to relax the CCP as a convex second order cone program whose solution
is guaranteed to satisfy the probabilistic constraint. Prior to this work, only the Chebyshev
based relaxations were exploited in learning algorithms. Bernstein bounds employ richer
partial information and hence can be far less conservative than Chebyshev bounds. Due to
this efficient modeling of uncertainty, the resulting classifiers achieve higher classification
margins and hence better generalization. Methodologies for classifying uncertain test data-
points and error measures for evaluating classifiers robustto uncertain data are discussed.
Experimental results on synthetic and real-world datasetsshow that the proposed classifiers
are better equipped to handle data uncertainty and outperform state-of-the-art in many cases.
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1 Introduction

Real-world classification data are fraught with uncertainty and noise. The sources of uncer-
tainty are many — sampling errors, modeling errors or measurement errors. For example,
in case of bio-medical datasets, the measurement devices vary in terms of resolutions. Lack
of complete understanding of the underlying biology further complicates this problem. In
case of gene/protein expression data, uncertainty is inevitable — the prime reason being bi-
ological heterogeneity of expression within the same tissue of a patient. Image classification
and automated call-routing are also examples of applications where the data is prone to be
erroneous.

Traditional classification algorithms, like the Support Vector Machines (SVMs) [19],
assume that the training datapoints are known exactly and construct an optimal decision
boundary. However, recent studies have shown that classifiers which explicitly handle the
uncertainty in training data perform better than the classifiers which ignore such informa-
tion [3,13,8]. In this paper, we propose a novel methodologyfor constructing maximum-
margin classifiers which are robust to uncertainties in data. The proposed classifiers make
no distributional assumptions regarding the underlying uncertainties and only employ par-
tial information like support (bounds on uncertainty of thetrue datapoint) and second order
moments (mean and variance) of the uncertain training datapoints.

In the past, robust classifiers which either employ support information [9,4] or second
order moments of the noise distribution [18] were derived. Since these classifiers employ
limited partial information i.e. either support or moment information alone, though they
achieve robustness to uncertainty, they tend to be overly-conservative. However, as richer
partial information is employed, uncertainty can be bettermodeled — leading to classi-
fiers which are robust but not overly-conservative. As discussed at various stages of this
paper, a direct consequence of non-conservative modeling of the uncertainty is an increase
in classification margin and hence an increase in generalizing ability of the classifier. The
key contribution of this paper is to derive tractable maximum-margin formulations which
employ both the support and second order moment informationof the uncertain datapoints
in order to build the decision boundary. Since the proposed classifiers employ richer partial
information and better model the uncertainty, they achievebetter generalization than the ex-
isting methods. Also, the proposed classifiers require the knowledge of bounds on second
order moments rather than the exact moments, which are oftenunknown. Thus, in addition
to being robust to uncertainty and not being overly conservative, the proposed classifiers are
also inherently robust to moment estimation errors.

The idea is to derive a maximum-margin formulation which employs chance-constraints
for the uncertain training datapoints. Each chance-constraint ensures that the corresponding
uncertain training datapoint is classified correctly with high probability. The key novelty is to
employ Bernstein bounding schemes [14,2] for relaxing the resulting Chance-Constrained
Program (CCP) as a Second Order Cone Program (SOCP), which can be efficiently solved
using interior point solvers [15]. Until now only the Chebyshev bounding schemes were
employed to relax various CCP based learning formulations [11,18,12]. To the best of our
knowledge, this is the first time Bernstein approximation schemes are employed for ap-
proximately relaxing linear chance constraints via CCP based formulations. A number of
alternate schemes for bounding probabilistic linear constraints exist, notably [5–7] where
divergence measures other than variance are employed. It would be interesting to derive clas-
sifiers from such formulatins and will be be investigated in future. However in this paper we
focus only on the Bernstein bounding based methodologies and discuss the related merits.
In particular, we show that the Bernstein based schemes, by employing richer partial infor-
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Table 1 Summary of formulations presented in the paper and the partial information employed by them.

S.No. Support 1st Moment 2nd Moment Formulation
1 X bounds bounds MM-SBMV (16),MM-SBMV-I (23)
2 X exact exact MM-SMV (24),MM-SMV-I (26)
3 X bounds × MM-SBM (27),MM-SBM-I (29)
4 X exact × MM-SM (30),MM-SM-I (32)

mation (support and second order moment information), leadto less conservative modeling
of the uncertainty than the Chebyshev based schemes, which employ moment information
alone. Using this SOCP relaxation as a basis, various maximum-margin formulations are
derived which employ different levels of information aboutthe uncertain datapoints. Table 1
summarizes the formulations1 derived in the paper and the partial information employed by
them.

The remainder of the paper is organized as follows: in section 1.1, the past work done on
maximum-margin classification with uncertain data is briefly reviewed. Section 2 presents
the main contribution of the paper, a maximum-margin SOCP formulation which employs
the support and bounds on the second order moments of the uncertain datapoints in order to
achieve robustness. The section also presents various specializations of this formulation to
the scenarios presented in table 1.The subsequent section discusses the issue of classifying
uncertain test datapoints and presents various error measures which evaluate the perfor-
mance of classifiers which handle uncertain data. In section4, experimental results which
compare the performance of the proposed methods and the existing methods are presented.
The paper concludes in section 5, by summarizing the work.

1.1 Review of Past Work

In this section, we review the work done on maximum-margin classification with uncertain
data. We start by discussing the well known SVM formulation [19], which assumes that
the training datapoints are known exactly. Here, a hyperplane,w⊤x−b = 0, that maximally
separates the positive and negative training datapoints isconstructed. Denoting the training
datapoints byXi ≡ [Xi1 . . .Xin]⊤ ∈ R

n, i = 1, . . . ,m and the respective class labels byyi , i =
1, . . . ,m, this problem can be expressed as:

min
w,b,ξi

1
2‖w‖2

2 +C∑m
i=1 ξi

s.t. yi(w⊤Xi −b) ≥ 1−ξi , ξi ≥ 0, i = 1, . . . ,m (1)

ξi are slack variables introduced to allow for outliers andC is a user-given regularization
parameter. Note that the objective minimizes‖w‖2, which turns out to be inversely pro-
portional to the margin of separation achieved between the positive and negative datapoints.
According to the structural risk minimization principle ofVapnik [19], such classifiers which
maximize the margin achieve good generalization.

1 Nomenclature of formulations: prefix “MM ” denotesMaximumMargin classifier. Partial information
of Support,Mean,Variance employed by the classifier are denoted by ‘S’, ‘ M ’, ‘ V’ respectively. The symbol
‘B’ denotes that the corresponding classifier employs bounds on moments rather than exact moments. The
suffix ‘I ’ indicates that the corresponding classifier is a variant, whose meaning will be clear later in the text.
For e.g., the abbreviation “MM-SBMV ” stands for a maximum-margin classifier which employs support,
bounds on means and variances of uncertain datapoints.
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However, if the training datapoints,Xi , are known to be uncertain and information re-
garding the underlying uncertainties is provided, then classifiers which utilize such infor-
mation generalize better than their non robust counterparts (e.g. SVMs [18,9]). Different
approaches assume different kinds of information regarding the uncertainties is known. The
simplest of these is a maximum-margin classifier which employs just the means of the un-
certain datapoints,µi ≡ E[Xi ]. The problem solved is then:

(MM-M) min
w,b,ξi

1
2‖w‖2

2 +C∑m
i=1 ξi

s.t. yi(w⊤µi −b) ≥ 1−ξi , ξi ≥ 0, i = 1, . . . ,m (2)

Assuming uncertainty in the datapoints is bounded i.e., thesupport is known, tractable
classification formulations which are robust to uncertainty can been derived [9,4]. Specif-
ically, [9] assume that the extremum values of the features of the datapoints are known
i.e., l i j ≤ Xi j ≤ ui j . In other words, each training datapointXi is assumed to lie in a hyper-
rectangle:Ri ≡

{
x = [x1 . . .xn]

⊤ ∈ R
n | l i j ≤ x j ≤ ui j , j = 1, . . . ,n

}
and constraints enforc-

ing correct classification of all the datapoints lying in a bounding hyper-rectangle are im-
posed:yi(w⊤x−b) ≥ 1−ξi , ∀ x ∈ Ri . This leads to the following problem:

(MM-S) min
w,b,ξi

1
2‖w‖2

2 +C∑m
i=1 ξi

s.t. yi(w⊤ci −b) ≥ 1−ξi +‖Siw‖1, ξi ≥ 0, i = 1, . . . ,m (3)

whereci is the geometric center of the hyper-rectangleRi andSi is a diagonal matrix with
entries as semi-lengths of the sides of the hyper-rectangleRi . Using the means,µi , and co-
variances,Σi ≡ cov[Xi ] of the uncertain training datapoints, and employing the Chebyshev’s
inequality, classifiers which are robust to uncertainty have been derived [3,18]:

(MM-MC) min
w,b,ξi

1
2‖w‖2

2 +C∑m
i=1 ξi

s.t. yi(w⊤µi −b) ≥ 1−ξi +κc‖Σ
1
2

i w‖2, ξi ≥ 0, i = 1, . . . ,m (4)

whereκc =
√

1−ε
ε andε ∈ [0,1] is a user-given parameter. The robust formulations derived

in [4] turn out to be special cases of the (MM-MC ) formulation.
Each of the three robust formulations presented above differ in the way uncertainty is

modeled using various partial information like support, first and second order moments.
The formulation (MM-M ) uses only mean (first order moment) information, while (MM-
S) uses support information and (MM-MC ) uses second order moment information. The
conservative nature of a formulation depends on the partialinformation employed by it. As
more information is employed, the uncertainty can be bettermodeled — leading to robust as
well as non-overly-conservative classifiers. Now, the conservative nature of a robust classi-
fier has direct influence over the generalization ability of the classifier — this is justified in
the following text. Note that, more conservative the uncertainty modeling is, tighter are the
classification constraints in the respective formulations. For example, (MM-S ) models the
uncertain datapoint using its bounding hyper-rectangle whereas (MM-M ) models it as the
single pointµi . Clearly, the classification constraints (3) in (MM-S ) which imply that the
entire hyper-rectangle must be classified correctly are tighter than those in (MM-M ) which
imply that the mean,µi , alone needs to be classified correctly. It is also easy to seethat be-
cause of this conservative modeling of uncertainty in (MM-S ), the margin,12‖w‖2

2, achieved
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by it is lesser than that with (MM-M ). According to the structural risk minimization princi-
ple [19], larger is the margin of a classifier, better is its generalization ability. Thus (MM-S ),
though robust to uncertainty fails to generalize well due toits conservative nature. On the
other hand, (MM-M ), though models uncertainty in a less conservative manner,it is not
robust enough as it assumes mean is the only possible position for the uncertain datapoint.
Thus in order to achieve good generalization classifiers need to be robust to uncertainties in
data while not being overly-conservative.

The formulation (MM-MC ) is nearest in spirit to the present work. As shown in [18],
(MM-MC ) is the result of relaxing a CCP based formulation using the Chebyshev inequal-
ity. Relaxation schemes based on the Chebyshev’s inequality are known to be conserva-
tive as they employ second moment information alone. In thispaper, we employ Bernstein
bounding schemes in order to relax the same CCP based maximum-margin formulation. The
Bernstein based relaxation employs both the support and second order moment information
and hence leads to less conservative modeling of the uncertainty, which as discussed above
is key in deriving classifiers with good generalization.

2 Maximum-margin Formulations for Uncertain Data

This section presents the novel maximum-margin classification formulations which are ro-
bust to uncertainties in training data. The notation used issummarized below: letXi ≡
[Xi1 . . .Xin]⊤ be the random variable generating theith (uncertain) training datapoint and
let yi be its label. The following information regarding the uncertain datapoints is assumed
to be known:

Support Extremum values of features of the datapoints are known i.e., l i j ≤ Xi j ≤ ui j . In
other words,Xi ∈ Ri ≡

{
x = [x1 . . .xn]

⊤ ∈ R
n | l i j ≤ x j ≤ ui j , j = 1, . . . ,n

}
.

1st Moment Bounds on the means of the datapoints,µ−
i ≡ [µ−

i1 . . .µ−
in ]⊤≤ µi ≡ [µi1 . . .µin]⊤ =

E[Xi ] ≡ [E[Xi1] . . .E[Xin]]⊤ ≤ µ+
i ≡ [µ+

i1 . . .µ+
in ]⊤.

2nd Moment Bounds on second-moments of the feature values of the datapoints are known
i.e. 0≤ E[X2

i j ] ≤ σ 2
i j .

Note that no assumptions regarding the forms of the uncertainty distributions are made. The
discriminating hyperplane which is to be learnt using the given training data is denoted by
w⊤x− b = 0, wherew ≡ [w1 . . .wn]

⊤ is the normal andb is the bias of the hyperplane.
Recall the SVM formulation (1), which we consider here as thebaseline formulation. Now,
since the datapointsXi are uncertain, the constraints in (1) can no longer be satisfied always.
Hence, alternatively, it is required that the following chance-constraints are satisfied:

Prob
(

yi(w⊤Xi −b) ≤ 1−ξi

)

≤ ε , (5)

where 0≤ ε ≤ 1 is a user-given parameter close to 0, denoting an upper bound on the mis-
classification error made onXi . Thus, the chance-constraints in (5) ensure that the uncertain
datapoints are mis-classified with small probability. Using these chance-constraints, the fol-
lowing maximum-margin formulation, similar in spirit to SVMs, can be written:

(CCP) min
w,b,ξi

1
2‖w‖2

2 +C∑m
i=1 ξi

s.t. Prob
(
yi(w⊤Xi −b) ≤ 1−ξi

)
≤ ε , ξi ≥ 0, i = 1, . . . ,m (6)
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The above formulation (CCP) is hard to solve even when the probability distribution of the
Xi ’s are fully known, because the constraints are typically non-convex. In the remainder of
the section several safe convex approximations of (CCP) are derived, assuming different
levels of partial information regarding the uncertaintiesare known.

2.1 Formulations using Support and Bounds on 2nd Order Moments

In this section, we present a maximum-margin classificationformulation which employs
bounds on means and variances, as well as support (bounding hyper-rectangles) of the un-
certain training datapoints are known. It is also assumed that the features used to describe the
data are independent — in other words, the random variablesXi j , j = 1, . . . ,n are assumed
to be independent. The key idea is to derive convex constraints involving the above par-
tial information, which when satisfied imply that the chance-constraints (5) are satisfied. To
this end, the following theorem is presented, which specializes the Bernstein approximation
schemes described in [14,2,1]:

Theorem 1 Assuming partial information of support (li j ≤Xi j ≤ui j ), bounds on first-moments
(µ−

i j ≤ µi j = E[Xi j ] ≤ µ+
i j ) and bounds on second-moments (0 ≤ E[X2

i j ] ≤ σ 2
i j ) of indepen-

dent random variables Xi j , j = 1, . . . ,n are known, the chance-constraint (5) is satisfied if
the followingconvex constraint in variables,(w,b,ξi), holds:

1−ξi +yib+∑
j

(

max
[

−yi µ−
i j w j ,−yi µ+

i j w j

])

+κ‖Σ(1),iw‖2 ≤ 0 (7)

whereκ ≡
√

2log(1/ε), Σ(1),i is a diagonal matrix given by:

Σ(1),i = diag
([

si1ν
(
µ−

i1 ,µ+
i1 ,σi1

)
. . .sinν

(
µ−

in ,µ+
in ,σin

)])
, (8)

si j ≡
ui j −li j

2 and the functionν
(

µ−
i j ,µ+

i j ,σi j

)

is as defined in (14).

Proof The chance-constraint (5) can be written as:

Prob
(

a⊤i Xi +ai0 ≥ 0
)

≤ ε (9)

whereai0 = 1−ξi +yib andai = −yiw.
Using Markov inequality and independence of random variables,Xi j , j = 1, . . . ,n, we

have that:

Prob
(

a⊤i Xi +ai0 ≥ 0
)

≤ exp{αai0}∏
j

E [exp{αai j Xi j }] , ∀ α ≥ 0 (10)

Key to modeling chance constraint (9) now depends on how one upperbounds the moment
generating functions,E [exp{tXi j }] , t ∈ R. To continue the proof, we use the following
lemma:

Lemma 1 Suppose the support and bounds on first, second moments of therandom variable
Xi j are known. Then,

E [exp{tXi j }] ≤ exp







ν
(

µ−
i j ,µ+

i j ,σi j

)2
s2
i j

2
t2 +max

[

µ−
i j t,µ+

i j t
]







∀ t ∈ R (11)
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Proof Consider the normalized random variableX̂i j ≡
Xi j−ci j

si j
, whereci j ≡

li j +ui j
2 andsi j ≡

ui j −li j
2 . It is easy to see that−1≤ X̂i j ≤ 1, E[X̂i j ] =

E[Xi j ]−ci j
si j

andE[X̂2
i j ] =

E[X2
i j ]−2E[Xi j ]ci j +c2

i j

s2
i j

.

Using these relations one can easily compute the bounds on first and second moments of
X̂i j . Let these be denoted bŷµ−

i j ≤ µ̂i j = E[X̂i j ] ≤ µ̂+
i j and 0≤ E[X̂2

i j ] ≤ σ̂ 2
i j respectively.

By Jensen’s inequality, we have that|µ̂i j | ≤ σ̂i j . Hence, without loss of generality, assume
|µ̂±

i j | ≤ σ̂i j . Now, E [exp{tXi j }] = E
[
exp{tsi j X̂i j }

]
exp
{

tci j
}

. Let t̃ ≡ tsi j . We know that
(refer table 2 in [14], chapter 2 in [1]):

E
[
exp{t̃ X̂i j }

]
≤ gµ̂i j ,σ̂i j (t̃) ≡







(1−µ̂i j )
2

exp

{

t̃
µ̂i j −σ̂2

i j
1−µ̂i j

}

+(σ̂2
i j −µ̂2

i j )exp{t̃}

1−2µ̂i j +σ̂2
i j

, t̃ ≥ 0

(1+µ̂i j )
2

exp

{

t̃
µ̂i j +σ̂2

i j
1+µ̂i j

}

+(σ̂2
i j −µ̂2

i j )exp{−t̃}

1+2µ̂i j +σ̂2
i j

, t̃ ≤ 0

(12)

Note that the above bound is tight given the circumstances: for t > 0, the bound is achieved

by a 2-point distribution at the points
µ̂i j −σ̂2

i j
1−µ̂i j

and 1 with masses
(1−µ̂i j )

2

1−2µ̂i j +σ̂2
i j

and
σ̂2

i j −µ̂2
i j

1−2µ̂i j +σ̂2
i j

respectively. For such a distribution, the mean is indeedµ̂i j and the second moment iŝσ 2
i j .

Similar arguments hold for the caset < 0. Though the bound in (12) is the tightest possible
under the given circumstances, employing it in (10) will notlead to tractable relaxations of
the original chance-constraint. Hence we further upper bound the RHS of (12) by a single
exponential function such that the final relaxed constraintis tractable. To this end, define the
function:

hµ̂i j ,σ̂i j (t̃) ≡ loggµ̂i j ,σ̂i j (t̃) (13)

It is easy to show thathµ̂i j ,σ̂i j (0) = 0 andh
′

µ̂i j ,σ̂i j
(0) = µ̂i j . Now for t̃ ≥ 0,

h
′′

µ̂i j ,σ̂i j
(t̃) =

(

σ̂ 2
i j − µ̂2

i j

)(

1−2µ̂i j + σ̂ 2
i j

)2
exp

{

t̃
µ̂i j −σ̂2

i j
1−µ̂i j

}

exp{t̃}

[

(1− µ̂i j )
2 exp

{

t̃
µ̂i j −σ̂2

i j
1−µ̂i j

}

+
(

σ̂ 2
i j − µ̂2

i j

)

exp{t̃}

]2

≤

4
(

σ̂ 2
i j − µ̂2

i j

)

(1− µ̂i j )
2 exp

{

t̃
µ̂i j −σ̂2

i j
1−µ̂i j

}

exp{t̃}

[

(1− µ̂i j )
2 exp

{

t̃
µ̂i j −σ̂2

i j
1−µ̂i j

}

+
(

σ̂ 2
i j − µ̂2

i j

)

exp{t̃}

]2 ≤ 1

The last inequality is true by the AM-GM inequality . Similarly one can derive an inequality
for the casẽt ≤ 0. Thush

′′

µ̂i j ,σ̂i j
(t̃) ≤ 1 ∀ t̃. Using Taylor series, it follows thathµ̂i j ,σ̂i j (t̃) ≤

µ̂i j t̃ + 1
2 t̃2 ∀t̃. As a result, the function:

ν
(
µ−,µ+,σ

)
≡ min

{

k≥ 0 : hµ̂ ,σ̂ (t̃) ≤ max[µ̂−t̃, µ̂+t̃]+
k2

2
t̃2 ∀ (µ̂ ∈ [µ̂−, µ̂+], t̃)

}

(14)
is well defined (in fact 0≤ ν(·, ·, ·)≤ 1) and hence

gµ̂i j ,σ̂i j (t̃) ≤ exp







max[µ̂−
i j t̃, µ̂+

i j t̃]+
ν
(

µ−
i j ,µ+

i j ,σi j

)2

2
t̃2







∀t̃
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Noting thatgµ̂i j ,σ̂i j (t̃) is an upper bound onE
[
exp{t̃ X̂i j }

]
and using the fact thatE [exp{tXi j }] =

E
[
exp{tsi j X̂i j }

]
exp
{

tci j
}

andµ±
i j = si j µ̂±

i j +ci j , we obtain (11). This completes the proof
of Lemma 1. ⊓⊔

Using lemma 1 and (10) we obtain(∀ α ≥ 0):

log
[

Prob
(

a⊤i Xi +ai0 ≥ 0
)]

≤α

(

ai0 +∑
j

(

max
[

−yi µ−
i j w j ,−yi µ+

i j w j

])
)

+
α2

2
‖Σ(1),iw‖2

2

Since this inequality holds for all non-negativeα ’s, if we ensure that for certainα the right-
hand side of the inequality is≤ log(ε), then we would satisfy the chance-constraint (9). So,
we have:

α

(

ai0 +∑
j

(

max
[

−yi µ−
i j w j ,−yi µ+

i j w j

])
)

︸ ︷︷ ︸
p

+
α2

2
‖Σ(1),iw‖2

2
︸ ︷︷ ︸

q2

≤ logε (15)

In the caseq = 0, the above inequality is possible only ifp < 0 (∵ ε ∈ [0,1]). Now sup-
poseq > 0. We wish to choose that value ofα for which the LHS of (15) is minimized.

This minimized value is 0 ifp≥ 0 and− p2

2q2 if p < 0. Again sinceε ∈ [0,1], p≥ 0 is not

allowed. Substituting− p2

2q2 in LHS of (15), we havep2

q2 ≤ κ2 ⇔ p+ κq ≤ 0 (∵ p < 0).
Hence either in the caseq = 0 or q > 0, p+κq≤ 0 is the sufficient condition for satisfying
the chance-constraint (5). Substituting the values ofp,q,ai0 in this inequality we obtain (7).
This completes the proof of Theorem 1. ⊓⊔

Replacing the chance-constraints (6) in (CCP) with the deterministic (convex) con-
straints (7), we obtain a maximum-margin formulation whichensures that the probability
of misclassification when trained with uncertain data,Xi , is less thanε . This formulation
can be written as the following SOCP:

(MM-SBMV) min
w,b,ξi ,zi j

1
2
‖w‖2

2 +C
m

∑
i=1

ξi

s.t. 1−ξi +yib+∑
j

zi j +κ‖Σ(1),iw‖2 ≤ 0,

zi j ≥−yi µ−
i j w j , zi j ≥−yi µ+

i j w j , ξi ≥ 0 (16)

The values of the functionν(µ−
i j ,µ+

i j ,σi j ) (14) can be calculated numerically. The details
of the numerical procedure are presented in section 2.1.1. The SOCP (MM-SBMV ) can be
efficiently solved using cone program solvers likeSeDuMi

2, Mosek3 or CPLEX4.
In the following, a geometrical interpretation of the formulation (MM-SBMV ) is pre-

sented. To this end, consider the following lemma:

2 Available athttp://sedumi.mcmaster.ca/
3 Available athttp://www.mosek.com/index.php?id=7
4 Available athttp://www.ilog.com/products/cplex/
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Lemma 2 Let the set

E
(
µi ,κΣ(1),i

)
≡
{

x = µi +κΣ(1),ia : ‖a‖2 ≤ 1
}

(17)

represent an ellipsoid centered atµi , whose shape and size are determined byκΣ(1),i.
Consider the problem of correctly classifying points belonging to the union of ellipsoids
E
(
µi ,κΣ(1),i

)
overµi ∈ [µ−

i ,µ+
i ]:

yi(w⊤x−b) ≥ 1−ξi , ∀ x ∈ ∪µi∈[µ−
i ,µ+

i ]E
(
µi ,κΣ(1),i

)
(18)

The continuum of constraints (18) are satisfied if and only if(7) holds.

Proof We have the following:

(18) ⇔ max
x∈∪µi∈[µ−i ,µ+

i ]
E (µi ,κΣ(1),i)

(

−yiw⊤x
)

+1−ξi +yib≤ 0

⇔ max
µi∈[µ−

i ,µ+
i ],‖a‖2≤1

(

−yiw⊤(µi +κΣ(1),ia)
)

+1−ξi +yib≤ 0

⇔ max
µi∈[µ−

i ,µ+
i ]

(

−yiw⊤µi

)

+ max
‖a‖2≤1

(

−κyiw⊤Σ(1),ia
)

+1−ξi +yib≤ 0

⇔ (7)

This completes the proof. ⊓⊔

The above lemma shows that the formulation (MM-SBMV ) views each uncertain training
datapoint as the set∪µi∈[µ−

i ,µ+
i ]E

(
µi ,κΣ(1),i

)
and does a maximum-margin classification

using these uncertainty sets.
Note that the size of uncertainty set, and hence robustness and conservative nature of

the classifier depend onκ (and hence onε). More specifically, as the upper bound on
misclassification error,ε , decreases, size of the uncertainty set increases. Howeverfrom
the support information we know that the true training datapoint can never lie outside its
bounding hyper-rectangle. Thus we can obtain less conservative classifiers by employing
constraints using uncertainty sets as the intersection of∪µi∈[µ−

i ,µ+
i ]E

(
µi ,κΣ(1),i

)
and the

bounding hyper-rectangleRi . To this end we present the following lemma:

Lemma 3 Consider the problem of correctly classifying points belonging to the setRi ∩(

∪µi∈[µ−
i ,µ+

i ]E
(
µi ,κΣ(1),i

))

:

yi(w⊤x−b) ≥ 1−ξi , ∀ x ∈ Ri ∩
(

∪µi∈[µ−
i ,µ+

i ]E
(
µi ,κΣ(1),i

))

(19)

The continuum of constraints (19) are satisfied if and only ifthe followingconvex constraint
in (w,b,ξi ,ai) holds (here,ai ≡ [ai1 . . .ain]⊤):

1−ξi +yib+∑
j

(

max[−l i j (yiw j +ai j ) ,−ui j (yiw j +ai j )]+max
[

µ−
i j ai j ,µ+

i j ai j

])

+κ‖Σ(1),iai‖2 ≤0

(20)
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Proof The constraints (19) hold if and only if:

1−ξi +yib+




 max

x ∈ Ri∩

(

∪µi∈[µ−i ,µ+
i ]

E (µi ,κΣ(1),i)
)−yiw⊤x




≤ 0

Note that, the term with max in the above inequality is nothing but the support function of the

setRi ∩
(

∪µi∈[µ−
i ,µ+

i ]E
(
µi ,κΣ(1),i

))

, denoted byI
Ri∩

(

∪µi∈[µ−i ,µ+
i ]

E (µi ,κΣ(1),i)
)(−yiw). Since

support function of intersection of two sets is the infimal convolution of support functions
of the individual sets (see section 16, [16]), we have that:

(19) ⇔ 1−ξi +yib+ inf
ai +āi=−yi w

{

I∪µi∈[µ−i ,µ+
i ]

E (µi ,κΣ(1),i)
(ai)+ IRi (āi)

}

≤ 0

⇔ ∃ ai , āi ∋ 1−ξi +yib+

{

I∪µi∈[µ−i ,µ+
i ]

E (µi ,κΣ(1),i)
(ai)+ IRi (āi)

}

≤ 0, ai + āi = −yiw

(21)

Let the entries in vectorsai , āi be ai j , āi j , j = 1, . . . ,n respectively. Then by lemma 2,

we have thatI∪µi∈[µ−i ,µ+
i ]

E (µi ,κΣ(1),i)
(ai) = ∑ j

(

max
[

µ−
i j ai j ,µ+

i j ai j

])

+ κ‖Σ(1),iai‖2. Also,

IRi (āi) = ∑ j max[l i j āi j ,ui j āi j ]. Hence, we have that (19) is satisfied if and only if:

1−ξi +yib+∑
j

max[l i j āi j ,ui j āi j ]+∑
j

(

max
[

µ−
i j ai j ,µ+

i j ai j

])

+κ‖Σ(1),iai‖2 ≤ 0 (22)

andai + āi = −yiw. Eliminating the variablēai from (22) we obtain (20). ⊓⊔

Conversely, it can also be shown that if the convex constraint (20) holds then so does the
chance-constraint (5). Below is a sketch of the proof: introduce two variablesai , āi ∋ ai +
āi = −yiw and also let ¯ai0 = 1− ξi + yib. Then LHS of the chance-constraint (5) can be
written as:

LHS of (5) = Prob(a⊤i Xi + āi0 + ā⊤i Xi ≥ 0)

≤ Prob(a⊤i Xi + āi0 +max
x∈Ri

ā⊤i x ≥ 0)

= Prob(a⊤i Xi + āi0 +∑
j

max[l i j āi j ,ui j āi j ]

︸ ︷︷ ︸
aio

≥ 0) = Prob(a⊤i Xi +ai0 ≥ 0)

Now the last probability expression is in the same form as (9). Hence using the arguments
in theorem 1 we obtain that if (22) is satisfied, then the original chance-constraint (5) is
satisfied. Eliminatinḡai from (22) usingai + āi = −yiw, one obtains (20). Therefore (20)
is indeed a valid sufficient condition for the chance-constraint (5) and moreover is a less
conservative constraint than (7) by the very construction.

Replacing the chance-constraints (6) in (CCP) with the convex constraint (20), we ob-
tain a maximum-margin classification formulation which is robust to uncertain data as well
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as less conservative than theMM-SBMV formulation. This formulation can be written as
the following SOCP:

(MM-SBMV-I) min
w,b,ξi ,zi j ,z̃i j ,ai

1
2
‖w‖2

2 +C
m

∑
i=1

ξi

s.t. 1−ξi +yib+∑
j

z̃i j +∑
j

zi j +κ‖Σ(1),iai‖2 ≤ 0,

zi j ≥ µ−
i j ai j , zi j ≥ µ+

i j ai j , ξi ≥ 0,

z̃i j ≥−l i j (yiw j +ai j ), z̃i j ≥−ui j (yiw j +ai j ) (23)

Note that, the proposed formulations (16,23) are not only robust to the uncertainties in
data but are also robust towards moment estimation errors. This is because the formulations
employ bounds on mean(µ−

i j ,µ+
i j ) and bounds on second-moment (σ 2

i j ) rather than the true
moments of the uncertain datapoints, which are often unknown.

In the special case where the exact moments of the training datapoints are known, we
have thatµi = µ−

i = µ+
i andE[X2

i j ] = σ 2
i j . Hence the formulation (16) reduces to:

(MM-SMV) min
w,b,ξi

1
2
‖w‖2

2 +C
m

∑
i=1

ξi

s.t. yi(w⊤µi −b) ≥ 1−ξi +κ‖Σ(2),iw‖2, ξi ≥ 0 (24)

where

Σ(2),i = diag([si1ν(µi1,µi1,σi1) . . .sinν(µin,µin,σin)]) (25)

Also, in this case, the formulation (23) reduces to:

(MM-SMV-I) min
w,b,ξi ,ai ,z̃i j

1
2
‖w‖2

2 +C
m

∑
i=1

ξi

s.t. 1−ξi +yib+∑
j

z̃i j +µ⊤
i ai +κ‖Σ(2),iai‖2 ≤ 0,

z̃i j ≥−l i j (yiw j +ai j ),z̃i j ≥−ui j (yiw j +ai j ),ξi ≥ 0 (26)

Note that, the uncertainty sets associated with the formulations (24) and (26) areE
(
µi ,κΣ(2),i

)

andRi ∩E
(
µi ,κΣ(2),i

)
respectively. The subsequent section presents a numericalalgorithm

for computing the functionν(µ−,µ+,σ ) defined in (14).

2.1.1 Computation ofν(µ−,µ+,σ )

In this section, we present details of the numerical procedure for computingν(µ−,µ+,σ )
(refer (14)). Recall from lemma 1, the definitions of the normalized random variable and
definitions of the corresponding bounds on first (µ̂±) and second moment (σ̂ 2). As noted
earlier, we have|µ̂±| ≤ σ̂ ≤ 1. Now consider the following claim:

Claim Let ν(µ−,µ+,σ ) be as defined in (14). Then,
√

σ̂ 2− (µ̂min)2 ≤ ν(µ−,µ+,σ )≤ 1,
whereµ̂min = min(|µ̂−|, |µ̂+|).
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Proof Rewriting the definition ofν(µ−,µ+,σ ), we have:

ν(µ−,µ+,σ ) = min
{

k≥ 0
∣
∣ f (t; µ̂, σ̂ ,k) ≥ 0, ∀ t ∈ R, ∀ µ̂ ∈ [µ̂−, µ̂+]

}

wheref (t; µ̂, σ̂ ,k)≡ k2

2 t2+max[µ̂−t, µ̂+t]−hµ̂ ,σ̂ (t) (refer (13,12) for definition ofhµ̂ ,σ̂ (t)).

Now, lett ≥ 0 and f
′
(t; µ̂+, σ̂ ,k) = g1(t)−g2(t) whereg1(t) ≡ k2t + µ̂+ and

g2(t) ≡
(1− µ̂+)

(
µ̂+− σ̂ 2

)
exp
{

t µ̂+−σ̂2

1−µ̂+

}

+
(
σ̂ 2− (µ̂+)2

)
exp{t}

(1− µ̂+)2 exp
{

t µ̂+−σ̂2

1−µ̂+

}

+(σ̂ 2− (µ̂+)2)exp{t}

Now, if g
′

1(0) < g
′

2(0), then there exists a neighbourhood aroundt = 0 wheref
′
(t; µ̂+, σ̂) <

0 (sincef
′
(0;µ̂+, σ̂) = 0). Also in this neighbourhoodf (t; µ̂+, σ̂) < 0 becausef (0;µ̂+, σ̂) =

0. Thusg
′

1(0) ≥ g
′

2(0) is a necessary condition forf ≥ 0. Note thatg
′

1(0) = k2,g
′

2(0) =

σ̂ 2− (µ̂+)2. Hence,ν(µ−,µ+,σ )≥
√

σ̂ 2− (µ̂+)2. Similarly, analyzing the caset ≤ 0 one
obtainsν(µ−,µ+,σ )≥

√

σ̂ 2− (µ̂−)2. Also, from the very definition ofν(µ−,µ+,σ ), we
have that its value≤ 1 (refer lemma 1). This proves the claim. ⊓⊔

Note that, the functionf (t; µ̂, σ̂ ,k) strictly increases with the value ofk and by the
above claim we have that

√

σ̂ 2− (µ̂min)2 ≤ k≤ 1. Thus one can have a simple binary search
algorithm for computingν(µ−,µ+,σ ). The algorithm starts withkl

0 ≡
√

σ̂ 2− (µ̂min)2 and

ku
0 ≡ 1. At every iteration,i ≥ 1, ki ≡

kl
i−1+ku

i−1
2 and it is checked whether

f min
i ≡

(

min
t

f (t; µ̂, σ̂ ,ki) ∀ µ̂ ∈ [µ̂−, µ̂+]
)

≥ 0

If f min
i ≥ 0, thenku

i ≡ ki , elsekl
i ≡ ki . This is repeated until a relevant stopping criteria is

met. Checking whetherf min
i ≥ 0 for a fixed valueki , µ̂ ∈ [µ̂−, µ̂+] can be done using any

1-d minimization routine. Also, the criterion is checked atvarious values of̂µ ∈ [µ̂−, µ̂+].
Table 2 shows values ofν(µ−,µ+,σ ) computed using this numerical procedure. For each
value ofσ̂ , ν(µ−,µ+,σ ) is computed for 10 equally spacedµ̂± values in the range[−σ̂ , σ̂ ].
In the table,µ̂− andµ̂+ vary across rows and columns respectively. Hence a ‘–’ represents
the casêµ− > µ̂+ (which is not allowed).

The formulations derived in this section employ partial information of both support and
second order moments of uncertainty. These formulations can be specialized to cases where
support and mean information alone are available. Though this increases the applicability of
the formulations, the resulting classifiers are more conservative as they now employ less in-
formation regarding the uncertainties. These specializations are discussed in the subsequent
section.

2.2 Formulations using Support and Bounds on Means

In this section, we present a maximum-margin classificationformulation which assumes
that the bounds on means and the bounding hyper-rectangles (support) for the uncertain
training datapoints are known. Though no explicit bounds onsecond-moments are assumed
in this case, the bounding hyper-rectangles imply natural bounds for them: consider the
normalized random variablêXi j ≡

Xi j−ci j
si j

studied in lemma 1. It is easy to see thatE[X̂2
i j ]≤ 1

i.e.E[X2
i j ]≤ 2E[Xi j ]ci j +s2

i j −c2
i j . Let us denote this natural bound onE[X2

i j ] as
(

σ ∗
i j

)2
. Now,
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Table 2 Values ofν(µ−,µ+,σ) computed using the numerical procedure.

σ̂ = 0.2

0.0000 0.3770 0.3875 0.3960 0.3922 0.3796 0.3580 0.3368 0.3233 0.3090
– 0.3770 0.3875 0.3960 0.3922 0.3796 0.3580 0.3367 0.3232 0.3233
– -1.0000 0.3875 0.3960 0.3922 0.3796 0.3580 0.3368 0.3367 0.3368
– – – 0.3960 0.3922 0.3796 0.3582 0.3580 0.3580 0.3580
– – – – 0.3922 0.3796 0.3796 0.3796 0.3796 0.3796
– – – – – 0.3922 0.3922 0.3922 0.3922 0.3922
– – – – – – 0.3960 0.3960 0.3960 0.3960
– – – – – – – 0.3875 0.3875 0.3875
– – – – – – – – 0.3770 0.3770
– – – – – – – – – 0.0000

σ̂ = 0.4

0.0000 0.5096 0.5258 0.5233 0.5191 0.4982 0.4619 0.4088 0.3628 0.3089
– 0.5096 0.5258 0.5233 0.5191 0.4982 0.4619 0.4091 0.3631 0.3628
– – 0.5258 0.5233 0.5191 0.4982 0.4619 0.4092 0.4091 0.4088
– – – 0.5233 0.5191 0.4982 0.4619 0.4619 0.4619 0.4619
– – – – 0.5191 0.4982 0.4982 0.4982 0.4982 0.4982
– – – – – 0.5191 0.5191 0.5191 0.5191 0.5191
– – – – – – 0.5233 0.5233 0.5233 0.5233
– – – – – – – 0.5258 0.5258 0.5258
– – – – – – – – 0.5096 0.5096
– – – – – – – – – 0.0000

σ̂ = 0.6

0.0000 0.6070 0.6656 0.6703 0.6601 0.6362 0.5883 0.5127 0.3911 0.2808
– 0.6070 0.6656 0.6703 0.6601 0.6362 0.5883 0.5127 0.3911 0.3911
– – 0.6656 0.6703 0.6601 0.6362 0.5883 0.5127 0.5127 0.5127
– – – 0.6703 0.6601 0.6362 0.5883 0.5883 0.5883 0.5883
– – – – 0.6601 0.6362 0.6362 0.6362 0.6362 0.6362
– – – – – 0.6601 0.6601 0.6601 0.6601 0.6601
– – – – – – 0.6703 0.6703 0.6703 0.6703
– – – – – – – 0.6656 0.6656 0.6656
– – – – – – – – 0.6070 0.6070
– – – – – – – – – 0.0000

σ̂ = 0.8

0.0000 0.7454 0.7893 0.8224 0.8206 0.7999 0.7543 0.6652 0.5028 0.1524
– 0.7454 0.7893 0.8224 0.8206 0.7999 0.7543 0.6652 0.5028 0.5028
– – 0.7893 0.8224 0.8206 0.7999 0.7543 0.6652 0.6652 0.6652
– – – 0.8224 0.8206 0.7999 0.7543 0.7543 0.7543 0.7543
– – – – 0.8206 0.7999 0.7999 0.7999 0.7999 0.7999
– – – – – 0.8206 0.8206 0.8206 0.8206 0.8206
– – – – – – 0.8224 0.8224 0.8224 0.8224
– – – – – – – 0.7893 0.7893 0.7893
– – – – – – – – 0.7454 0.7454
– – – – – – – – – 0.0000

σ̂ = 1

0.0000 0.8579 0.9418 0.9804 0.9976 0.9938 0.9428 0.8315 0.6285 0.0000
– 0.8579 0.9418 0.9804 0.9976 0.9938 0.9428 0.8315 0.6285 0.6285
– – 0.9418 0.9804 0.9976 0.9938 0.9428 0.8315 0.8315 0.8315
– – – 0.9804 0.9976 0.9938 0.9428 0.9428 0.9428 0.9428
– – – – 0.9976 0.9938 0.9938 0.9938 0.9938 0.9938
– – – – – 0.9976 0.9976 0.9976 0.9976 0.9976
– – – – – – 0.9804 0.9804 0.9804 0.9804
– – – – – – – 0.9418 0.9418 0.9418
– – – – – – – – 0.8579 0.8579
– – – – – – – – – 0.0000
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all the formulations presented in the previous section can be specialized usingσi j = σ ∗
i j . The

formulation (16), in this case, reduces to the following SOCP:

(MM-SBM) min
w,b,ξi ,zi j

1
2
‖w‖2

2 +C
m

∑
i=1

ξi

s.t. 1−ξi +yib+∑
j

zi j +κ‖Σ(3),iw‖2 ≤ 0,

zi j ≥−yi µ−
i j w j , zi j ≥−yi µ+

i j w j , ξi ≥ 0 (27)

where
Σ(3),i = diag([si1ν(µ−

i1 ,µ+
i1 ,σ ∗

i1) . . .sinν(µ−
in ,µ+

in ,σ ∗
in)]) (28)

Also, formulation (23), which employs a less conservative uncertainty set than (16), reduces
to:

(MM-SBM-I) min
w,b,ξi ,zi j ,z̃i j ,ai

1
2
‖w‖2

2 +C
m

∑
i=1

ξi

s.t. 1−ξi +yib+∑
j

z̃i j +∑
j

zi j +κ‖Σ(3),iai‖2 ≤ 0,

zi j ≥ µ−
i j ai j , zi j ≥ µ+

i j ai j , ξi ≥ 0,

z̃i j ≥−l i j (yiw j +ai j ), z̃i j ≥−ui j (yiw j +ai j ) (29)

The uncertainty sets associated with the formulations (27,29) are∪µi∈[µ−
i ,µ+

i ]E
(
µi ,κΣ(3),i

)

andRi ∩
(

∪µi∈[µ−
i ,µ+

i ]E
(
µi ,κΣ(3),i

))

respectively.

Interestingly, the value ofν(µ−
i j ,µ+

i j ,σ ∗
i j ) can be computed analytically in the case where

µ−
i j ≤ ci j ≤ µ+

i j i.e., the case where the mean,µi , is known to lie somewhere around the

mid-point of its bounding hyper-rectangle. In particular,if the noise distribution of theith

uncertain datapoint is symmetric, then this assumption is trivially true. The following lemma
throws light on this special case:

Lemma 4 Let the support of a random variable, X, be[l ,u] and let the midpoint and semi-
length of this interval be denoted by c≡ l+u

2 and s≡ u−l
2 respectively. Let the bounds on

the meanE[X] be [µ−,µ+]and the bound on second-moment be denoted byσ ∗. In the case,
µ− ≤ c≤ µ+, we have:

ν(µ−,µ+,σ ∗) =
√

1− (µ̂min)2

whereµ̂min = min(−µ̂−, µ̂+) and µ̂− ≡ µ−−c
s , µ̂+ ≡ µ+−c

s .

Proof Recall the definition of the functionhµ̂ ,σ̂ (t) from (12,13). Here,̂σ denotes the upper
bound on second-moment of the normalized random variableX̂ = X−c

s i.e. E[X̂2] ≤ σ̂ 2.
Since no explicit second-moment bound is assumed in the present case, we havêσ = 1.
Note that,hµ̂ ,1(t) = log(cosht + µ̂ sinht), t ∈ R. Thusν(µ−,µ+,σ ∗) (defined in (14)) is
the minimum value ofk for which f (t)≥ 0, ∀ t, where f (t) is defined as follows:

f (t)≡

{
k2t2

2 + µ̂+t − log(cosht + µ̂+ sinht) , t ≥ 0
k2t2

2 + µ̂−t − log(cosht + µ̂− sinht) , t < 0

Now, consider the case,t ≥ 0. Let f
′
(t) = g1(t)−g2(t) whereg1(t)≡ k2t + µ̂+,g2(t)≡

sinht+µ̂+ cosht
cosht+µ̂+ sinht . Now the following claim is true:
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Claim g2(t) is concave fort ≥ 0.

Proof The value ofg
′′
(t) can be calculated as

8(1−µ̂+2)exp{2t}[(1−µ̂+)2−(1+µ̂+)2 exp{4t}]
[(1+µ̂+)exp{2t}+(1−µ̂+)]4

. Also

g
′′
(t) ≤ 0 ⇐⇒ t ≥ 1

2 log
{

1−µ̂+

1+µ̂+

}

. This says thatg2(t) is concave fort ≥ 0, proving the

claim. ⊓⊔

Sinceg2(t) is concave,g
′

1(0) ≥ g
′

2(0) implies f
′
(t) ≥ 0, ∀ t ≥ 0 and is thus a sufficient

condition for f (t) ≥ 0 ∀ t ≥ 0, as f (0) = 0. Also if g
′

1(0) < g
′

2(0) then∃ a neighbourhood
in t ≥ 0 wheref

′
(t) < 0 which impliesf (t) < 0 in that neighbourhood sincef (0) = 0. Thus

g
′

1(0) ≥ g
′

2(0) is a necessary and sufficient condition forf (t) ≥ 0 ∀ t ≥ 0. In other words
k2 ≥ 1− (µ̂+)

2. Similar arguments fort < 0 give the conditionk2 ≥ 1− (µ̂−)
2. Defining

µ̂min = min(−µ̂−, µ̂+), we haveν(µ−,µ+,σ ∗) =
√

1− (µmin)2. This completes the proof.
⊓⊔

Again, in the special case where the meansµi are known, one hasµi = µ−
i = µ+

i . Using
this, the formulation (27) reduces to the following SOCP:

(MM-SM) min
w,b,ξi

1
2
‖w‖2

2 +C
m

∑
i=1

ξi

s.t. yi(w⊤µi −b) ≥ 1−ξi +κ‖Σ(4),iw‖2, ξi ≥ 0 (30)

where
Σ(4),i = diag([si1ν(µi1,µi1,σ ∗

i1) . . .sinν(µin,µin,σ ∗
in)]) (31)

Also, in this case, formulation (29) reduces to:

(MM-SM-I) min
w,b,ξi ,ai ,z̃i j

1
2
‖w‖2

2 +C
m

∑
i=1

ξi

s.t. 1−ξi +yib+∑
j

z̃i j +µ⊤
i ai +κ‖Σ(4),iai‖2 ≤ 0,

z̃i j ≥−l i j (yiw j +ai j ),z̃i j ≥−ui j (yiw j +ai j ),ξi ≥ 0 (32)

Note that, the uncertainty sets with the formulations (30) and (32) areE
(
µi ,κΣ(4),i

)
and

Ri ∩E
(
µi ,κΣ(4),i

)
respectively. It is also interesting to note that in the special casesε = 1

andε = 0, the formulation (MM-SM-I ) degenerates to (MM-M ) and (MM-S ) formulations
respectively. A comparison of the conservative nature of proposed formulations is presented
in the next section.

2.3 Note on the Conservative Nature of the Various Formulations

This section summarizes the formulations presented in the paper and provides a comparison
of their conservative nature. The formulations presented in the paper (see Table 1) can be
categorized based on whether they employ:

– first order or second order moment information. Formulations named using the sym-
bol ‘V’ employ variance (second order moment) information. In general, formulations
which employ second order moments are less conservative than those which employ
first order moments.
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Table 3 Summary of partial information used in various formulations and their corresponding classification
formulations and label prediction strategies are indicated.

Form Representation Partial Information Labeling Strategy

1 Single datapointd Mean ypr = sign(w⊤d−b)

2 Intervals Support ypr = sign(w⊤ci −b)

3 Intervals and moments Support, Moments ypr = sign(w⊤µi −b)
4 Replicatesd1,d2, . . . Support, Moments ypr is majority label of replicates

Label of replicate: sign(w⊤di −b)

– bounds or exact moment information. Formulations named using the symbol ‘B’ em-
ploy bounds on moments rather than the exact moments. In general, formulations which
employ moment bounds are more conservative than the ones which exact moments. This
is because they also guard against moment estimation errors. However, they are more
relevant for real-world data where the exact moments are never known.

– ellipsoidal or intersection of ellipsoidal and hyper-rectangular uncertainty sets. Formu-
lations suffixed with the symbol ‘I ’ employ uncertainty sets which are intersections of
ellipsoidal and hyper-rectangular sets. By construction,these formulations are less con-
servative than their counterparts, which uses simple ellipsoidal uncertainty sets.

The empirical results in section 4.1 support the comparisons presented here. Hence
the proposed formulations and in particularMM-SMV-I , lead to robust but not overly-
conservative classifiers. Formulations likeMM-SBMV-I which employ bounds on moments
increase the practical applicability of the proposed methodology as the true moments are
never known exactly.

3 Classification of Uncertain Test Data

This sections discusses the issue of classifying uncertaintest datapoints and presents vari-
ous error measures for evaluating the performance of classifiers which are robust to uncer-
tain data. As in case of constructing a classifier, differentlabel prediction strategies can be
employed based on the level of information available regarding the uncertainty in test dat-
apoints. Table 3 summarizes the various forms in which the uncertainty in datapoints can
be represented (here,ypr denotes the predicted label). For each form, the partial informa-
tion available and the corresponding label prediction methodologies are also indicated. The
applicability of a particular classification formulation presented in the paper can be decided
based on the partial information available (see Table 1). Asnoted earlier, even in the cases
where either support or moment information is not availableat all (e.g. Form 1,2 in table 3),
formulation (MM-SM-I ) can be applied withε = 1 andε = 0 respectively. Once a suitable
labeling strategy is chosen, the nominal error,NomErr , can be calculated as percentage of
wrongly classified test datapoints:

NomErr =
∑i 1ypr

i 6=yi

# test datapoints
×100 (33)

Note that, since each test datapoint is uncertain, there is always some (non-zero) prob-
ability that it is misclassified unless the entire bounding hyper-rectangle lies on the correct
side of the discriminating hyperplane. This misclassification probability is clearly not con-
sidered by the nominal error. Based on the discussion presented in section 2.1, error mea-
sures which take into account the per test datapoint misclassification probabilities can be



17

Table 4 Expressions ofεopt for different error measuresOptErr 1−4,c
i

Error Measure Formulation Uncertainty Region εopt

OptErr 1
i MM-SBMV ∪µi∈[µ−

i ,µ+
i ]E

(
µi ,κΣ(1),i

)
exp

{

−
(w⊤µopt

i −b)2

2
(

w⊤Σ2
(1),i w

)

}

OptErr 2
i MM-SMV E

(
µi ,κΣ(2),i

)
exp

{

− (w⊤µi−b)2

2
(

w⊤Σ2
(2),i w

)

}

OptErr 3
i MM-SBM ∪µi∈[µ−

i ,µ+
i ]E

(
µi ,κΣ(3),i

)
exp

{

−
(w⊤µopt

i −b)2

2
(

w⊤Σ2
(3),i w

)

}

OptErr 4
i MM-SM E

(
µi ,κΣ(4),i

)
exp

{

− (w⊤µi−b)2

2
(

w⊤Σ2
(4),i w

)

}

OptErr c
i MM-MC E

(

µi ,κcΣ
1
2

i

)

w⊤Σi w

(w⊤µi−b)2
+w⊤Σi w

derived. To this end, consider an uncertain test datapointXi with label yi is given and let
µopt

i j = argmaxµ∈[µ−
i j ,µ+

i j ] (−yi µw j). Then by Theorem 1, the true probability of misclassifi-

cation of the test datapointXi will be less than or equal toε (i.e.Prob
[
yi(w⊤Xi −b) ≤ 0

]
≤

ε) if:
yi(w⊤µopt

i −b) ≥ κ‖Σ(1),iw‖2

The above inequality is arrived at by settingξi = 1 in (7) and re-arranging terms. Using this,
one can calculate the least value ofε = εopt for which the above inequality is satisfied:

εopt = exp






−

(w⊤µopt
i −b)2

2
(

w⊤Σ 2
(1),iw

)







By lemma 2,εopt is the value ofε for which the uncertainty region∪µi∈[µ−
i ,µ+

i ]E
(
µi ,κΣ(1),i

)

touches the discriminating hyperplane,w⊤x−b = 0. Also, by the very definition ofεopt, the
true probability of misclassification of the test datapointXi will be less than or equal to it.
This leads to the following error definition on each test datapoint:

OptErr i =







1 if yi 6= ypr
i

εopt if yi = ypr
i and∃ x ∈ Ri ∋ yi(w⊤x−b) < 0

0 if yi(w⊤x−b) ≥ 0 ∀ x ∈ Ri

(34)

Now the analysis in the previous paragraph can be repeated with various uncertainty re-
gions considered in this paper. The error measures with different uncertainty regions differ
only in computing the value ofεopt. The uncertainty regions, the corresponding error mea-
sures andεopt are summarized in Table 4. An error measure derived using theChebyshev
based relaxation (denoted byOptErr c

i
5) is also presented in the table. The overall error,

OptErr 1-4,c, can be calculated as percentage ofOptErr 1-4,c
i over all test datapoints:

OptErr 1-4,c =
∑i OptErr 1-4,c

i

# test datapoints
×100 (35)

Note that, bothNomErr and OptErr 1-4,c can be estimated for any hyperplane clas-
sifier, provided the partial information employed is available. Also, since theOptErr 1-4,c

5 HereΣi denotes the covariance matrix of theith uncertain datapoint
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error measures employ the Bernstein/Chebyshev probability bounds, they represent the up-
per bound on the true probability of misclassification averaged over the test datapoints.
Since probability bounds are employed, the absolute valuesof these errors will invariably
be higher than the correspondingNomErr values. However since theNomErr error mea-
sure completely neglects the probability of misclassification arising due to the uncertainty
in test datapoints, the new error measuresOptErr 1-4,c provide a “finer” estimate of the true
testset error. Experimental results reported in the subsequent section show that the proposed
classifiers achieve lowerNomErr and OptErr 1-4,c when compared to existing uncertain
data classifiers.

4 Numerical experiments

This section presents experimental results which extensively compare the proposed (see
Table 1) and existing methodologies (see section 1.1) for classifying uncertain data. The
following datasets were used in the experiments:

WBCD Wisconsin Breast Cancer Diagnostic dataset6. The task is to classify “benign” and
“malignant” tumours based on 10 features computed from tumour cell nuclei. However,
since the measurements are not the same over all tumour cells, the mean, standard-error
and maximum values of the 10 features are provided. From thisinformation the support
and moments for each training datapoint are estimated. Bounds on the means,[µ−,µ+],
are estimated using the standard-error information. This dataset is an example of Form-3
data (see Table 3).

Micro-array Task is to identify four kinds of drugs: Azoles (A ), Fibrates (F ), Statins
(S ) and Toxicants (T ) based on gene-expression data7 [13]. Since the experiments are
noisy, three replicates of each datapoint are provided. Instead of handling a multi-class
problem we have defined six binary classification tasks using“one versus one” scheme
(e.g.A vs. F and so on). As a preprocessing step, we have reduced the dimension of
the problem to 166 by feature selection using Fisher score.

Synthetic Generation methodology: a) nominal (true) datapoints weregenerated using Gaus-
sian mixture models b) uncertainty was introduced into eachnominal point using stan-
dard finite-supported distributions (whose parameters were chosen randomly) c) repli-
cates for each nominal datapoint were produced by sampling the chosen noise distribu-
tion. The synthetic datasets are named using dimension of the dataset and are subscripted
with the distribution used for generating replicates (e.g.synthetic data of dimensionality
n with Uniform, truncated Beta, skew-Normal and skew-t noisedistributions are denoted
by nU, nβ , nSN andnST respectively).

Both theMicro-array andSynthetic datasets stand as examples of Form-4 data (refer
table 3). Also, in these cases, the support and moments for each datapoint were estimated
from the corresponding replicates. The bounds on first moments ([µ−,µ+]) and bounds
on second-moments (σ 2) were estimated using the Hotelling’sT2-statistic (see e.g. page
227, [10]) and Cochran’s theorem (see e.g. page 419, [17]) respectively.

As the key motivation is to develop robust as well as non-overly-conservative classifiers,
the first set of experiments, presented in section 4.1, compare the conservative nature of var-
ious robust classification constraints derived in the paperand existing in the literature. In

6 Available athttp://mlearn.ics.uci.edu/MLSummary.html
7 Available athttp://www.ncbi.nlm.nih.gov/geo/ with accession number GSE2187.
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Table 5 List of various relaxations of the chance-constraint

Relaxation Scheme Formulation Relaxed Constraint

Bernstein bounding MM-SMV (24) b≤ w⊤µi −κ‖Σ(2),iw‖2

Bernstein bounding MM-SMV-I (26) b≤ max(w⊤µi −κ‖Σ(2),iw‖2,w⊤ci −‖Siw‖1)

Bernstein bounding MM-SM (30) b≤ w⊤µi −κ‖Σ(4),iw‖2

Bernstein bounding MM-SM-I (32) b≤ max(w⊤µi −κ‖Σ(4),iw‖2,w⊤ci −‖Siw‖1)

Chebyshev bounding MM-MC (4) b≤ w⊤µi −κc‖Σ
1
2

i w‖2

Mean based MM-M (2) b≤ w⊤µi

Support based MM-S (3) b≤ w⊤ci −‖Siw‖1

particular, these experiments compare the conservative nature of Chebyshev and Bernstein
bounding schemes for relaxing CCP based learning formulations. As the results show, Bern-
stein schemes lead to far less conservative relaxations than Chebyshev schemes and hence
have potential to be exploited in building robust classifiers for uncertain data. Section 4.2
presents experiments which compare the margin, 2/‖w‖2, achieved by the proposed and ex-
isting robust classifiers on synthetic datasets. The results show that the proposed classifiers
achieve higher margin and hence have the potential to generalize better.

Section 4.3 presents the key empirical results of the paper —comparison of various ro-
bust classifiers discussed in this paper using the error measuresNomErr (33) andOptErr 1-4,c

(35). Results show that in case of all datasets, the proposedclassifiers achieve better gener-
alization than state-of-the-art.

As mentioned earlier, classifiers derived using Bernstein relaxation schemes are also
inherently robust to moment estimation errors. This is because the proposed classifiers re-
quire knowledge of moment bounds rather than the exact moments themselves. Section 4.4
presents experiments comparing the robustness of various uncertain data classifiers to mo-
ment estimation errors. The results show that the proposed classifiers are less susceptible to
moment estimation errors than existing classifiers.

4.1 Comparison of the Conservative Nature of the Various Robust Constraints

In this section we compare the conservative nature of the various robust classification con-
straints presented in this paper. In particular, we compareconservativeness of the various
convex relaxations of the chance-constraintProb(w⊤Xi − b ≤ 0) ≤ ε . Note that this con-
straint is a variant of the original chance-constraint (5) with yi = 1 and the 1− ξi term
neglected. Table 5 summarizes various relaxations of this chance-constraint derived using
the Bernstein and Chebyshev bounding schemes. Also, the constraints (2) in (MM-M ) and
(3) in (MM-S ) are accordingly modified and are shown in the table. These represent the
two extreme relaxations — most lenient and most conservative. The relaxations which use
bounds on moments are not compared here in order to have a faircomparison with Cheby-
shev schemes — which can only be employed if exact moments areknown. Constraints
shown in the table forMM-SMV-I andMM-SM-I can be derived easily from Lemma 3,
rather than from constraints in the corresponding formulations (26,32).

Now, suppose the value ofw is fixed. Then, the conservative nature of the various re-
laxations can be compared by looking at the least upper boundon b. Greater the value of
the least upper bound onb, lesser is the conservativeness of the corresponding relaxation.
Noting this observation, the following experiment was done: in each run of the experiment
a random vectorw was chosen and datapoints were sampled from a random distribution.
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Fig. 1 A plot of meanbnorm vs.ε comparing different robust constraints.

Random distributions were simulated by employing random parameters for the truncated
skewed t-distribution. Using the sampled datapoints, support and second order moments
were estimated. Employing this partial information and thechosen value ofw, the least
upper bound onb with various constraints can be calculated using table 58. Now let the
value ofb thus obtained withMM-M andMM-S bebm andbs respectively. Figure 1 shows
the plot ofbnorm ≡ b−bs

bm−bs
averaged over 50 such experimental runs at different valuesof

ε . Sinceε is a small number denoting upper bound on misclassification probability, only
values ofε ∈ [0,0.2] are interesting and hence are shown in the figure. Note that the value
of bnorm with MM-SMV-I andMM-SMV is the highest — proving that the Bernstein re-
laxation schemes are less conservative than the Chebyshev based schemes. It is interesting
to note that forε ≤ 0.04, even the Bernstein relaxations using first order moments((30) in
MM-SM and (32) inMM-SM-I ) are less conservative than the second order moment based
Chebyshev relaxations ((4) inMM-MC ). Hence, formulations derived using the proposed
methodology model uncertainty in a less conservative fashion and are expected to achieve
better generalization while being robust to uncertaintiesin data.

4.2 Comparison of Classification Margin

This section presents experimental results which compare various robust formulations based
on the classification margin (2/‖w‖2) achieved by them. Figure 2 shows plots of mar-
gin vs.ε with various formulations at a fixed value ofC = 10 on different synthetic datasets.
Clearly, the margins achieved by the proposed formulationsat all ε values are higher than
those achieved withMM-MC andMM-S . Since higher margins imply better generalization,
the proposed classifiers are expected to generalize better.Also note that for higher dimen-
sional datasets the gain in margin with the proposed classifiers is higher. The plots also show
that the proposed formulations model uncertainty in a less conservative fashion, regardless

8 Recall thatci represents the geometric center ofRi andSi is the diagonal matrix with entries as semi-
lengths of the bounding hyper-rectangleRi
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of the underlying noise distribution. This is expected as the proposed methodology does not
make any distributional assumptions. The margin achieved by MM-M is highest as it ne-
glects the uncertainty of the datapoints and assumes mean asthe only possible position for
the datapoint. Also, the trends shown in Figure 2 remained the same at different values of
theC parameter.

4.3 Comparison of Generalization Error

This section presents the experimental results comparingOptErr 1-4,c (35) andNomErr
(33) incurred by the various robust classifiers presented inthis paper. In cases where the
uncertainty in datasets is represented using replicates (e.g. Micro-array data), the compar-
ison is also done with an SVM constructed assuming each replicate as a training datapoint.
We denote this classifier asMM-R . The results are summarized in table 6. In each case, the
hyper-parameters (C and/orε) were tuned using a 5-fold cross-validation procedure. The
reported error values represent the cross-validation error obtained using the correspond-
ing tuned set of hyper-parameters averaged over three 5-fold cross-validation experiments.
Hence lower the values ofOptErr 1-4,c andNomErr , better is the generalization ability of
the corresponding robust classifier. Clearly, the proposedclassifiers incurred the least error
on all the datasets. Moreover in terms of theOptErr 1-4,c measures, the proposed classifiers
outperformed state-of-the-art in case of most of the datasets.

The results also show that the nearest competitor to the proposed classifiers is theMM-
MC classifier — which is also based on chance-constrained techniques. The results hence
show that, in general, formulations based on chance-constrained techniques and moreover
the ones using the Bernstein bounds are best suited for handling uncertainties in data. As
mentioned earlier, the classifiers derived using the Bernstein relaxations require knowledge
of bounds on moments rather than the exact moments. Clearly,the results in table 6 show
that the variants which employ bounds on moments achieve better generalization than the
ones which employ exact moments. This inherent advantage ofthe proposed methodology
is again illustrated in the subsequent section.

4.4 Robustness to Moment Estimation Errors

In this section, we present experiments comparing various formulations for robustness to
moment estimation errors. The experimental set-up is as follows: a) A synthetic dataset
template (e.g.nST) is chosen b) Using the same template 10 different training sets are gen-
erated. Hence the training sets differ only in terms of the replicates; nominal datapoints are
the same. c) Independently a testset consisting of nominal datapoints alone is also generated.
Hence the testset is not noisy and represents the true data. d) Various classifiers are trained
(with fixed values of hyper-parameters) using each of the 10 training sets, andNomErr
on the testsets was noted. The standard deviation in the testset error incurred on few syn-
thetic data templates is summarized in table 7. Ideally, since each of the 10 training sets
represent the same “true” (nominal) set of datapoints, the variation in the testset accuracy
must be zero. The results show the variation in testset erroris least forMM-SBMV-I and
MM-SBM-I — which are the variants employing bounds on moments. This proves that the
proposed classifiers are robust to moment estimation errorsand illustrates the benefit of the
proposed methodology. It is also interesting to note that, the variation in testset accuracies
with MM-SBMV-I andMM-SBM-I is less than that withMM-R andMM-S .
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Table 6 Comparison ofOptErr 1-4,c andNomErr for various robust classifiers.

Dataset: WBCD
MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-I MM-SBM-I MM-SBMV-I

OptErr 1 37.26 − 40.50 37.26 37.26 37.26 29.20 29.55
OptErr 2 37.26 − 45.82 37.26 37.26 37.26 32.40 32.98

OptErr 3 37.26 − 45.02 37.26 37.26 37.26 32.20 32.72
OptErr 4 37.26 − 45.82 37.26 37.26 37.26 32.60 32.41
OptErr c 37.26 − 40.70 37.26 37.26 37.26 28.82 29.18
NomErr 55.67 − 37.26 55.67 37.26 37.26 37.26 37.26

Dataset: A vs.F
MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-I MM-SBM-I MM-SBMV-I

OptErr 1 41.57 40.98 58.34 36.36 36.38 36.38 34.48 34.41
OptErr 2 39.21 38.55 58.32 34.23 34.25 34.25 32.37 32.50
OptErr 3 46.13 45.60 58.38 40.28 40.39 40.39 37.91 38.07

OptErr 4 46.00 45.46 58.38 40.17 40.26 40.26 37.80 37.96
OptErr c 77.18 77.97 58.97 71.5 58.97 58.97 58.97 58.97
NomErr 00.00 00.00 55.29 00.00 00.00 00.00 00.00 00.00

Dataset: A vs.S
MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-I MM-SBM-I MM-SBMV-I

OptErr 1 61.10 65.13 61.69 53.26 53.42 53.42 51.73 51.29
OptErr 2 59.25 63.35 61.69 51.88 52.02 52.02 50.04 49.66
OptErr 3 64.74 68.65 61.69 56.21 56.41 56.41 55.09 54.61
OptErr 4 64.64 68.56 61.69 56.13 56.32 56.32 54.99 54.52
OptErr c 86.24 88.66 61.69 80.64 61.69 61.69 61.69 61.69
NomErr 09.02 08.65 61.69 06.10 06.10 5.71 06.10 06.52

Dataset: A vs.T
MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-I MM-SBM-I MM-SBMV-I

OptErr 1 67.33 75.00 58.33 54.37 53.95 53.95 47.22 50.74
OptErr 2 65.54 73.32 58.33 52.97 52.68 52.68 46.77 50.08

OptErr 3 70.61 78.03 58.33 56.89 56.37 56.37 47.22 51.67
OptErr 4 70.51 77.94 58.33 56.81 56.28 56.28 47.22 51.67
OptErr c 88.94 93.23 58.33 79.33 58.33 58.33 47.22 51.67
NomErr 09.72 06.67 58.33 08.33 08.33 09.72 08.89 11.11

Dataset: F vs.S
MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-I MM-SBM-I MM-SBMV-I

OptErr 1 31.23 35.21 47.68 24.52 24.76 24.76 22.03 22.15
OptErr 2 29.27 33.32 46.89 22.71 22.96 22.96 20.24 20.38

OptErr 3 34.99 38.86 49.31 28.17 28.39 28.39 25.70 25.79
OptErr 4 34.86 38.73 49.25 28.05 28.27 28.27 25.57 25.66
OptErr c 69.91 73.70 62.95 66.51 62.95 62.95 62.95 62.95
NomErr 01.03 00.95 28.21 00.00 00.00 00.00 00.99 00.99

Dataset: F vs.T
MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-I MM-SBM-I MM-SBMV-I

OptErr 1 51.69 54.70 63.89 41.08 41.45 41.45 36.54 36.88

OptErr 2 49.84 52.81 63.87 39.63 40.07 40.07 35.48 35.79
OptErr 3 55.14 58.37 63.89 43.76 44.03 44.03 38.51 38.88

OptErr 4 55.02 58.25 63.89 43.66 43.94 43.94 38.43 38.80
OptErr c 79.84 83.52 63.89 71.16 63.89 63.89 60.34 60.78
NomErr 06.55 03.81 58.17 05.63 05.28 05.28 06.75 06.11

Dataset: S vs.T
MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-I MM-SBM-I MM-SBMV-I

OptErr 1 61.85 68.00 69.35 42.15 43.13 43.13 39.41 39.54

OptErr 2 60.31 66.25 69.35 41.03 41.98 41.98 38.28 38.41
OptErr 3 64.71 71.18 69.35 44.22 45.30 45.30 41.41 41.56

OptErr 4 64.63 71.09 69.35 44.14 45.21 45.21 41.33 41.48
OptErr c 85.48 90.39 69.35 70.40 69.35 69.35 67.73 67.81
NomErr 08.28 06.28 69.35 05.95 05.63 06.30 05.97 06.97
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Table 7 Standard deviation in testset error,NomErr , incurred by various robust classifiers.

MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-I MM-SBM-I MM-SBMV-I

10ST 0.7160 0.8551 0.6779 0.7738 0.5996 0.5731 0.5389 0.5446
15ST 0.4908 0.4698 0.1829 0.4118 0.2222 0.2833 0.2042 0.1504
20ST 0.8553 0.4517 0.2396 0.5864 0.2081 0.4286 0.1853 0.2086

5 Conclusions

A novel methodology for constructing robust classifiers by employing partial information
on the support and moments of the uncertain training datapoints was presented. The idea
was to pose the uncertain data classification problem as a CCPand relax it as a convex
SOCP formulation using Bernstein bounding schemes. The keyadvantage of the Bernstein
relaxation scheme is to model uncertainty in a less conservative manner. Moreover, since
the relaxation requires the knowledge of bounds on moments rather than the exact moments
themselves, the resulting classifiers are also inherently robust to moment estimation errors.
Using the proposed methodology, various robust formulations employing different levels of
partial information were derived. Interesting error measures for evaluating performance of
classifiers robust to uncertain data were also presented. The performance of the proposed
classifiers was empirically evaluated on various syntheticand real-world datasets.

The main conclusions to be drawn from the experimental results are as follows: 1) In
general, the Bernstein relaxation schemes are less conservative than the Chebyshev based
schemes. This key feature was exploited in the proposed methodology for developing clas-
sifiers that model data uncertainty very efficiently. In future, it would be interesting to ex-
plore the applicability of Bernstein schemes for relaxing various other CCP-based learning
formulations. 2) Classifiers developed using the proposed methodology achieve higher mar-
gins and hence better generalization than state-of-the-art. 3) Formulation using bounds on
moments (MM-SBM-I, MM-SBMV-I ) not only achieve good generalization but are less
susceptible to moment estimation errors.
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