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Abstract This paper studies the problem of constructing robust iflesswhen the training
is plagued with uncertainty. The problem is posed as a Ch@ocstrained Program (CCP)
which ensures that the uncertain datapoints are classdieelatly with high probability. Un-
fortunately such a CCP turns out to be intractable. The kegliywis in employing Bernstein
bounding schemes to relax the CCP as a convex second ordeprmgram whose solution
is guaranteed to satisfy the probabilistic constraintoio this work, only the Chebyshev
based relaxations were exploited in learning algorithmernBtein bounds employ richer
partial information and hence can be far less conservatiae Chebyshev bounds. Due to
this efficient modeling of uncertainty, the resulting cléiess achieve higher classification
margins and hence better generalization. Methodologiesléssifying uncertain test data-
points and error measures for evaluating classifiers rdbushcertain data are discussed.
Experimental results on synthetic and real-world datestetss that the proposed classifiers
are better equipped to handle data uncertainty and outpedtate-of-the-art in many cases.
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1 Introduction

Real-world classification data are fraught with uncertaand noise. The sources of uncer-
tainty are many — sampling errors, modeling errors or mesamsant errors. For example,
in case of bio-medical datasets, the measurement devicgswarms of resolutions. Lack
of complete understanding of the underlying biology furtbemplicates this problem. In
case of gene/protein expression data, uncertainty istatgei— the prime reason being bi-
ological heterogeneity of expression within the same &s#ia patient. Image classification
and automated call-routing are also examples of applicatichere the data is prone to be
erroneous.

Traditional classification algorithms, like the Supportci@ Machines (SVMs) [19],
assume that the training datapoints are known exactly andtieect an optimal decision
boundary. However, recent studies have shown that classifieich explicitly handle the
uncertainty in training data perform better than the cfassi which ignore such informa-
tion [3,13,8]. In this paper, we propose a novel methodolfugyconstructing maximum-
margin classifiers which are robust to uncertainties in.det@ proposed classifiers make
no distributional assumptions regarding the underlyingeutainties and only employ par-
tial information like support (bounds on uncertainty of thee datapoint) and second order
moments (mean and variance) of the uncertain training dategp

In the past, robust classifiers which either employ suppdarination [9,4] or second
order moments of the noise distribution [18] were deriveidcS these classifiers employ
limited partial information i.e. either support or momentarmation alone, though they
achieve robustness to uncertainty, they tend to be overgearvative. However, as richer
partial information is employed, uncertainty can be beftedeled — leading to classi-
fiers which are robust but not overly-conservative. As dised at various stages of this
paper, a direct consequence of non-conservative modelitigeauncertainty is an increase
in classification margin and hence an increase in genargliability of the classifier. The
key contribution of this paper is to derive tractable maximnargin formulations which
employ both the support and second order moment informatidine uncertain datapoints
in order to build the decision boundary. Since the proposaskdiers employ richer partial
information and better model the uncertainty, they achimtter generalization than the ex-
isting methods. Also, the proposed classifiers require ttevledge of bounds on second
order moments rather than the exact moments, which are oftemown. Thus, in addition
to being robust to uncertainty and not being overly condeathe proposed classifiers are
also inherently robust to moment estimation errors.

The idea is to derive a maximum-margin formulation which &yg chance-constraints
for the uncertain training datapoints. Each chance-camgtensures that the corresponding
uncertain training datapoint is classified correctly witjhprobability. The key novelty is to
employ Bernstein bounding schemes [14, 2] for relaxing #wilting Chance-Constrained
Program (CCP) as a Second Order Cone Program (SOCP), whidbecefficiently solved
using interior point solvers [15]. Until now only the Chebgs bounding schemes were
employed to relax various CCP based learning formulatiats1[8, 12]. To the best of our
knowledge, this is the first time Bernstein approximatiohesnes are employed for ap-
proximately relaxing linear chance constraints via CCRetldsrmulations. A number of
alternate schemes for bounding probabilistic linear caitgs exist, notably [5-7] where
divergence measures other than variance are employeduldwe interesting to derive clas-
sifiers from such formulatins and will be be investigatedutufe. However in this paper we
focus only on the Bernstein bounding based methodologidgletuss the related merits.
In particular, we show that the Bernstein based schemesnpjoging richer partial infor-



Table 1 Summary of formulations presented in the paper and theaparformation employed by them.

S.No. | Support | 15t Moment | 2" Moment Formulation
1 v bounds bounds MM-SBMV (16), MM-SBMV-I (23)
2 v exact exact MM-SMV (24), MM-SMV-| (26)
3 v bounds X MM-SBM (27), MM-SBM-I (29)
4 v exact X MM-SM (30), MM-SM-1 (32)

mation (support and second order moment information), fedelss conservative modeling
of the uncertainty than the Chebyshev based schemes, wiiploye moment information
alone. Using this SOCP relaxation as a basis, various mawimargin formulations are
derived which employ different levels of information abthe uncertain datapoints. Table 1
summarizes the formulatiohslerived in the paper and the partial information employed by
them.

The remainder of the paper is organized as follows: in sedtib, the past work done on
maximum-margin classification with uncertain data is byieflviewed. Section 2 presents
the main contribution of the paper, a maximum-margin SOGRfitation which employs
the support and bounds on the second order moments of theainagatapoints in order to
achieve robustness. The section also presents variouslipsons of this formulation to
the scenarios presented in table 1.The subsequent seidtwsses the issue of classifying
uncertain test datapoints and presents various error mesagthich evaluate the perfor-
mance of classifiers which handle uncertain data. In sedj@xperimental results which
compare the performance of the proposed methods and thagxisethods are presented.
The paper concludes in section 5, by summarizing the work.

1.1 Review of Past Work

In this section, we review the work done on maximum-margassification with uncertain
data. We start by discussing the well known SVM formulati@8][ which assumes that
the training datapoints are known exactly. Here, a hypagla'x — b = 0, that maximally
separates the positive and negative training datapoietnistructed. Denoting the training
datapoints by = [Xi1...Xn] " € R", i =1,...,mand the respective class labelsypyi =
1,...,m, this problem can be expressed as:

VTVTL'QI sIwl3+Cym, &
styiw'X—b)>1-§,&>0,i=1...,m 1)

& are slack variables introduced to allow for outliers & a user-given regularization
parameter. Note that the objective minimizes||», which turns out to be inversely pro-
portional to the margin of separation achieved betweendiéipe and negative datapoints.
According to the structural risk minimization principle\@pnik [19], such classifiers which
maximize the margin achieve good generalization.

1 Nomenclature of formulations: prefi®M ” denotesM aximumMargin classifier. Partial information
of Support,Mean,Variance employed by the classifier are denoteddiy M’, * V' respectively. The symbol
‘B’ denotes that the corresponding classifier employs bounds@ments rather than exact moments. The
suffix ‘" indicates that the corresponding classifier is a variafipse meaning will be clear later in the text.
For e.g., the abbreviationMM-SBMV ” stands for a maximum-margin classifier which employs suppo
bounds on means and variances of uncertain datapoints.



However, if the training datapoint¥;, are known to be uncertain and information re-
garding the underlying uncertainties is provided, thermssiféers which utilize such infor-
mation generalize better than their non robust countesdary. SVMs [18,9]). Different
approaches assume different kinds of information reggrtia uncertainties is known. The
simplest of these is a maximum-margin classifier which eggpjast the means of the un-
certain datapointgyi = E[X]. The problem solved is then:

(MM-M) - min slwlz+C3s &

2561

styiw'pg—b)>1-§&, &>0,i=1,....m 2

Assuming uncertainty in the datapoints is bounded i.e.,stigport is known, tractable
classification formulations which are robust to uncertadan been derived [9,4]. Specif-
ically, [9] assume that the extremum values of the featufethe datapoints are known
i.e., lij < Xj < ujj. In other words, each training datapoMtis assumed to lie in a hyper-
rectangleZ; = {x = [x1...X]" € R"|ljj <xj <ujj, j =1,...,n} and constraints enforc-
ing correct classification of all the datapoints lying in aubding hyper-rectangle are im-
posedy; (WTX— b) > 1-¢&, ¥V x € %. This leads to the following problem:

(MM-S)  min sIwl3+C3my &
W,b.fi
stywici—b)>1-&+|Swll1, §>0,i=1,....m (3)

wherec; is the geometric center of the hyper-rectangleand$; is a diagonal matrix with
entries as semi-lengths of the sides of the hyper-recta#@glé/sing the meangy;, and co-
variancesg; = cov[X] of the uncertain training datapoints, and employing thetl@bbev’s
inequality, classifiers which are robust to uncertaintyehagen derived [3, 18]:

(MM-MC)  min Wz +C3my &
W,D,Gi

1
Styl (WTI"I _b) 2 1_ EI +KC||Zi2W||27 EI 2 07 I = 17"'7m (4)

whereke = 4/ 1;85 ande € [0,1] is a user-given parameter. The robust formulations derived

in [4] turn out to be special cases of thdNI-MC ) formulation.

Each of the three robust formulations presented abover diiffthe way uncertainty is
modeled using various partial information like supportstfiand second order moments.
The formulation MM-M ) uses only mean (first order moment) information, whi&\-

S) uses support information anMM-MC ) uses second order moment information. The
conservative nature of a formulation depends on the pamfiaimation employed by it. As
more information is employed, the uncertainty can be bettmieled — leading to robust as
well as non-overly-conservative classifiers. Now, the eovetive nature of a robust classi-
fier has direct influence over the generalization abilityhaf tlassifier — this is justified in
the following text. Note that, more conservative the uraiaty modeling is, tighter are the
classification constraints in the respective formulatidgfe example, MIM-S) models the
uncertain datapoint using its bounding hyper-rectangleredis ¥IM-M ) models it as the
single pointy;. Clearly, the classification constraints (3) MNI-S) which imply that the
entire hyper-rectangle must be classified correctly atedigthan those inM(M-M ) which
imply that the meanyy;, alone needs to be classified correctly. It is also easy tohstde-
cause of this conservative modeling of uncertaintyMitt-S ), the margin,% |w||3, achieved



by it is lesser than that wittMM-M ). According to the structural risk minimization princi-
ple [19], larger is the margin of a classifier, better is itaglization ability. ThusNIM-S),
though robust to uncertainty fails to generalize well du#ga@onservative nature. On the
other hand, IM-M ), though models uncertainty in a less conservative matrinisr,not
robust enough as it assumes mean is the only possible po&itithe uncertain datapoint.
Thus in order to achieve good generalization classifierd tebe robust to uncertainties in
data while not being overly-conservative.

The formulation MM-MC ) is nearest in spirit to the present work. As shown in [18],
(MM-MC ) is the result of relaxing a CCP based formulation using thel@shev inequal-
ity. Relaxation schemes based on the Chebyshev’s inegjzalkt known to be conserva-
tive as they employ second moment information alone. Inghjger, we employ Bernstein
bounding schemes in order to relax the same CCP based maxinaugin formulation. The
Bernstein based relaxation employs both the support armhdesrder moment information
and hence leads to less conservative modeling of the uimtgrtahich as discussed above
is key in deriving classifiers with good generalization.

2 Maximum-margin Formulations for Uncertain Data

This section presents the novel maximum-margin classificdbrmulations which are ro-
bust to uncertainties in training data. The notation usesuimmarized below: leX; =
[Xi1...%n] " be the random variable generating fffe (uncertain) training datapoint and
lety; be its label. The following information regarding the urteér datapoints is assumed
to be known:

Support Extremum values of features of the datapoints are knownlii.e< Xi; < uij. In
other wordsX € % = {x = [x1... %] € R" | ljj <xj <uij, j=1,....n}.

15t Moment Bounds on the means of the datapoipés,= [t; ... My ] " < i =[Hi1... Hin] " =
EX] = [EXal..EDXnl]" < 55" = (47140

24 Moment Bounds on second-moments of the feature values of the dataawe known
i.e. 0< E[X3] < of.

Note that no assumptions regarding the forms of the unegyteistributions are made. The
discriminating hyperplane which is to be learnt using thesgitraining data is denoted by
w'x —b =0, wherew = [w;...wy] " is the normal and is the bias of the hyperplane.
Recall the SVM formulation (1), which we consider here astthseline formulation. Now,
since the datapoint§ are uncertain, the constraints in (1) can no longer be sdisfivays.
Hence, alternatively, it is required that the following nba-constraints are satisfied:

Prob(yi WX —b)<1— a) <e, (5)

where 0< € < 1 is a user-given parameter close to 0, denoting an upperdbauthe mis-
classification error made 0§. Thus, the chance-constraints in (5) ensure that the wicert
datapoints are mis-classified with small probability. dsihese chance-constraints, the fol-
lowing maximum-margin formulation, similar in spirit to 346, can be written:

(CCP)  min Hwlz+C3m, &

w,b,&

;0,6i

s.t.Prob(yi(w'X —b) <1-§&) <e &>0,i=1....m (6)



The above formulationGCP) is hard to solve even when the probability distributiontad t
X;’s are fully known, because the constraints are typically-oonvex. In the remainder of
the section several safe convex approximationsG§ZF) are derived, assuming different
levels of partial information regarding the uncertaintes known.

2.1 Formulations using Support and Bounds 8hQrder Moments

In this section, we present a maximum-margin classificatiomulation which employs
bounds on means and variances, as well as support (boungeg-tectangles) of the un-
certain training datapoints are known. Itis also assumaitiie features used to describe the
data are independent — in other words, the random variagleg = 1,...,n are assumed
to be independent. The key idea is to derive convex consdraimolving the above par-
tial information, which when satisfied imply that the chamomstraints (5) are satisfied. To
this end, the following theorem is presented, which spzaalthe Bernstein approximation
schemes described in [14,2,1]:

Theorem 1 Assuming partial information of supportj(K X; < u;j), bounds on first-moments
(4 < mij = E[X;j] < ) and bounds on second-momers<(E[X?] < o) of indepen-
dent random variables;X j = 1,...,n are known, the chance-constraint (5) is satisfied if
the followingconvex constraint in variables(w, b, &;), holds:

1-&Gi+yb+) (maX[—yiuij‘Wj,—yiui,*ij + K| Z(),iw[2 <0 (1)
J

wherek = /2log(1/€), Z(y); is a diagonal matrix given by:
Z(1); = diag([si2v (Mg, 1. 0i1) - SnV (K, Hin» Oin) ]) ®)
§j = @ and the functiorv (ui]f,uij*,aij) is as defined in (14).
Proof The chance-constraint (5) can be written as:
Prob(a,-TXa +ag> 0) <e )

whereap = 1— ¢ +Vyib andg = —y;w.
Using Markov inequality and independence of random vags{;,j = 1,...,n, we
have that:

Prob (X +a0 > 0) < exp{aao} [|Elexp{aa;X;}], Va=0  (10)
J

Key to modeling chance constraint (9) now depends on how pperbounds the moment
generating functionsk: [exp{tX;;}], t € R. To continue the proof, we use the following
lemma:

Lemma 1 Suppose the support and bounds on first, second momentsaftteen variable
Xij are known. Then,

2
v (IliJT»HiT7Uij) S|ZJ

2

E [exp{tX;; }] < exp t2+max[u”ft, uqt} Vte R  (11)



| -
Proof Consider the normalized random vaname— s, A% wheregij = - Zu” andsj =

Ul] —lij E[XIJ] ElX ]_ZE[Xii]Cii +Cz

Itis easy to see that1 < X < 1,E[Xj] = %l andE[XZ] =

Usmg these relations one can easily compute the boundsstrafid second moments of
X;j. Let these be denoted gy, < [y = E[x| 1< u, and 0< E[X,Z] 02 respectively.
By Jensen’s inequality, we have that; | < Gij. Hence without Ioss of generallty, assume
|| < Gij. Now, E [exp{tX;; }] = E [exp{ts;jX;j }] exp{tc;j }. Let f = ts;. We know that
(refer table 2 in [14], chapter 2 in [1]):

(i ol P51 (63 ot

X T,

E [exp{tX}] < gp;.6;(F) = i u.l jjg., 67
(L)) exp{f 1J+uij” }Jr(ai%*ﬂﬁ)exp{ff}

1424 +Erﬁ

, >0

v

(12)

f<o

Note that the above bound is tight given the circumstaneces: ¥ 0, the bound is aztchizeved
by a 2-point distribution at the points u i and 1 with masseeilzhﬁif;z and 1702”‘]:11&%
respectively. For such a distribution, the mean is indagdnd the second momentcfx;?]-.
Similar arguments hold for the case: 0. Though the bound in (12) is the tightest possible
under the given circumstances, employing it in (10) will leztd to tractable relaxations of
the original chance-constraint. Hence we further uppentidhe RHS of (12) by a single
exponential function such that the final relaxed constigitractable. To this end, define the

function:

hﬁij fﬁj 6= |Ogg[1ij_&ij (® (13)
Itis easy to show thaty,; 4 (0)=0 andhu b (0) = fiij. Now forf > 0,
(65 -2) (121 + 83) "exp il bevott)
2
{(l_ i) eXp{ u” 1 } + (6-'% o ﬁﬁ) exp{f}}
52 _ 12 o Nu
4(0ij—uij)(l—ui,) exp{ }exp{t}
<1
= . IJIJ Y L, - 2 =
(1_11!1) expqt uij "‘(Uij —Hij>9Xp{t}
The last inequality is true by the AM-GM inequality . Similapne can derive an inequality

for the casd < 0. Thushy, 5. (f) < 1V . Using Taylor series, it follows thaty, g, (f) <
fijt+ 32 vi. As a result, the function:

" ~

hﬂij Gij (0) =

(i .0) =minfk= 0y () < maf €40+ S0 (he i 00}
(14)
is well defined (in fact &< v(-,-,-) < 1) and hence

2
o v Hif»Hier»Uij .
gy () < expq max{iy €, 4t + #tﬂ v



8

Noting thatgy,; &, (f) is an upper bound o [exp{fX;; }] and using the fact th& [exp{tX;; }] =
E [exp{ts; X }] exp{tcij } andp = s %} +ij, we obtain (11). This completes the proof
of Lemma 1. O

Using lemma 1 and (10) we obtafl o > 0):
2
_ a
log [Prob (aiTxi +ajp > 0)} <a (a.-o—I— Z (max[—yiuij wij, —yiuiij] )) +7||Z(1)ﬂiw||§
]

Since this inequality holds for all non-negatigés, if we ensure that for certaia the right-
hand side of the inequality is log(¢), then we would satisfy the chance-constraint (9). So,
we have:

- a?
a (aao+ > (maX[—yiuij wj,—yiui,*WiD> += | Zwwl3 < loge (15)
J W—qz

p

In the caseg = 0, the above inequality is possible onlypf< O (.- € € [0,1]). Now sup-
poseq > 0. We wish to choose that value af for which the LHS of (15) is minimized.

This minimized value is 0 ip > 0 and—zp—qz2 if p< 0. Again sinces € [0,1], p> 0 is not

allowed. Substituting—zp—qz2 in LHS of (15), we haveg—i <Kk’ p+kg<O0 (. p<O).
Hence either in the case= 0 orq > 0, p+ kq < 0 is the sufficient condition for satisfying
the chance-constraint (5). Substituting the valuep, gf o in this inequality we obtain (7).
This completes the proof of Theorem 1. a

Replacing the chance-constraints (6) @JP) with the deterministic (convex) con-
straints (7), we obtain a maximum-margin formulation whétsures that the probability
of misclassification when trained with uncertain dafa,is less thare. This formulation
can be written as the following SOCP:

1 m
MM-SBMV min ZIwl3+CY &
( ) wimin, 2|| 2 i;fn
s.t. 1= & +yib+ Y 7j + k| Z(1)iW[2 <0,
J

Zj > —Yil Wy, Zj > —Yilwj, & >0 (16)

The values of the functiom(u”-*,uij*,aij) (14) can be calculated numerically. The details
of the numerical procedure are presented in section 2.hd SOCP KM-SBMV ) can be
efficiently solved using cone program solvers If®uMi?, Mosek® or CPLEX?.

In the following, a geometrical interpretation of the foramion (MM-SBMV ) is pre-
sented. To this end, consider the following lemma:

2 Available athttp://sedumi.mcmaster.ca/
3 Available athttp://www.mosek.com/index .php?id=7
4 Available athttp: //www.ilog.com/products/cplex/



Lemma 2 Let the set
& (M, kZ(1)) = {x =t +KkZg)a : [lal2 <1} (17)

represent an ellipsoid centered @t, whose shape and size are determinedkidyy) ;.
Consider the problem of correctly classifying points befiog to the union of ellipsoids
& (i, k(1)) over i € [, jt]:

yi (WTX - b) 2 1- Eiv v X € U“ig[ui’#i*]g (ul ) KZ(l),i) (18)
The continuum of constraints (18) are satisfied if and onfy)ifholds.

Proof We have the following:

(18) < max (—yinX) +1-&+yb<0

Xeuﬂi €y -Hiﬂ g(ui K2 )

& max <_YiWT(Ili+KZ<l)Ja)) FL-&tub<0
HeEl 1t llal2<1

& max (—yinui) + max (—KyinZ(l),ia) +1-&+yib<o0
w17 lallz<1 ’
< (7)

This completes the proof. a

The above lemma shows that the formulatiéfiM-SBMV ) views each uncertain training
datapoint as the sejl“ie[“if_mé”‘ (ui,KZ(l).’i) and does a maximum-margin classification
using these uncertainty sets.

Note that the size of uncertainty set, and hence robustmessanservative nature of
the classifier depend ok (and hence ore). More specifically, as the upper bound on
misclassification errorg, decreases, size of the uncertainty set increases. Hovrever
the support information we know that the true training damapcan never lie outside its
bounding hyper-rectangle. Thus we can obtain less conserveassifiers by employing
constraints using uncertainty sets as the intersecticmuicg[uif.W]éa (Lli,KZ(l).’i) and the
bounding hyper-rectangl#;. To this end we present the following lemma:

Lemma 3 Consider the problem of correctly classifying points beiog to the setz N
(Uuie[ui’,uﬁ]g (ki KZ(l)J)) :

VW x—b)>1-& Vx € Zn (Uuie[“if_uﬂ@@(ui,KZ(l)ﬂi)> (19)

The continuum of constraints (19) are satisfied if and ortlgeéffollowingconvex constraint
in (w,b, &,a) holds (hereg = [aj1...an]"):

1-&-+yib+ Y (max(—lj (wj +a;), —uj (5w; +a;)] +max| kg a7 | ) K20 @il <0
J
(20)
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Proof The constraints (19) hold if and only if:

1-&+yb+ max —yiw'x | <0

x € ‘%‘m(Uuie[ui’~uﬁ]g(“i’KZ(I)'i)

Note that, the term with max in the above inequality is nagibot the support function of the

set#z N (U - 16 (Ui, KZ1y;) ), denoted b —yiw). Since
! ( el '] (I-‘l K (1).,|)) y%i“(UME[“,—,“,ﬂé“(ui-KZ(l),i))( yiw). Si

support function of intersection of two sets is the infimahwdution of support functions
of the individual sets (see section 16, [16]), we have that:

_Z 2 i ) X (& <
(19 1§ +y'b+aa+airlf—yiw{luuie[ui,uﬁ]g(“i”‘Z(l)-i)(a') +|J,(ai)} <0

u+]r5”(ﬂi,KZ(1),i)(ai) +1% (5,)} <0 a+a=-yw

& Ja,a > 1_Ei+yib+{'u“,ew .
| 21)

Let the entries in vectors;,a be &j,aj, j = 1,...,n respectively. Then by lemma 2,
) — Y. —a.. +a.. ..

we have tha“u“ie[“i, “mé“(ui,KZ(l),i)(a‘) =2j (max{uij aij, i) auD + K|[Z()ai[2- Also,

l# (&) = 3 ;max[lij&j, uij&;]. Hence, we have that (19) is satisfied if and only if:

1= & +yib+ 5 max(lija;, ujaj]+ (max[ﬂifaij,ﬂﬁaij}) +K[[Z@allz<0 (22)
] ]

anda; +a = —y;w. Eliminating the variabley from (22) we obtain (20). ad

Conversely, it can also be shown that if the convex congtf2id) holds then so does the
chance-constraint (5). Below is a sketch of the proof: ihtie two variables;,a > a +

a, = —yw and also letajg = 1 — & +yib. Then LHS of the chance-constraint (5) can be
written as:

LHS of (5) = Prob(a' X, + a0+ 2 X > 0)
< Prob(a X; + &0+ maz)@-TX >0)
XEZ;

= Prob(a,-TXi +a_io+2max[li,-a_,-,-,uij5ij] >0 = Prob(a,-TXi +aj0>0)
J

Ao

Now the last probability expression is in the same form asH@&nce using the arguments
in theorem 1 we obtain that if (22) is satisfied, then the adagichance-constraint (5) is
satisfied. Eliminatingy from (22) usinga + & = —Y;w, one obtains (20). Therefore (20)
is indeed a valid sufficient condition for the chance-caistr(5) and moreover is a less
conservative constraint than (7) by the very construction.

Replacing the chance-constraints (6) @QOP) with the convex constraint (20), we ob-
tain a maximum-margin classification formulation whichasust to uncertain data as well
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as less conservative than tNeM-SBMV formulation. This formulation can be written as
the following SOCP:

1 m
MM-SBMV-I min S|wlE+C Y &
( ) Wb,z %) & 2” I2 i; I

st 1=-&+yib+ Y Zj+ ) zj + K[| Zg) a2 <0,
] 1
zj > W &, zj > Wi aj, & >0,
Zj > —lij(yiwj +aij), Zj > —uij (yiwj +aj) | (23)

Note that, the proposed formulations (16,23) are not oriysbto the uncertainties in
data but are also robust towards moment estimation errais.ig because the formulations
employ bounds on mee(rplilf,ui]*) and bounds on second-momeuﬁ]{ rather than the true
moments of the uncertain datapoints, which are often unknow

In the special case where the exact moments of the trainitapdiats are known, we
have thatu; = 1~ = 1" andE[X?] = 0. Hence the formulation (16) reduces to:

1 m
MM-SMV min ZIwl3+CS &
(W) i g IME+C3 8

st YW i —b) > 1-& + K[| Zz) W2, & >0 (24)

where
32, = diag([s1V(Hi1, Hi1, Gi1) - - -SnV(Hin, Hin, Oin)]) (25)

Also, in this case, the formulation (23) reduces to:

1 m
MM-SMV-I min ZIwl3+CS &
( ) w,b,&,8;,% 2” I2 izl I

st 1-&G+yib+ Y Zj+ua + k|2 a2 <0,
J

Zj > —lij (yiwj +&j).zj > —uij (yiwj +aj),& > 0| (26)

Note that, the uncertainty sets associated with the fortionis(24) and (26) ar& ( i, KZ(Z)J)
andZ N& (/Ji, KZ(Z)_i) respectively. The subsequent section presents a numalgcaithm
for computing the functiow (=, u™, o) defined in (14).

2.1.1 Computation of (1=, u™*, o)

In this section, we present details of the numerical promefr computingv(u=—, U™, o)
(refer (14)). Recall from lemma 1, the definitions of the nalimed random variable and
definitions of the corresponding bounds on figt] and second momen&f). As noted
earlier, we havefi*| < & < 1. Now consider the following claim:

Claim Letv(u~,u",0) be as defined in (14). Ther/62 — (A™M2 < v(u~,u*,0) <1,
wheref™" = min (|~ [, |1 ).
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Proof Rewriting the definition of/(u—, u™, g), we have:
v(u~,ut,o)=min{k>0| f(t;1,6,k) >0, Vt € R,V j1 € [, "]}

wheref (t; 1,6,k) = k—22t2+max[[1*t,[1+t} —hy 5(t) (refer (13,12) for definition dfi 5(t)).
Now, lett > 0 andf’(t; I*, 5,k) = ga(t) — ga(t) whereg; (t) = k%t + i~ and

92(t)

(1) (i - 62) exp{thT | + (62— (0)?) explt)
(1-p P ep{thZE (62— (@) exp(t)

Now, if g;(0) < g,(0), then there exists a neighbourhood arotirdd wheref'(t; i, &) <
0 (sincef (0;1*, &) = 0). Also in this neighbourhoodl(t; fi ™, &) < 0 becausd (0; i, ) =
0. Thusg; (0) > g,(0) is a necessary condition fdr > 0. Note thatg; (0) = k?,g,(0) =
62— (f17)?. Hencey(u~—,u",0) > /62— ([1T)2. Similarly, analyzing the cage< 0 one

obtainsv(u—,u",0) > /62— (f1~)2. Also, from the very definition of (1=, u™, o), we
have that its valueC 1 (refer lemma 1). This proves the claim. a

Note that, the functiorf (t; {1, 6,k) strictly increases with the value & and by the
above claim we have thaf 62 — (fi™")2 < k < 1. Thus one can have a simple binary search

algorithm for computing/(u~, u*, @). The algorithm starts witk}) = /62 — (f™n)2 and
| u
kg = 1. Atevery iterationj > 1,k = % and it is checked whether

0= (minf (t;2,6,k) V e [, f1*]) = 0

If £™" > 0, thenk! = ki, elsek = k;. This is repeated until a relevant stopping criteria is
met. Checking whethef™" > 0 for a fixed valuek;, i € [1~, i*] can be done using any
1-d minimization routine. Also, the criterion is checkedvatious values ofi € [i—, 1t].
Table 2 shows values of(u—, u™, g) computed using this numerical procedure. For each
value ofd, v(u—, u*, o) is computed for 10 equally spacfd values in the rangg-&, 4.

In the table, i~ andfi™ vary across rows and columns respectively. Hence a ‘~' sgmits
the casgl™ > it (which is not allowed).

The formulations derived in this section employ partiabimfiation of both support and
second order moments of uncertainty. These formulationdeapecialized to cases where
support and mean information alone are available. Thoughrtbreases the applicability of
the formulations, the resulting classifiers are more caasige as they now employ less in-
formation regarding the uncertainties. These speciaizatare discussed in the subsequent
section.

2.2 Formulations using Support and Bounds on Means

In this section, we present a maximum-margin classificatiwmulation which assumes
that the bounds on means and the bounding hyper-rectargjippdt) for the uncertain
training datapoints are known. Though no explicit bounds@rond-moments are assumed
in this case, the bounding hyper-rectangles imply natucainds for them: consider the

normalized random variabbéj = X”S—_JC” studied in lemma 1. It is easy to see tEﬁ(iﬂ <1

i.e. E[X?] < 2E[Xj]cij + 5 — G- Let us denote this natural bound BfX?] as(afj) . Now,
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Table 2 Values ofv(u~, u™, o) computed using the numerical procedure.

I 5=02 |
0.0000 03770 03875 03960 03922 03796 03580 0.3368 238.3 0.3090
_ 0.3770 0.3875 0.3960 0.3922 0.3796 0.3580 0.3367 0.3233238.
— 10000 03875 0.3960 0.3922 0.3796 0.3580 0.3368 0.33673368
. - — 03960 0.3922 0.3796 0.3582 0.3580 0.3580 0.3580
- - - — 03922 03796 0.3796 0.3796 0.3796 0.3196
- - - - — 03922 03922 0.3922 0.3922 0.39%2
. - . - . — 03960 0.3960 0.3960 0.3960
- - - - - - — 03875 0.3875 0.387%
. - . - . . - — 03770 0.377(
- - - - - - - - —  0.0000
1 =04 1
0.0000 05006 05258 05233 05191 04982 04610 0.4088 628.3 0.3089
- 0.5096 0.5258 05233 05191 0.4982 0.4619 0.4091 0.36313628.
. - 05258 05233 05191 04982 04619 0.4092 0.4091 0.4p88
. - — 05233 05191 04982 04619 04619 0.4619 0.4§19
- - - — 05191 04982 04982 04982 0.4982 0.4982
- - - - - 05191 0.5191 0.5191 0.5191 0.51891
- - - - - — 05233 05233 05233 052
. - . - . . — 05258 05258 052
. - . - . . - — 05096 0.509
- - - - - - - - —  0.000
I 5-06 I
0.0000 06070 0.6656 0.6703 06601 06362 05883 05127 91D.3 0.2808
- 0.6070 0.6656 0.6703 0.6601 0.6362 0.5883 0.5127 0.391B910.
. - 0.6656 0.6703 0.6601 0.6362 0.5883 0.5127 0.5127 0.5127
- - — 06703 06601 0.6362 0.5883 0.5883 0.5883 0.5883
. - . — 06601 06362 06362 0.6362 0.6362 0.6362
- - - - — 06601 06601 0.6601 0.6601 0.6601
- - - - - — 06703 06703 0.6703 0.67&3
. - . - . . — 06656 0.6656 0.66
- - - - - - - ~  0.6070 0.607
. - . - . . - - —  0.000d
(I =08 I
0.0000 0.7454 0.7803 0.8224 08206 0.7999 0.7543 0.6652028.5 0.1524
_ 0.7454 0.7893 0.8224 0.8206 0.7999 0.7543 0.6652 0.50285028.
- - 0.7893 0.8224 0.8206 0.7999 0.7543 0.6652 0.6652 0.6552
. - — 08224 08206 07999 0.7543 0.7543 0.7543 0.7543
. - . — 08206 07999 0.7999 0.7999 0.7999  0.7999
- - - - — 08206 0.8206 0.8206 0.8206 0.8206
. - . - . — 08224 08224 08224 0.8224
- - - - - - — 07893 0.7893 0.7893
- - - - - - - - 0.7454  0.7454
. - . - . . - - —  0.0000
I 6=1 |
0.0000 08579 00418 00804 00976 00938 00428 0.8315286.6 0.0000
- 0.8579 09418 0.9804 0.9976 0.9938 0.9428 0.8315 0.6285%288.
- - 0.9418 0.9804 0.9976 0.9938 0.9428 0.8315 0.8315 0.8815
. - — 09804 09976 0.9938 0.9428 0.9428 0.9428 0.9428
- - - — 09976 0.9938 0.9938 0.9938 0.9938 0.9988
. - . - — 09976 09976 0.9976 0.9976 0.996
- - - - - — 09804 09804 0.9804 0.98
- - - - - - — 09418 0.9418 0.94
. - . - . . - ~ 08579 0857
- - - - - - - - —  0.000
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all the formulations presented in the previous section esspiecialized usingj; = ojj. The
formulation (16), in this case, reduces to the following $FOC

. 1 m
(MM-SBM) min Zlwlz+C Zla
W,b.&; 7 2 is

st 1-&+yib+ Yz +k[|Z3) w2 <0,
J

Zj > —Yilh; Wy, Zj > —Yipw, & >0 (27)

where

()i = diag([s1V (Kig, M1, G1) - -SnV (Hin , i Oin)]) (28)
Also, formulation (23), which employs a less conservatireartainty set than (16), reduces
to:

1 m
MM-SBM-| min Z|w|5+CY &
( ) w,b,&i,7j,%j 8 ZH I2 i; l

s.t. 1=&i+yib+ 3 Zj+ ) zj + K| Z3)a2<0,
] ]
zj > W aij, zj > piai, & >0,
Zj > —lij(yiwj +&j),Z; > —uj (yiwj +aj) (29)

The uncertainty sets associated with the formulationsZQYareu“ie[uif’mé” (ui , KZ<3)J)
andZ; N (Uuie[uf-uﬁ]g (ui,KZ(3)_i)> respectively.

Interestingly, the value of [T uij*, o{;) can be computed analytically in the case where
Ky <cij < uij+ i.e., the case where the mean, is known to lie somewhere around the
mid-point of its bounding hyper-rectangle. In particuliéthe noise distribution of thé"

uncertain datapoint is symmetric, then this assumptionvigily true. The following lemma
throws light on this special case:

Lemma 4 Let the support of a random variable, X, peu] and let the midpoint and semi-
length of this interval be denoted byzc”'T” and s= “—5' respectively. Let the bounds on
the mearE[X] be [y, u*]and the bound on second-moment be denoted*byn the case,
U~ <c<ut,we have:

V(IJ 7u+7a*) = 1_(ﬂmin)2

wherefi™ — min(— i~ i) and i~ = -8, it =

Proof Recall the definition of the functiohy 5 (t) from (12,13). Hereg denotes the upper
bound on second-moment of the normalized random variXbte = i.e. E[X?] < 62.
Since no explicit second-moment bound is assumed in thepresse, we havé = 1.
Note thathy 1(t) = log(cosht + fisinht), t € R. Thusv(u—,u*,c*) (defined in (14)) is
the minimum value ok for which f(t) > 0, Vt, wheref (t) is defined as follows:

f(t) = K | fitt—log(costt + it sinht) , t > 0
" | €2+ it —log(costt + i~ sinht), t < 0

Now, consider the case> 0. Let f'(t) = ga(t) — ga(t) wheregs (t) = k2t + i, ga(t) =

sinht+{i* cosht : [ .
CosH T i sinfit* Now the following claim is true:
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Claim g(t) is concave fot > 0.

" 81— 2)exp{2}[(1— )%~ (1+0" )% exp{4t}]
Proof The value ofg (t) can be calculated as (LA ) exp() - (i)

gt)<0 < t> %Iog{iﬁi } This says that(t) is concave fott > 0, proving the
claim. ad

. Also

Sincegy(t) is concaveg; (0) > g,(0) implies f'(t) > 0, ¥t > 0 and is thus a sufficient
condition forf(t) >0Vt >0, asf(0) = 0. Also if g'l(O) < g’z(O) then3 a neighbourhood
int>0 wperef’(t) < 0 which impliesf (t) < 0 in that neighbourhood sindg0) = 0. Thus
0,(0) > g,(0) is a necessary and sufficient condition fit) > 0V t > 0. In other words
k2 > 1— (fi*)?. Similar arguments fot < 0 give the conditiork? > 1— (fi~)% Defining
™" = min(—f—, "), we havev(u—, u*, 0*) = \/1— (u™n)2, This completes the proof.
O

Again, in the special case where the megnare known, one hag; =y = ;. Using
this, the formulation (27) reduces to the following SOCP:

. 1 m
(MM-SM) ~ min 5mm@+2;§

w,b,¢&;

2561

st yi(w' i —b) > 1-& + k|| Z(4)Wll2, & >0 (30)

where
>4 = diag([s1V(Hi1, ti1, 671) - - - SnV(Hin, Hin, Oin)]) (31)
Also, in this case, formulation (29) reduces to:
(MM-SM-I) min ﬁmW+cm5
w,b.&i 8,7 2 2 i; I

st 1-&G+yib+ Y Zj+u &+ k| Z4 a2 <0,
]

Zj > —lij(yiwj +a;j),2; > —ui; (yiwj +&j),& > 0| (32)

Note that, the uncertainty sets with the formulations (3®) 632) are4 (L, k2 4);) and
FN&E (ui,KZ<4)7i) respectively. It is also interesting to note that in the sggdeases =1
ande = 0, the formulation MM-SM-I ) degenerates tiMM-M ) and MM-S) formulations
respectively. A comparison of the conservative nature oppsed formulations is presented
in the next section.

2.3 Note on the Conservative Nature of the Various Fornuati

This section summarizes the formulations presented indpempand provides a comparison
of their conservative nature. The formulations presemeithé paper (see Table 1) can be
categorized based on whether they employ:

— first order or second order moment information. Formulaioamed using the sym-
bol ‘V’ employ variance (second order moment) information. Inegah formulations
which employ second order moments are less conservativetkiese which employ
first order moments.
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Table 3 Summary of partial information used in various formulagand their corresponding classification
formulations and label prediction strategies are indibate

[[ Form ] Representation | Partial Information | Labeling Strategy [
1 Single datapoind Mean yPr = signw'd —b)
2 Intervals Support yP' = sign(w ¢ — b)
3 Intervals and moments Support, Moments yPr = sign(w i —b)
4 Replicatedds,dy, ... Support, Moments | yP" is majority label of replicates
Label of replicate: sigtw ' d; — b)

— bounds or exact moment information. Formulations namexdguie symbol B’ em-
ploy bounds on moments rather than the exact moments. Ingjefemulations which
employ moment bounds are more conservative than the oneb @xact moments. This
is because they also guard against moment estimation eHoveever, they are more
relevant for real-world data where the exact moments arerriexown.

— ellipsoidal or intersection of ellipsoidal and hyper-gogular uncertainty sets. Formu-
lations suffixed with the symbol * employ uncertainty sets which are intersections of
ellipsoidal and hyper-rectangular sets. By constructioese formulations are less con-
servative than their counterparts, which uses simplessligal uncertainty sets.

The empirical results in section 4.1 support the compasismesented here. Hence
the proposed formulations and in particuM-SMV-I , lead to robust but not overly-
conservative classifiers. Formulations IM&-SBMV-1 which employ bounds on moments
increase the practical applicability of the proposed medhugy as the true moments are
never known exactly.

3 Classification of Uncertain Test Data

This sections discusses the issue of classifying uncetgairdatapoints and presents vari-
ous error measures for evaluating the performance of @ilrsswhich are robust to uncer-
tain data. As in case of constructing a classifier, diffetabel prediction strategies can be
employed based on the level of information available reiggrthe uncertainty in test dat-
apoints. Table 3 summarizes the various forms in which treedainty in datapoints can
be represented (herg)" denotes the predicted label). For each form, the partiariné-
tion available and the corresponding label prediction wedfogies are also indicated. The
applicability of a particular classification formulationgsented in the paper can be decided
based on the partial information available (see Table 1n@ed earlier, even in the cases
where either support or moment information is not availablell (e.g. Form 1,2 in table 3),
formulation MM-SM-| ) can be applied witls = 1 ande = O respectively. Once a suitable
labeling strategy is chosen, the nominal erdomErr, can be calculated as percentage of
wrongly classified test datapoints:

Zi lyipr #Yi

NomEm = ———
#test datapoints

(33)
Note that, since each test datapoint is uncertain, thergvaya some (non-zero) prob-
ability that it is misclassified unless the entire boundiggér-rectangle lies on the correct
side of the discriminating hyperplane. This misclassifaraprobability is clearly not con-
sidered by the nominal error. Based on the discussion piesém section 2.1, error mea-
sures which take into account the per test datapoint mii€ilzetion probabilities can be
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Table 4 Expressions ok, for different error measure3ptErr ; 1-4c
[ Error Measure | Formulation [ Uncertainty Region | opt [
1 wT Om b)2
OptErr ; MM-SBMV | U, el b ]6"(;1.7;(2(1 i) | exp 7w
OptErr ? MM-SMV & (Ui, KZ2)5) exp{ WT“‘ }
2)|
(WT opt_
OptErr 3 MM-SBM | U, i€ (HiKZ(3)) exp{ szz
OptErr # MM-SM & (H.KZ(47) exp{— (Vv“ﬂ*;z }
OptErr ¢ MM-MC & (o kes? WT#
! e (WTui—b)2+WTZiW

derived. To this end, consider an uncertain test datap6imtith labely; is given and let
uﬁpt =arg ma>§,€[u u*]( Yiw;j). Then by Theorem 1, the true probability of misclassifi-

cation of the test datapoim will be less than or equal to (i.e. Prob[y;(w "X —b) < 0] <
g)if:

yi(w P —b) > K|S iwl2
The above inequality is arrived at by settifig= 1 in (7) and re-arranging terms. Using this,
one can calculate the least valuesof £, for which the above inequality is satisfied:

(w! ™ —b)2

By lemma 2 £t is the value of for which the uncertainty region, .- ,.+€ (Ki,KZ (1))

touches the discriminating hyperplame, x —b = 0. Also, by the very definition o, the
true probability of misclassification of the test datapothivill be less than or equal to it.
This leads to the following error definition on each test pgatat:

1 ity Ay
OptErr; = { &pt if yi=y> andIx € % > yi(w'x—b) <0 (34)
0 ifyy(w'x—b)>0VxecZ%

Now the analysis in the previous paragraph can be repeathd/arious uncertainty re-
gions considered in this paper. The error measures witbrdift uncertainty regions differ
only in computing the value dofy,. The uncertainty regions, the corresponding error mea-
sures andpt are summarized in Table 4. An error measure derived usin@tigbyshev
based relaxation (denoted I®ptErr °) is also presented in the table. The overall error,
OptErr 14, can be calculated as percentag©ptErT ; 1-4¢ over all test datapoints:

4c_ 3iOptEr 1-4c

OptErr - =
P #test datapoints

(35)

Note that, bothiNomErr and OptErr 14 can be estimated for any hyperplane clas-
sifier, provided the partial information employed is avaiéa Also, since th@ptErr 14¢

5 HereZ; denotes the covariance matrix of tffeuncertain datapoint
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error measures employ the Bernstein/Chebyshev prohabdiinds, they represent the up-
per bound on the true probability of misclassification agethover the test datapoints.
Since probability bounds are employed, the absolute valfiisese errors will invariably
be higher than the correspondihpmErr values. However since tidomErr error mea-
sure completely neglects the probability of misclassificatrising due to the uncertainty
in test datapoints, the new error measuPgsErr 14 provide a “finer” estimate of the true
testset error. Experimental results reported in the sulssggection show that the proposed
classifiers achieve lowedomErr and OptErr 14 when compared to existing uncertain
data classifiers.

4 Numerical experiments

This section presents experimental results which extelysisompare the proposed (see
Table 1) and existing methodologies (see section 1.1) fssilying uncertain data. The
following datasets were used in the experiments:

WBCD Wisconsin Breast Cancer Diagnostic datis€he task is to classify “benign” and
“malignant” tumours based on 10 features computed from turnell nuclei. However,
since the measurements are not the same over all tumourtbellmean, standard-error
and maximum values of the 10 features are provided. Fronirtfuemation the support
and moments for each training datapoint are estimated. @&oon the meangy —, ],
are estimated using the standard-error information. Thiigs®t is an example of Form-3
data (see Table 3).

Micro-array Task is to identify four kinds of drugs: AzolesA), Fibrates &), Statins
() and Toxicants.¢’) based on gene-expression dgt8]. Since the experiments are
noisy, three replicates of each datapoint are providededasof handling a multi-class
problem we have defined six binary classification tasks u%ng versus one” scheme
(e.g.«7 vs..# and so on). As a preprocessing step, we have reduced thesioment
the problem to 166 by feature selection using Fisher score.

Synthetic Generation methodology: a) nominal (true) datapoints Wwergerated using Gaus-
sian mixture models b) uncertainty was introduced into eswhinal point using stan-
dard finite-supported distributions (whose parametergwbhosen randomly) c) repli-
cates for each nominal datapoint were produced by samgiaghosen noise distribu-
tion. The synthetic datasets are named using dimensio ofttaset and are subscripted
with the distribution used for generating replicates (sygthetic data of dimensionality
nwith Uniform, truncated Beta, skew-Normal and skew-t naiistributions are denoted
by ny, ng, nsy andnst respectively).

Both theMicro-array and Synthetic datasets stand as examples of Form-4 data (refer
table 3). Also, in these cases, the support and moments ¢br dstapoint were estimated
from the corresponding replicates. The bounds on first meengn—, 1*]) and bounds
on second-momentwof) were estimated using the Hotelling&-statistic (see e.g. page
227, [10]) and Cochran’s theorem (see e.g. page 419, [1SPhectively.

As the key motivation is to develop robust as well as nondgvernservative classifiers,
the first set of experiments, presented in section 4.1, cortha conservative nature of var-
ious robust classification constraints derived in the paper existing in the literature. In

6 Available athttp://mlearn.ics.uci.edu/MLSummary . html
7 Available athttp: //www.ncbi.nlm.nih.gov/geo/ With accession number GSE2187.
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Table 5 List of various relaxations of the chance-constraint

[[ Relaxation Scheme | Formulation | Relaxed Constraint [
Bernstein bounding| MM-SMV (24) b <wT i — K[| Z5) w2
Bernstein bounding | MM-SMV-I (26) | b< max(w' i — K[|z iwll2,w ¢ — [|Siwl|1)
Bernstein bounding| MM-SM (30) b<w’py— K| Za)iwll2
Bernstein bounding| MM-SM-I (32) | b<maxw' i —K|[Za;wl2,Ww c —[|Sw]1)
T
Chebyshev bounding MM-MC (4) b<wT i —Kel|Z2w|2
Mean based MM-M (2) b<w'y
Support based MM-S (3) b<w'g—|Swl1

particular, these experiments compare the conservativeenaf Chebyshev and Bernstein
bounding schemes for relaxing CCP based learning fornaustiAs the results show, Bern-
stein schemes lead to far less conservative relaxatioms@habyshev schemes and hence
have potential to be exploited in building robust classififer uncertain data. Section 4.2
presents experiments which compare the margifw2, achieved by the proposed and ex-
isting robust classifiers on synthetic datasets. The eshhw that the proposed classifiers
achieve higher margin and hence have the potential to gereebetter.

Section 4.3 presents the key empirical results of the papeomparison of various ro-
bust classifiers discussed in this paper using the erroruresiéomErr (33) andOptErr 1-4¢
(35). Results show that in case of all datasets, the propaassdifiers achieve better gener-
alization than state-of-the-art.

As mentioned earlier, classifiers derived using Bernstelaxation schemes are also
inherently robust to moment estimation errors. This is beeahe proposed classifiers re-
quire knowledge of moment bounds rather than the exact mantieemselves. Section 4.4
presents experiments comparing the robustness of varimertain data classifiers to mo-
ment estimation errors. The results show that the propdsedifiers are less susceptible to
moment estimation errors than existing classifiers.

4.1 Comparison of the Conservative Nature of the VariousuRbBonstraints

In this section we compare the conservative nature of tHewsrobust classification con-
straints presented in this paper. In particular, we compareservativeness of the various
convex relaxations of the chance-constrambb(w X —b < 0) < £. Note that this con-
straint is a variant of the original chance-constraint (3thw; = 1 and the 1- & term
neglected. Table 5 summarizes various relaxations of thasee-constraint derived using
the Bernstein and Chebyshev bounding schemes. Also, tigraonis (2) in ¥M-M ) and
(3) in (MM-S) are accordingly modified and are shown in the table. Thegesent the
two extreme relaxations — most lenient and most conservatitie relaxations which use
bounds on moments are not compared here in order to have@faparison with Cheby-
shev schemes — which can only be employed if exact momentkremen. Constraints
shown in the table foMM-SMV-I andMM-SM-I can be derived easily from Lemma 3,
rather than from constraints in the corresponding fornnurtat (26,32).

Now, suppose the value @f is fixed. Then, the conservative nature of the various re-
laxations can be compared by looking at the least upper boor Greater the value of
the least upper bound dm lesser is the conservativeness of the correspondingatibax
Noting this observation, the following experiment was ddnesach run of the experiment
a random vectow was chosen and datapoints were sampled from a random di&irib



20

Mean b
\

-1r / ——— MM-M

/ MM-S
—&— MM-MC
—&— MM-SM
—+— MM-SM
—— MM-SM
—— MM-SMI

-15 -

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Fig. 1 A plot of meanbnorm VS. € comparing different robust constraints.

Random distributions were simulated by employing randomampaters for the truncated
skewed t-distribution. Using the sampled datapoints, supgnd second order moments
were estimated. Employing this partial information and thesen value ofv, the least
upper bound orb with various constraints can be calculated using taBleN®w let the
value ofb thus obtained witMM-M andMM-S be by, andbs respectively. Figure 1 shows
the plot of bporm = ﬁ averaged over 50 such experimental runs at different valties
€. Sinceeg is a small number denoting upper bound on misclassificatiobgbility, only
values ofe € [0,0.2] are interesting and hence are shown in the figure. Note teatalue

of bnorm with MM-SMV-I andMM-SMV is the highest — proving that the Bernstein re-
laxation schemes are less conservative than the Chebysked lschemes. It is interesting
to note that fore < 0.04, even the Bernstein relaxations using first order momga@ in
MM-SM and (32) inMM-SM-1 ) are less conservative than the second order moment based
Chebyshev relaxations ((4) MM-MC ). Hence, formulations derived using the proposed
methodology model uncertainty in a less conservative fashnd are expected to achieve
better generalization while being robust to uncertaintiefata.

4.2 Comparison of Classification Margin

This section presents experimental results which compateus robust formulations based
on the classification margin (#w||2) achieved by them. Figure 2 shows plots of mar-
gin vs. ¢ with various formulations at a fixed value G6f= 10 on different synthetic datasets.
Clearly, the margins achieved by the proposed formulatairedl € values are higher than
those achieved withiM-MC andMM-S. Since higher margins imply better generalization,
the proposed classifiers are expected to generalize b&tsernote that for higher dimen-
sional datasets the gain in margin with the proposed classif higher. The plots also show
that the proposed formulations model uncertainty in a lesservative fashion, regardless

8 Recall thatc represents the geometric centergfandS is the diagonal matrix with entries as semi-
lengths of the bounding hyper-rectangi
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of the underlying noise distribution. This is expected a&sgioposed methodology does not
make any distributional assumptions. The margin achieyelkl-M is highest as it ne-
glects the uncertainty of the datapoints and assumes meég asly possible position for
the datapoint. Also, the trends shown in Figure 2 remaineds#ime at different values of
theC parameter.

4.3 Comparison of Generalization Error

This section presents the experimental results compa®ipigErr 14 (35) andNomErr
(33) incurred by the various robust classifiers presentetii;mpaper. In cases where the
uncertainty in datasets is represented using replicatgsMéro-array data), the compar-
ison is also done with an SVM constructed assuming eaclcegplas a training datapoint.
We denote this classifier &M-R . The results are summarized in table 6. In each case, the
hyper-parametersC(and/or€) were tuned using a 5-fold cross-validation procedure. The
reported error values represent the cross-validatiorr etotained using the correspond-
ing tuned set of hyper-parameters averaged over threed=foks-validation experiments.
Hence lower the values @ptErr 14 andNomErr, better is the generalization ability of
the corresponding robust classifier. Clearly, the propataskifiers incurred the least error
on all the datasets. Moreover in terms of DptErr 14¢ measures, the proposed classifiers
outperformed state-of-the-art in case of most of the d&gase

The results also show that the nearest competitor to theopeajclassifiers is thdM-
MC classifier — which is also based on chance-constrained igobs The results hence
show that, in general, formulations based on chance-ainstf techniques and moreover
the ones using the Bernstein bounds are best suited forihgndicertainties in data. As
mentioned earlier, the classifiers derived using the Beimselaxations require knowledge
of bounds on moments rather than the exact moments. Cl#zelyesults in table 6 show
that the variants which employ bounds on moments achieverbggneralization than the
ones which employ exact moments. This inherent advantageeqgfroposed methodology
is again illustrated in the subsequent section.

4.4 Robustness to Moment Estimation Errors

In this section, we present experiments comparing variousidlations for robustness to
moment estimation errors. The experimental set-up is dgwsl a) A synthetic dataset
template (e.gnst) is chosen b) Using the same template 10 different traingtg are gen-
erated. Hence the training sets differ only in terms of thgficates; nominal datapoints are
the same. c) Independently a testset consisting of nomatapdints alone is also generated.
Hence the testset is not noisy and represents the true dataridus classifiers are trained
(with fixed values of hyper-parameters) using each of therdidihg sets, andNomErr

on the testsets was noted. The standard deviation in theetestor incurred on few syn-
thetic data templates is summarized in table 7. Ideallycesach of the 10 training sets
represent the same “true” (nominal) set of datapoints, #r@tion in the testset accuracy
must be zero. The results show the variation in testset exleast forMM-SBMV-I and
MM-SBM-I — which are the variants employing bounds on moments. Tliggzrthat the
proposed classifiers are robust to moment estimation esratdllustrates the benefit of the
proposed methodology. It is also interesting to note tlinat variation in testset accuracies
with MM-SBMV-I andMM-SBM-I is less than that witMM-R andMM-S.
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Margin (2/|Iwll,)

Margin (2/|Iwll,)

Margin (2/|Iwll,)

Fig. 2 Figure comparing margins achieved by 8 formulation at werie values (2B on top-left, 10B on
top-right,2U on middle-left, 10U on middle-right, 2SN onttwon-left, 10SN on bottom-right )
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Table 6 Comparison oDptErr 1-4¢ andNomErr for various robust classifiers.

Dataset: WBCD

MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-1 MM-SBM-I MM-SBMV-|
OptErr I 37.26 — 40.50 37.26 37.26 37.26 29.20 29.55
OptErr2 | 37.26 — 45.82 37.26 37.26 37.26 3240 32.98
OptErr 3 | 37.26 — 45.02 37.26 37.26 37.26 3220 32.72
OptErr 4 37.26 — 45.82 37.26 37.26 37.26 32.60 3241
OptErr ¢ | 37.26 — 40.70 37.26 37.26 37.26 28.82 29.18
NomErr 55.67 — 37.26 55.67 37.26 3726 3726 3726
Dataset: A NS..F

MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-1 MM-SBM-I MM-SBMV-|
OptErr I 41.57 40.98 58.34 36.36 36.38 36.38 34.48 3441
OptErr 2 39.21 38.55 58.32 34.23 34.25 34.25 3237 32.50
OptErr3 | 46.13 4560 58.38 40.28 40.39 40.39 3791 38.07
OptErr4 | 46.00 4546 58.38 40.17 40.26 40.26  37.80 37.96
OptErr ¢ | 77.18  77.97 5897 71.5 5897 5897 5897 5897
NomErr 00.00 0000 55.29 00.00 0000 0000 0000 0000
Dataset: ' Vs..S

MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-1 MM-SBM-I MM-SBMV-|
OptErr I 61.10 65.13 61.69 53.26 53.42 53.42 51.73 51.29
OptErr 2 59.25 63.35 61.69 51.88 52.02 52.02 50.04 49.66
OptErr3 | 6474 6865 61.69 56.21 56.41 56.41 55.09 5461
OptErr* | 6464 6856 61.69 56.13 56.32 56.32 54.99 5452
OptErr ¢ 86.24 88.66 6169 80.64 61.69 6169 6169 6169
NomErr 09.02 08.65 61.69 06.10 06.10 571 06.10 06.52
Dataset: A NS. T

MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-1 MM-SBM-I MM-SBMV-|
OptErr I | 6733 7500 58.33 54.37 53.95 53.95 4722 50.74
OptErr 2 65.54 73.32 58.33 52.97 52.68 52.68 46.77 50.08
OptErr 8 70.61 78.03 58.33 56.89 56.37 56.37 47.22 51.67
OptErr4 | 7051 77.94 5833 56.81 56.28 56.28 4722 51.67
OptErr ¢ 88.94 93.23 58.33 79.33 58.33 58.33 47.22 51.67
NomErr 09.72 0667 58.33 08.33 08.33 09.72 08.89 11.11
Dataset: Fvs..S

MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-1 MM-SBM-I MM-SBMV-|
OptErr T | 3123 3521 47.68 24.52 24.76 2476 2203 22.15
OptErr 2 29.27 33.32 46.89 22.71 22.96 22.96 20.24 20.38
OptErr 3 34.99 38.86 49.31 28.17 28.39 28.39 25.70 25.79
OptErr* | 3486 3873 49.25 28.05 28.27 28.27 2557 25.66
OptErr ¢ 69.91 73.70 6295 66.51 6295 6295 6295 6295
NomErr 01.03 00.95 2821 00.00 0000 0000 00.99 00.99
Dataset: FVs. T

MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-| MM-SBM-I MM-SBMV-|
OptErr I | 5169 5470 63.89 41.08 41.45 41.45 3654 36.88
OptErr2 | 4984 5281 63.87 39.63 40.07 40.07 3548 35.79
OptErr 3 55.14 58.37 63.89 43.76 44.03 44.03 3851 38.88
OptErr 4 55.02 58.25 63.89 43.66 43.94 43.94 3843 38.80
OptErr ¢ 79.84 83.52 63.89 71.16 63.89 63.89 60.34 60.78
NomErr 06.55 0381 58.17 05.63 05.28 05.28 06.75 06.11
Dataset: SVS.T

MM-M MM-R MM-S MM-MC MM-SM-I MM-SMV-| MM-SBM-I MM-SBMV-|
OptErr I | 6185 6800 69.35 42.15 43.13 4313 3941 39.54
OptErr2 | 6031 66.25 69.35 41.03 41.98 4198 3828 38.41
OptErr3 | 6471 71.18 69.35 44.22 45.30 4530 4141 41.56
OptErr4 | 64.63 71.09 69.35 44.14 4521 4521 4133 41.48
OptErr ¢ | 8548 90.39 69.35 70.40 69.35 69.35 67.73 67.81
NomErr 08.28  06.28 69.35 05.95 05.63 06.30 05.97 06.97
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Table 7 Standard deviation in testset errbiogmErr, incurred by various robust classifiers.

[ MM-M MM-R MM-S MM-MC  MM-SM- MM-SMV-l MM-SBM-I MM-SBMVA| [
10st 0.7160 0.8551 0.6779 0.7738 0.5996 0.5731 0.5389 0.5446
15s7 0.4908 0.4698 0.1829 0.4118 0.2222 0.2833 0.2042 0.1504
20st 0.8553 0.4517 0.2396 0.5864 0.2081 0.4286 0.1853 0.2086

5 Conclusions

A novel methodology for constructing robust classifiers byp®ying partial information
on the support and moments of the uncertain training datépeias presented. The idea
was to pose the uncertain data classification problem as ad@@Relax it as a convex
SOCP formulation using Bernstein bounding schemes. Tha#legntage of the Bernstein
relaxation scheme is to model uncertainty in a less conseevenanner. Moreover, since
the relaxation requires the knowledge of bounds on momattterrthan the exact moments
themselves, the resulting classifiers are also inhereollyst to moment estimation errors.
Using the proposed methodology, various robust formutatiemploying different levels of
partial information were derived. Interesting error measuor evaluating performance of
classifiers robust to uncertain data were also presented p&Hormance of the proposed
classifiers was empirically evaluated on various syntreetit real-world datasets.

The main conclusions to be drawn from the experimental resué as follows: 1) In
general, the Bernstein relaxation schemes are less caiserthan the Chebyshev based
schemes. This key feature was exploited in the proposedauielitngy for developing clas-
sifiers that model data uncertainty very efficiently. In fefuit would be interesting to ex-
plore the applicability of Bernstein schemes for relaxiagious other CCP-based learning
formulations. 2) Classifiers developed using the proposetthodology achieve higher mar-
gins and hence better generalization than state-of-th&gaFormulation using bounds on
moments IM-SBM-I, MM-SBMV-1 ) not only achieve good generalization but are less
susceptible to moment estimation errors.
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