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Abstract

We introduce a frequency decomposition based back-

ground generation and subtraction method that explicitly

harnesses the scene dynamics to improve segmentation.

This allows us to correctly interpret scenes that would

confound appearance-based algorithms by having high-

variance background in the presence of low-contrast targets,

specifically when the background pixels are well modeled

as cyclostationary random processes. In other words, we

can distinguish near-periodic temporal patterns induced by

real-world physics: the motion of plants driven by wind,

the action of waves on a beach, and the appearance of ro-

tating objects. To capture the cyclostationary behavior of

each pixel, we compute the frequency coefficients of the

temporal variation of pixel intensity in moving windows.

We maintain a background model that is composed of fre-

quency coefficients, and we compare the background model

with the current set of coefficients to obtain a distance map.

To eliminate trail effect, we fuse the distance maps.

1 Introduction

Background subtraction is the most common approach for

discriminating a moving object in a relatively static scene.

Basically, a reference model (background) for the stationary

part of the scene is estimated and the current image is com-

pared with the reference to determine the changed regions

(foreground) in the image.

Existing methods can be classified as either single-layer

or multi-layer methods. Single-layer methods construct a

model for the color distribution of each pixel based on the

past observations. Wren [6] proposed a single unimodal,

zero-mean, Gaussian process to describe the uninteresting

variability. The background is updated with the current

frame according to a preset weight, which adjusts how fast

the background should be blended to the new frame. How-

ever, it is shown that such a blending is sensitive to the se-

lection of the learning factor. Depending its value, either the

foreground may prematurely blended into the background,

or the model becomes unresponsive to the observations.

Toyama [5] preferred an autoregressive model, Kalman fil-

Figure 1: Model based methods, which neglect temporal

correlation, cannot differentiate the above sequences.

ter, to capture the properties of dynamic scenes. The var-

ious parameters of the filter such as the transition matrix,

the process noise covariance and the measurement noise co-

variance may change at each time step but are generally as-

sumed to be constant. Another drawback of the Kalman

filter is its inability to represent multiple modalities.

Stauffer and Grimson [2] suggested to model the back-

ground with a mixture of Gaussian models. Rather than

explicitly modeling the values of all the pixels as one par-

ticular type of distribution, the background is constructed

by a pixel-wise mixture of Gaussian distributions to sup-

port multiple backgrounds. Instead of mixture approach,

Porikli and Tuzel [4] presented a multi-modal background

algorithm that models compete each other. Elgammal [1]

used a non-parametric approach, where the density at a par-

ticular pixel was modeled by Gaussian kernels. Mittal and

Pragios [3] integrated optical flow in the modeling of the

dynamic characteristics.

A major shortcoming of all the above background meth-

ods is that they neglect the temporal correlation among the

previous values of a pixel. This prevents them detecting a

structured or periodic change, for example shown in Fig. 1.

This is often the case, since real-world physics often in-

duces near-periodic phenomenon in the environment: the

motion of plants driven by wind, the action of waves on a

beach, and the appearance of rotating objects.

The main contribution of this work is an algorithm,

called as Wave-Back that explicitly harnesses the scene dy-

namics to improve segmentation. We generate a represen-

tation of the background using the frequency decomposi-

tions of the pixel’s history. For a given frame, we com-

pute the Discrete Cosine Transform (DCT) coefficients and



compare them to the background coefficients to obtain a dis-

tance map for the frame. Then, we fuse the distance maps

in the same temporal window of the DCT to improve the

robustness against the noise and remove the trail artifacts.

Finally, we apply a threshold to the distance maps to deter-

mine the foreground pixels.

2 Cyclostationarity

The goal of the segmentation algorithm is to decide if the

samples are drawn from the background distribution, or

from some other, more interesting distribution. By assum-

ing independent increments, the existing algorithms are re-

lying completely on the “current” appearance of the scene.

Let’s examine the case of a tree blowing in the wind. The

multi-modal background models would build up separate

modes to explain, say sky, leaf, and branch appearances. As

the tree moves, the individual pixel may image any of these.

The independent increments assumption says that these dif-

ferent appearances may manifest in any order. However, we

know that the characteristic response places constraints on

the ways that the library of appearances may be shuffled.

Specifically, given two samples from the observation

process: x[n] and x[m], the independent increments as-

sumption states that the autocorrelation function Rx[n, m]

is zero when n 6= m: Rx[n, m]
△
= E [x[n]x∗[m]]. This is

correct when the process is stationary and white: such as

a static scene observed with white noise. For a situation

where the observations are driven by some physical, dy-

namic process, we can expect that the dynamics will leave

their spectral imprint on the observation covariance. For

instance, if the process is periodic, then we would expect

to see very similar observations occur with a period of N

samples, in contrast to the previous model:

Rx[n, n + N ] 6= 0

We say that this process is cyclostationary if the above re-

lationship is true for all time. A process is said to be har-

monziable if its autocorrelation can be reduced to the form

Rx[n−m], that is, so that the autocorrelation is completely

defined by the time difference between the samples. It is

possible to estimate the spectral signature of harmonziable,

cyclostationary processes in a compact, parametric repre-

sentation.

3 Frequency Decomposition

The Discrete Cosine Transform (DCT) is conceptually sim-

ilar to the Forurier transform except it decomposes the sig-

nal into a weighted sum of cosines instead of sinusoidal fre-

quency and phase content. Given data x[n], where n is an

integer in the range 0, .., N − 1, the DCT is defined as:

X[k] =
N−1
∑

n=0

x[n] cos

(

πn(2n + 1)

2N

)

.

Note that, the DCT coefficients of similar waveforms are

equal. Furthermore, if the waveforms are not similar, the

coefficients will be different even if the pixel values at that

time instants are equal.

There are several advantages of the DCT over the DFT.

The DCT does a better job of concentrating energy into

lower order coefficients than does the DFT, thus it enables

definition of more stable distance measures for change de-

tection by reducing the effects of the high frequency com-

ponents in the decomposition. The DCT is purely real, on

the other hand, the DFT is complex (magnitude and phase).

An N -point DCT has the same frequency resolution as and

is closely related to a 2N -point DFT. Assuming a periodic

input, the magnitude of the DFT coefficients is spatially in-

variant (phase of the input does not matter). On the other

hand, we can recover phase differences by using the DCT.

We begin by accumulating sample sequences, xt[n], for

each pixel from a number of frames of video as xt[0] =
xt, xt[1] = xt−1, ... where xt is the value of the pixel in

the current frame, xt−1 in the previous frame, etc. Each of

these sequences serves as an example of the periodic behav-

ior of a particular pixel in the image. These sequences are

used to initialize the background model for each pixel. We

compute the DCT coefficients Xt[k] using the accumulated

xt[n]. We take this as an estimate of the spectral compo-

nents in the autocorrelation function of the underlying scene

process. For each new sample xt+1, we construct a sample

sequence xt+1[n] and extract a new set of DCT parameters,

Xt+1[k]. We take this to represent the process underlying

the current observations.

To determine if these two samples sequences were gen-

erated by the same underlying process, we compute the L2-

norm of the difference between the DCT coefficients:

d(t) = 〈Xt[k], Xt+1[k]〉 =

(

N−1
∑

k=0

(Xt[k] − Xt+1[k])2

)

1

2

Small distances are taken to mean that the samples are

drawn from the same process, and therefore represent ob-

servations consistent with the scene.

Since the signals we encounter are almost never truly sta-

tionary, we add a simple exponential update mechanism to

the above algorithm. This consists of combining the current

estimate of the DCT coefficients with the estimate of the

scene’s DCT coefficients:

Yt[k] = αYt−1[k] + (1 − α)Xt[k]

where α is the exponential mixing factor that we set to 0.998
in our experiments. Here, Yt[k] stands for the background,



Figure 2: Background subtraction results. Top: unimodal approach. Bottom: DCT based method.

and in our implementation we compare the current DCT co-

efficients with the background, i.e. d(t) = 〈Xt[k], Yt[k]〉.
The length of the window, N , is a parameter that must

be chosen with care. If the window is too small, then low-

frequency components will be poorly modeled. However

large windows come at the cost of more computation, more

lag in the system, and a trail effect. The segment size con-

trols the tradeoff between frequency resolution and time res-

olution. Choosing a wide window gives better frequency

resolution but poor time resolution. A narrower window

gives good time resolution but poor frequency resolution.

The sample sequence xt[n] includes the values of the

pixel in the previous frames. Thus, the pixel values in the

past within the temporal window will still contribute to the

DCT coefficients of the following frames by causing a drift

problem as shown in Fig. 3. Depending on the speed of

the object and the window size N , the computed distances

will contain a trail of the changed DCT coefficients behind

the object. In case the temporal window size is larger, the

length of the trail will be longer. As we mentioned above, if

we use a wide window then we can model lower frequency

cyclostationary behavior, however the amount of the trail

will be significant. A narrower window will minimize the

trail, however, it will limit the detectable frequency of the

temporal changes.

To minimize the trail, we accumulate the distances as

d∗(t) =
M−1
∏

m=0

d(t − m)

where M is adjusted depending on the amount of the over-

lap between the regions of moving object in the frames

within the temporal window. Thus, M is correlated with

the speed and size of the object. A smaller value should

be assigned in case the object has smaller overlapping re-

gions. In the shown traffic sequence, we assigned it to the

window size as M = N since most of the objects have N

frames overlaps. In addition, it is possible to apply a spatial

smoothing to the DCT coefficients to improve the robust-

ness against the noise and trail.

4 Results

We tested the Wave-Back algorithm on 3000 frames of a

traffic video sequence in which a tree sways drastically due

to the high wind in the recording time. The tree occupies

almost one-third of the image and causes significant motion

(5-20 pixels), which is certainly a severe distraction for any

background segmentation algorithm.

We compared several versions of the Wave-Back algo-

rithm using a 16-point DCT algorithm. We also tested uni-

modal and multi-modal background subtraction algorithms.

In an attempt to most directly demonstrate the performance

of the background models, we present change detection re-

sults in Fig 2. We determined the pixels that have higher

distance scores than a given threshold. To make a fair com-

parison, we tuned the unimodal algorithm (single Gaussian

model) using false/miss ROC curve such that the threshold

gives the minimum amount of the misclassified pixels.

Figure 4 shows miss detection vs. false alarm graphs for

three algorithms: the alpha-blending, a multi-modal model,

and the Wave-Back with window size N = 16. To obtain

these results, we manually segmented ground truth fore-

ground and background regions. The graphs correspond to

Figure 3: Distance maps before and after trail removal.



Figure 4: ROC graphs of miss (foreground pixels that are

classified as background) versus false alarm (background

pixels classified as foreground).

Figure 5: Correct detection graphs (IR sequence). Fre-

quency decomposition method has higher accuracy, how-

ever, using temporal window causes 2-12 pixels long trail,

which is the lagged region between the blue and yellow

lines.

the ROC curves for the percentage of the misclassified fore-

ground pixels vs. misclassified background pixels. Closer

to a curve to the lower right hand corner (zero-error per-

centages) indicates better detection performance. It is vis-

ible that the 16-point Wave-Back performs the best among

the three algorithms, achieving almost a 2% false alarm rate

at a 2% missed point rate, and accurately detecting a 99%

of the foreground pixels while detecting 97% of the back-

ground as well. We explain the very high accuracy of the

proposed algorithm by the fact that it can classify the sway-

ing tree as a part of the background, thus it gives smaller

error rates of false detection. For the IR sequence (Fig. 6),

we estimated the position of the boat by finding the maxi-

mum distance at each frame. We compared the estimation

result with the ground truth and accepted the estimation as

a correct result if the distance from the ground truth is less

than an acceptance threshold. Figure 5 shows the accuracy

of the estimation depending on the threshold. We observed

that the Wave-Back method has higher much correct detec-

Figure 6: Left: A frame from IR sequence (Courtesy of

PETS 2005) that shows a small boat moving in the waves.

Right: Corresponding distance map by Wave-Back.

tion ratio, and a lag due to the trail effect, which can be

eliminated by the proposed fusing method.

In terms of the computation time, the Wave-Back method

using 16-point windows is comparable with the multi-

modal approach, which can run in real-time for a 320x240

color video sequence.

5 Conclusion

We have presented a novel algorithm that detects new ob-

jects based solely on the dynamics of the pixels in a scene,

rather than their appearance. This is accomplished by di-

rectly estimating models of cyclostationary processes to ex-

plain the observed dynamics of the scene and then compar-

ing new observations against those models. We have pre-

sented results that demonstrate the efficacy of this algorithm

on challenging video.
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