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Abstract. Identifying interesting changes from a sequence of overhead imagery—as opposed to clutter, light-

ing/seasonal changes, etc.—has been a problem for some time. Recent advances in data mining have greatly

increased the size of datasets that can be attacked with pattern discovery methods. This paper presents a technique

for using predictive modeling to identify unusual changes in images. Neural networks are trained to predict “before”

and “after” pixel values for a sequence of images. These networks are then used to predict expected values for the

same images used in training. Substantial differences between the expected and actual values represent an unusual

change. Results are presented on both multispectral and panchromatic imagery.
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1. Introduction

Detecting changes based on a sequence of overhead

imagery has been studied for some time. As early as

1972, work was done on pixel-by-pixel image differ-

encing [1]. This early approach used intensity scaling,

followed by differencing, to identify changes. How-

ever, such a simple approach is useful only when no

uninteresting changes occur; in wide area overhead im-

agery, this is not the case. Two pictures of the same lo-

cation taken at different times of the year will be quite

different, but most of the changes are a result of natural

effects (e.g., falling leaves). Advances have been made

in change detection, most recently it has been shown to

have promise in such diverse applications as treaty ver-

ification [2] and assessment of environmental impact

[3].

The goal of the research presented in this paper is to

identify unusual changes, without a pre-defined notion

of what is usual or unusual. Instead, neural networks

are used to determine what is an expected change, and

highlight the changes that do not meet these expecta-

tions. The goal is not to understand the change, but to

highlight areas deserving further analysis. Change de-

tection thus serves as a “first pass” in image analysis,

weeding out significant visual differences that are not

likely to be of interest.

An example of the types of changes detected is given

in Fig. 1. The center circle encloses a new road, the left

appears to be a new parking lot, and the right encloses

a ship. They represent changes actually identified by

using the process described in this paper on these im-

ages. There is a bias toward detection of small scale

changes such as the appearance or disappearance of

a feature. Large-scale changes such as a large area of

clear-cut logging are deemed “normal”, in fact trees left

standing are tagged as changes. While not appropriate

for all types of image analysis, tagging small areas of

change for further analysis is useful in a wide class of

problems.

Recently, data mining has given commercial impe-

tus to solving computational issues of pattern discovery

in large data sets. This opens up new possibilities for

applying advanced pattern discovery techniques to im-

age analysis problems. The basic approach of the work

presented in this paper is to use neural networks to

model the expected new value of a pixel based on the

old value. Each point in a region is treated as a vec-

tor of one or more old values and one or more new

values. The or more can come from different views of

the point, different spectral bands of multispectral im-

agery, or even widely different types of imagery such as

visual and radar. The images are thus represented as a

set of point vectors; an artificial neural network (ANN)
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Figure 1. Two images with unusual changes circled.

is then trained to predict the new values from the old

values. The ANN is then used to predict the new values

on the same images; points where the prediction is sig-

nificantly in error are deemed unusual changes. Note

that there is no “training data” as such, the training is

done against the actual test data. It is the ability of neu-

ral networks to generalize, rather than their ability to

learn against a manually-tagged corpus, that is key.

This is a brief overview. Before going into details, a

discussion of prior research will show where this tech-

nique falls in the spectrum of related work. Section 3

gives an example showing specific data requirements

and results. The black box of the process is opened in

Section 4. A discussion of the use of this process (and

the effect of various parameters) is provided along with

more results in Section 5.

2. Background

The imagery and vision communities have a long his-

tory of work on change detection. A survey can be

found in [4], and recent work in [5, 6]. Please refer

to those papers for a full survey, only a quick break-

down of prior work is given here. Change detection

work falls into two categories: Change vector analysis,

and pixel-level comparison. Change vector analysis re-

quires developing a model of what should be in an im-

age (e.g., a vector diagram of buildings and roads). The

actual (new) image is then compared with the diagram,

and differences are highlighted [7, 8]. The necessity

of constructing a vector diagram of what should be

found in a region appears to pose a high overhead, and

would limit this technique to a few locations important

enough to justify constructing a diagram. However, this

presumes that diagram definition is manual. An alter-

native is to develop the diagram automatically [9] (per-

haps independently for the before and after images),

then compare.

Change vector analysis is dependent on the diagram

capturing the types of changes of interest. It requires

that pre-defining what is, and is not, important. An

alternative is to directly compare the images. Earlier

research in direct image comparison suffered from

an inability to filter uninteresting changes. A simple

differencing can be foiled by changes in lighting in-

tensity. Better threshold formulation [10] and scaling

[11, 12] techniques have been developed, but these

still face problems with environmental changes (imag-

ine two pictures of a farming area, before and after

a snowfall—the highly reflective snow versus a dark

plowed field gives a huge difference in intensity, but

not an interesting one).

One approach is to model the expected spectral val-

ues for certain known “interesting items” (such as

buildings and roads) [13], or explicitly model back-

ground noise [14]. Artificial neural networks have been

applied to the change detection problem [3, 15], specif-

ically using images and land use category “training

data” to identify changes in land cover. These tech-

niques still require considerable manual effort to de-

fine what is or is not interesting. In addition, this leaves

the possibility that a pre-conceived notion of what is

interesting may be wrong.

The approach presented here is similar in that a

model is built to describe the expected differences be-

tween images. However, the key difference is that the

model is based solely on what actually appears in the

image. The “expected change” is based on what is com-

mon; an unusual change is simply one that occurs in-

frequently. Therefore a building appearing in the mid-

dle of a farm may show up as unusual, however if

the entire farm is cleared and built over, the change

would be classified as normal. Using the method pre-

sented here, even a non-change can show up as inter-

esting: If an image of grassland in the spring is com-

pared with the same snow-covered grassland the next

winter, but one spot remains green (perhaps due to

heat from an underground structure), the unchanged

spot will be identified. This is because the model

expects based on the images that green (grassland)
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will become white (snow), so a lack of change is

flagged.

Similar techniques have been tried. Morisette and

Khorram [16] make use of generalized linear mod-

els to determine when intensity values between im-

ages are significant enough to constitute a change.

They make use of tagged “training data” with signifi-

cant changes identified, and develop a model based on

those changes. However, limitations of linear models,

and the potential differences between available train-

ing data and the real data of interest, limit applicability

of their technique. Bruzzone and Prieto [17] employ

Bayesian decision theory to set thresholds for change,

helping to overcome limitations of a linear model. The

method presented in this paper shares a similarity with

theirs that both use change of neighboring pixels to

determine if a change is significant, and appears more

applicable to detecting small-size, localized changes.

Schaum and Stocker [18] utilize a sequence of images

to determine expected changes, then identify inserted

man-made objects as deviations from the expected

changes. Their technique is able to detect sub-pixel

changes (as low as 1.6% of a pixel). However, it also

requires extremely high-quality image registration.

Their technique is more applicable to detecting small

items (e.g., a vehicle), rather than wide-area, long-term

changes.

Data mining technology has been previously applied

to other imagery problems. The SKICAT [19] applied

data mining technology to the classification of astro-

nomical objects, discovering new types in the process.

JARtool [20] looked for specific features in overhead

images; a specific application was identifying volca-

noes on Venus. Birch [21] used data mining technology

to study foliage. A closer application to the one pre-

sented here was Quakefinder [22], which looked for a

specific type of change (earth movements) in overhead

imagery. One aspect of Quakefinder that is particularly

relevant to this paper is the ability to accurately register

different images; this is discussed in Section 3.1.

3. Data Requirements

The change detection process presented in this paper

finds locations with unusual spectral intensity changes.

A location is modeled as a real-valued vector of n be-

fore values and m after values. An image is a collec-

tion of these vectors. The values of n and m are de-

termined by the imagery available. For example, given

two Landsat-TM images of the same location, taken at

different times, then m = n = 7, corresponding to the

7 spectral bands of Landsat-TM imagery.

The corresponding case for panchromatic imagery

(a single before and after image), gives m = n = 1.

Using a single before and after value to represent a

location is insufficient for the method presented here.

However, the process presented here is not limited to

multi-spectral imagery; additional information on a lo-

cation can come from multiple images (either at dif-

ferent times, or from different views) for both before

and after shots. It is also possible to use imagery of

different types, such as a Landsat-TM before image

(m = 7) and two panchromatic views as an after image

(n = 2).

The vectors represent locations, not pixels. The sim-

plest approach is to use a pixel as a location. However,

better results are achieved when the resolution used

is relative to the size of an “interesting feature”. For

example, if the goal is to find changes in permanent

structures (e.g., roads, buildings), a typical feature is

roughly 10 meters in the smallest dimension. If a ve-

hicle in an unusual place, say, the middle of a field, is

considered interesting, feature size would be roughly

2 meters. The change detection process presented here

works best when the size of a location is roughly one

third to one half the smallest dimension of a feature.

(This agrees with the findings of Roy [23].) In many

cases, it is okay to use a coarser resolution than the

pixels of the raw imagery.

3.1. Image Registration

The primary difficulty with the approach presented here

is the need for image registration. To build a vector

for a location, that location must be identified on all

of the images. This will generally require warping the

images to a common standard orthorectification. Al-

though techniques for automatic image registration are

known [22, 24, 25], it is non-trivial to achieve pixel-

level matching (although this is improving, see [26]).

However, as discussed in the preceding paragraph and

shown in the example in Section 5.2, pixel-level reso-

lution is not usually necessary. Therefore registration is

only needed to within a few pixels, based on the size of

a “location” or feature. The ability to work with poorer

than pixel-level registration is significant, as previous

studies have shown accuracy losses of 50% with less

than one pixel misregistration [27, 28].

In the experiments presented here, images were

manually orthorectified. The Landsat-TM images
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Figure 2. Overview of the change detection using neural networks process.

required only a slight vertical and horizontal transla-

tion. The panchromatic images of Section 5.2 were

taken from a variety of angles, orthorectification was

done using ERDAS IMAGINE [29]. This required se-

lecting several pairs of points in two images that cor-

respond to the same actual locations. IMAGINE then

scales the images so that these points correspond to

the same pixels, stretching intermediate points appro-

priately. The automated techniques referenced above

use similar scaling, but automatically match “features”

(such as lines) instead of relying on manual selection

of points.

3.2. Data Preparation Process

Some of the key issues involved in preparing data have

been outlined above. The specific steps involved are:

1. Select the imagery to be used for before and after,

where the goal is to identify unusual changes hap-

pening between the time ranges represented by the

set of before and set of after images.

2. Select a resolution based on the type of analy-

sis being conducted, i.e., the minimum size of an

interesting feature. The resolution should be one

third to one half of the minimum dimension of a

feature.

3. Orthorectify the imagery to within the chosen reso-

lution (e.g., if the resolution is 10 pixels, orthorec-

tification to within 5 pixels is adequate).

4. Build the vectors representing each location. For

each image, and each spectral band within the im-

age, construct a value by averaging the pixel values

nearest that location (i.e., for a 10 pixel goal res-

olution, average the surrounding 10 × 10 region to

get the value) in that band/image. Note that the dif-

ference between the target resolution and the actual

resolution can be different for different components

of the vector.

The result is a set of vectors, with each vector corre-

sponding to a location in the underlying imagery. An

overview is included in Fig. 2.

Note that the set of vectors is not “training data” in

the usual sense—no definition of what is an interesting

feature or unusual change has been provided. The next

section shows how the data serves as both training and

test data.

4. Process

The meaning of change is subjective, making the meth-

ods for change detection difficult to define and eval-

uate. For purposes of this work, change is defined

as follows: Given a set of component details D =

{d1, . . . , dn}, di ⊆ ℜ and a set of location identifiers

L ⊆ ℜ, an image is a set of vectors (l, c1, . . . , cn) where

l ∈ L and ci ∈ di . Given two images A and B, a vector

pair is the vector (l, (cA1, . . . , cAn), (cB1, . . . , cBn))

where (l, cA1, . . . , cAn) ∈ A and (l, cB1, . . . , cBn) ∈

B. An unusually changed location lu is a location

where the vector (cA1, . . . , cAn) is similar to the cor-

responding cA vector in other vector pairs, but the

(cB1, . . . , cBn) vector is significantly different (or vice-

versa). The notion of “similar”, “significantly dif-

ferent”, or even “location” is open to considerable

interpretation—it is variations in these that lead to dif-

ferences in what is considered an interesting change.
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The change detection process consists of several

steps. A high level outline of the process is given first,

before proceeding to the details of each step. Figure 2

gives a block diagram of the entire process, including

the data preparation of the previous section.

1. Build several models to predict the “after” vectors

based on the “before” vectors. The models are Arti-

ficial Neural Networks, trained on the location vec-

tors constructed in Section 3.2. A more complete

description is given in Section 4.1.

2. Feed the “before” vectors into the models built in

step 1 to obtain predicted after vectors.

3. Use the predictions from step 2 for each location to

construct a range of expected values for each com-

ponent of the “after” image at that location, as will

be described in Section 4.2.

The above steps are then repeated, switching the “be-

fore” and “after” vectors (i.e., get an expected range

for the before values based on the after values).

4. Compare the actual values (both before and after)

with the range of expected values for each location.

If a significant number of the values (discussed in

Section 4.2) are outside the range of expected val-

ues, the location is marked as a potential change.

5. For each potential change, look for potential

changes in the surrounding locations. If a signif-

icant number of potential changes are found, the

location is marked as a change.

To support scaling, the image is divided into several

overlapping regions, such that each location appears in

four regions. The above steps can be performed on each

region in parallel. A location is flagged as an unusual

change only if it marked a change in two of the four

regions, as will be discussed in Section 4.3.

The remainder of this section discusses the above

steps in more detail.

4.1. Expected Change Prediction

The changed detection process presented in this paper

makes use of a quickprop-trained neural network as

a predictor. Studying the use of other predictive data

mining techniques is an area for further research; de-

cision tree approaches have not proven successful, but

there are other possibilities.

First, a neural network is trained on one half of the

data, using the other half as an evaluation holdout set.

The minimum error achieved on the holdout set is used

as a target error. A model is then trained on the entire

set until the target error is reached. Specifically:

Determine Target Training Error

1. Randomly divide the data into equal-sized training

and holdout sets.

2. Construct a three-layer sigmoidal neural network,

with the number of input nodes equal to the size of

the “before” vector for a location, and output nodes

corresponding to the “after” vector. The appropriate

number of hidden nodes grows as the size of the data

set increases, 11 works well for a 10,000 location

set. Seed the initial weights in the network with

random values. A sample network for Landsat-TM

data (as used in Fig. 1) is given in Fig. 3.

3. Train the network (using QuickProp [30]) until a

minimum on the holdout set is found:

(a) Run a training pass across the training set.

(b) Input the “before” vectors of the holdout set

to the network (feed-forward), and compute

the root-mean-squared error between the out-

put and the “after” vectors.

The above process continues for 2n training epochs,

where n is the epoch where the minimum error on

the holdout set was found. This allows the algorithm

to train past local minima.

4. Save the minimum error found.

The above process is repeated three times. The saved

minimum errors are averaged to obtain a target training

error.

Train Final Network. Construct and train a network

as above, but train on the entire data set. Training con-

tinues until the error (on the entire data set) equals the

target training error determined above.

The training technique described above is a stan-

dard technique to avoid over-specificity and obtain a

final network that can be expected to generalize. Over-

training would in theory result in a network capable

of predicting every value in the training set, thus giv-

ing no unusual changes; training to get a network that

could be expected to generalize to imagery with similar

characteristics alleviates that problem.

ANNs give a single set of output values (predictions)

for each set of input values. However, some features are
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Figure 3. Example neural network for landsat-TM data.

more varied in their changes than others—a deciduous

forest may go from green in the summer to red and

yellow in the fall, while a farm field goes from uni-

form green to uniform brown. To capture the variation,

a range of expected output values (predictions) is ob-

tained by training multiple neural networks. The above

process is repeated, using different random values to

seed the network each time, to give several predictions

for each location. For spectral values corresponding to

terrain where the changes are consistent, such as water

or pavement, the predictions from the networks will

be close to each other. However, for spectral values

corresponding to difficult to predict terrain (such as

plowed fields, that may have different types of crops

in later pictures), the predictions from the separate net-

works are likely to be farther apart. Since each network

starts with a different set of random weights, and stops

at a local minima, for difficult to predict spectral val-

ues the networks may not reach the same local min-

ima. The range of predictions is used to automatically

vary the threshold for declaring an unusual change

based on terrain type, without any preconceived notion

of terrain type. Training five networks was sufficient to

get a good range of predictions for the tests shown in

Section 5. The use of these five predictions to determine

unusual changes is described in the next section.

The experiments discussed here used the NevProp4

package [31] (based on the QuickProp algorithm [30]).

However, the process described could be optimized us-

ing a custom-designed package (computing the target

error once, and reusing it to construct each of the five

final networks, for example).

4.2. Deciding When to Deem Changes Unusual

The neural networks give a range of values for each

vector component of each location. Next, a “prediction

error” is calculated for each component of each loca-

tion as the difference between the actual value and the

average prediction divided by the difference between

the high and low predictions. For each component, the

average and standard deviation of the prediction error

is taken over all locations.

A bad prediction is defined as a location component

where the prediction error is greater than the average

error + k ∗ standard deviation of error for that compo-

nent. Note that the value k can be adjusted; k = 4 works

well and is used for all the results presented in this pa-

per. The results are not too sensitive to this parameter,

however adjustment can be made to give best results for

the type of imagery and analysis being used. Increasing

k results in only more extreme changes being flagged

as unusual.

The next step is to look for corroborating evidence

to get potential changes. The first form of corrobora-

tion is multiple vector components for each location;

the requirement that one third of the components for

a location give a bad prediction is used in the exam-

ples presented in Section 5. Again, the value can be

adjusted to fit the needs of the particular analysis. Note

that the multiple vector components includes both pre-

dictions for each component of the after values based on

the before values, and before values based on the after

values. The meaning of this parameter is most depen-

dent on type of imagery. For example, in multispectral
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imagery a low value would be more effective at detect-

ing camouflaged changes; the camouflage may prevent

detection in most but not all spectral values.

Finally, corroborating evidence in the form of nearby

potential changes is tested. Here the requirement is that

at least two thirds of the locations in a 3 × 3 region to

be potential changes for the center point to be consid-

ered a change. Again, this is an adjustable parameter.

Adjustments here affect primarily the size of unusually

changed features that will be discovered—a 3 × 3 re-

gion finds features of size at least six pixels. For the

man-made features that have been the focus of this

work, using small regions and decreasing resolution

(increasing pixel size) gives better results and faster

computation than using a large region at full image

resolution. A larger region might be appropriate for

changes that are spread across a region, e.g., scattered

damaged or diseased plants in a field where the entire

field is the “feature”.

The three parameters used to determine unusual

change based on the neural network predictions are

summarized in Table 1. The default parameters were

chosen based on empirical study using imagery other

than that presented in Section 5. The effectiveness

on the widely different types of imagery presented in

Section 5 (panchromatic and multispectral imagery of

vastly different resolutions) suggests that the defaults

are good choices. Figures 6–8 and 16–18 in Section 5

show the effect of varying these parameters. A key point

Table 1. Parameters for determining unusual change.

Value Calculation Default parameter

Bad prediction Distance between pre- k = 4

diction and value for

a particular component.

Distance must be greater

than average error + k ∗

standard deviation of

error, where average

and standard deviation

are based on errors for

that component in the

image pair.

Component Number of components 1/3 of components

agreement that must have bad pre-

dictions to consider a

location bad

Surrounding Number of surrounding 5 the 8 immediate

changes locations that must be neighbors

bad to consider a loca-

tion an unusual change

is that these parameters are used after the computa-

tionally intensive part of the process, and thus could be

adjusted interactively by a user to obtain results appro-

priate to that user’s particular task.

4.3. Overlapping Regions

Scaling the method presented in this paper poses some

difficulties. As the image grows, so does the num-

ber of “training instances” for the neural network (the

dominating computational factor). Perhaps more im-

portant, larger regions increase the diversity of training

instances, substantially increasing the difficulty of de-

veloping a good model relating the “before” and “after”

images. In addition to the increased training time, di-

versity can pose a logical problem. Two features may

have the same “before” values, but different “after”

values. An example would be an ocean, and a seasonal

lake. By itself, the ocean is highly predictable: It will

remain water. Likewise, a seasonal lake will go from

water (in the wet season) to relatively uniform dirt (in

the dry season). Depending on the relative sizes of the

regions, such differences in normal change can pose

two problems:

1. The “smaller” feature may be dominated by the

larger, and deemed an unusual change; or

2. The two features may be deemed “unpredictable”

(some of the neural networks predict one, some the

other, giving a wide range of possible values). The

result is to miss truly unusual features (e.g., a build-

ing appearing in the middle of a lake).

Note that both of these are instances of this pro-

cess working as expected, it is just the scale that is

off. The human definition of interesting can vary as

well. A source of water disappearing, e.g., a swamp

being drained in preparation for construction, would

probably be of interest. However, a naturally occurring

seasonal lake would not be.

The solution to this problem is to look for changes

relative to a small region. An image is partitioned into

small regions, based on an assumption that a region

is relatively homogeneous: even if something is un-

usual on a global scale, if it is usual in a region it

should be ignored. Other techniques have made the

expectation that changes are most significant relative

to the neighborhood; [32] used multifractal techniques

to inject locality considerations. The choice of region

size is important, however on the test data presented
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Figure 4. Changes detected in Landsat-TM images: Greater Portsmouth, New Hampshire on July 27, 1989.

in Section 5 little difference within the range of 1000–

50000 hectares.

The primary problem is when a feature is unusual

in one region, but common in a neighboring region.

Such locality problems are handled by looking at over-

lapping regions (each location is part of four regions).

Based on experiments a change is deemed to be un-

usual if it is identified as a change in at least two of the

four regions.

Over several tests, the partitioning approach ob-

tained the same results as training a single network on

an entire image. However, the total computational time

was decreased (even though each point is being used

four times). In addition, each region could be processed

independently, allowing the method to be parallelized

across loosely-coupled machines (e.g., a network of

workstations).

5. Sample Results

A pictorial overview of results on two different tests

are presented. The first uses two Landsat-TM (mul-

tispectral) images taken four years apart. The second

uses multiple panchromatic aerial photography images

taken two days apart. These examples demonstrate ap-

plicability to two very different types of imagery.

The formulas used to determine settings for parame-

ters were derived through experimentation on different

images; the parameters presented here were computed

prior to testing on these images.

Rather than marking the locations where unusual

changes were detected (which would obscure the origi-

nal image), the images have been overlaid with “bound-

ing boxes” for the detected unusual changes, shown in

white. These are intended only to support visual evalu-

ation of results, and the method for constructing them

was based on ease/convenience rather than technical

correctness. A production system would use a more so-

phisticated method, such as constructing convex hulls

around high-density regions of changed locations.

However, for completeness the method used is de-

scribed here:

1. Compute all such bounding box regions where at

least 50% of the contained locations are deemed
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Figure 5. Changes detected in Landsat-TM images: Greater Portsmouth, New Hampshire on July 14, 1993.

changed. This creates a bounding box for every lo-

cation, as well as larger boxes containing at least a

50% density of changed locations.

2. Where bounding boxes, replace them with the

smallest rectangle completely containing the over-

lapping boxes.

3. Draw a white line on the image two pixels “outside”

each box generated by the preceding step to avoid

covering the interesting parts. (The resulting lines

may overlap as a result.)

Step 2 has the potential to reduce the density of lo-

cations in a box (especially if the unusual changes

occur on a diagonal), but this did not occur in

the imagery presented—the boxes shown reflect ar-

eas with a reasonably high density of detected

changes.

In addition to a pictorial overview using the

“default” parameter values, statistics on the num-

ber of changes found and on the effect of the

various post-neural-network filtering parameters are

presented.

5.1. Multispectral Imagery

Landsat-TM images consist of six spectral bands cap-

turing light from 0.45 to 2.35 micrometers wavelength

at a 30 meter pixel resolution, and an infrared band

at 120 meter resolution. A detailed description can

be found at [33]. The images used are of Portsmouth,

New Hampshire and the surrounding region. The first

image was taken on July 27, 1989; the second on

July 14, 1993. Figures 4 and 5 show the results on

these images. (Marked changes are duplicated on both

figures for ease of reference.) Many of the changes

near the upper left are obvious to the naked eye. The

lower right change is the new circular road of Fig. 1.

(The other changes detected on the small region of

Fig. 1 were viewed as “common” with respect to the

larger image, and were not shown as unusual.) Of

particular note is the number of visually significant

changes that were not marked. In the lower lower

left corner, there are numerous fields that are green

in the 1989 image, but brown (i.e., plowed) in the

1993 image. The “green to brown” transition was
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Figure 6. Number of unusual changes versus number of standard deviations beyond average error required to declare a bad prediction:

multispectral imagery.

Figure 7. Number of unusual changes versus number of bad predictions required declare a potential change: multispectral imagery.
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Figure 8. Number of unusual changes versus percent of potential changes in adjacent locations required to declare a change: multispectral

imagery.

Figure 9. Number of bad predictions for each Landsat-TM spectral band. Left values are using the before image to predict the after image;

right values are using the after image to predict the before image.
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Figure 10. Reduced resolution display of upper quarter of Fig. 11.

Figure 11. Changes detected in Panchromatic images: Overhead view taken 16:43:05 on 10/25/1993.

automatically factored out as an expected/predictable

change.

There were a total of 79 unusually changed locations

discovered in this test, divided among the 13 regions

shown in Figs. 4 and 5. Figures 6–8 show the effect

(in terms of number of changes discovered) of varying

the parameters for declaring an unusual change. Each

graph varies one parameter, the others are fixed at the

default values of:

Standard deviations 4

beyond average error

Bad predictions 5 (1/3 of 14 predictions, 2 predic-

tions per component)

Percent of adjacent 60%

locations with

potential changes
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Figure 12. Changes detected in Panchromatic images: Oblique view taken 21:15:32 on 10/27/1993.

There was some variation in the value of specific

spectral bands for predicting unusual changes. The

number of “bad” predictions for each band, raw single-

location predictions out of range before filtering based

on the requirement for nearby potential changes, is

given in Fig. 9. More differences between predicted

and actual show up in the lower wavelengths. Also in-

teresting is that the wavelengths that show the most

“bad” predictions are similar even if the after (chrono-

logically) image is used as the input, producing a net-

work to predict the corresponding pixels in the before

image.

Carrying the “before vs. after” comparison through

the filtering process gives 548 unusual changes found

using the old image to predict values in the new im-

age, and 49 using the new to predict the old (versus

79 using both in combination). Note that in the “one-

way” cases, there are only seven predictions, so three

bad predictions were needed to reach the one third

cutoff.

5.2. Panchromatic Imagery

The second example uses panchromatic (grayscale) im-

agery from aerial photographs. The images are much

higher resolution than Landsat (the highest resolution

images are approximately 0.3 meter pixels), but gives

substantially less information for each location. To han-

dle the “too little information” problem, three views

taken on October 25 and two taken on October 27 are

used. This gives multiple datapoints for both the before

and after images.
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Figure 13. Changes detected in Panchromatic images, full resolution: Overhead view taken 16:43:15 on 10/25/1993.

A full description of the image collection can be

found at [34]. The images were manually orthorectified

as described in Section 3.1. The images are not used at

full resolution; each “location” for the change detec-

tion process is composed of the average of a 3 × 3 pixel

square. Figure 10 gives an example of what the image

looks like at the resolution used; compare with the full

resolution image in Fig. 11. Reducing the resolution

discounted “changes” less than approximately 2 meters

across.

All five images used are shown, however changes

from different variations on the process are shown on

the latter three. Except as otherwise noted, the process

used is the full process with default parameters as

described in Section 4, run on the lowered resolution

images.

Figures 11 and 12 give the clearest view of the before

and after images, and highlight the discovered changes.

Note there were only two changed regions. The one in

the upper left doesn’t reflect anything “real”, just an

unusual change in shadowing. The change identified

at the lower left, the arrival of several trucks, is more

interesting.

Note that the cars/parking spaces were not identified

as changes. This is not just a result of the decreased

resolution, even running at full resolution the majority

of the car/parking space changes were ignored (the ex-

ception seemed to be cars parked on some unusually

dark oil spots.) As a comparison, Fig. 13 shows the

changes identified running at full resolution.

The use of “predicting” the before state from the

after state, as well as after from before, cuts false
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Figure 14. Changes detected in Panchromatic images, using only “before” to predict “after”: Oblique view taken 17:19:56 on

10/25/1993.

alarms significantly. Figure 14 demonstrates the results

only using the new images to predict values from the

old. Note the additional “false alarms” in the upper

right, and along the walkway near the top (although

limiting the features in this way does get both the large

and small trucks).

The added information of multiple views isn’t al-

ways necessary. Figure 15 shows the results using just

the images from Figs. 11 and 15, instead of three before

and two after.

There were a total of 108 unusually changed loca-

tions found in these images. Figures 16–18 show the

effect (in terms of number of unusual changes discov-

ered) of varying the parameters for declaring an unusual

change. Each graph varies one parameter, the others are

fixed at the default values of:

Standard deviations 4

beyond average error

Bad predictions 2 (1/3 of the

components)

Percent of adjacent 60%

locations with

potential changes

6. Conclusions and Future Work

This paper has presented a method for identify-

ing unusual changes using overhead imagery. The
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Figure 15. Changes detected in Panchromatic images, only two images used: Oblique view taken 21:19:49 on 10/27/1993.

method presented uses neural networks to model ex-

pected/unexpected change, without prior knowledge

of what is expected/unusual. This provides signifi-

cant benefits relative to model-based methods, as hu-

man effort is only needed to evaluate the identified

changes.

There are disadvantages to the approach presented

here. The types of changes identified are harder to con-

trol. Unusual changes are not always interesting, and

sometimes the items of interest are not unusual. An

example would be a forest that has been cleared—the

method presented here would show trees left stand-

ing as the interesting change, not the area cleared. The

method is probably best used in conjunction with man-

ual analysis or other types of automated analysis, e.g.,

for:

– Prioritizing workload. If the data exceeds the human

resources to process it, looking first at the unusual

changes should provide the best cost/benefit.

– Identifying areas for further processing. Computa-

tionally intensive technologies, such as Automated

Target Recognition (ATR) [35, 36], are best applied

to small images likely to contain such a target. Pass-

ing changes to an ATR system can give these systems

a more focused (and likely of interest) image “chip”

to work on, and speed the search for new targets.

Although further testing is necessary to validate the

method presented here, the success on two widely dif-

ferent types of imagery (low-resolution multispectral,

high-resolution panchromatic) using the same parame-

ters gives confidence that it will work in a wide variety
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Figure 16. Number of unusual changes versus number of standard deviations beyond average error required to declare a bad prediction:

Panchromatic imagery.

Figure 17. Number of unusual changes versus number of bad predictions required to declare a potential change: Panchromatic imagery.
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Figure 18. Number of unusual changes versus percent of potentially changed adjacent locations required to declare a change: Panchromatic

imagery.

of conditions. One type of imagery that would be in-

teresting for further tests would be Synthetic Aperture

Radar (SAR) imagery modeled as a length two vector

(real and imaginary parts of the complex value). There

has been research specifically looking at SAR, and in

many ways parallels visual imagery work (including

model-based methods [37] and differencing [38, 39].)

In addition to direct application to SAR, the approach

presented here could be used to combine SAR and other

types of imagery.

6.1. Further Work

The performance of the method presented here is cru-

cial to its applicability. The primary issue is the neural

network training time; all other steps are O(n) (where

n is the number of pixels). Training time on a 62712

pixel Landsat-TM image varied from 23150 to 50557

CPU seconds on an SGI 10K, averaging 35542 sec-

onds. Training time per epoch/cycle is roughly linear

in the number of pixels, but as the number of pixels

increase, the number of cycles needed to converge in-

creases. Tests of Thinking Machine Corporation’s (now

Oracle Corporation’s) Darwin
R©

[40] on a smaller im-

age, resulted in substantial improvement (roughly 550

seconds, versus 33000 on comparable ULTRASparc

hardware).

Another possible use would be on sequences of im-

ages. The goal would not be to identify individual

changes between times, but areas undergoing constant

change. Precisely what areas of constant change would

mean, and how to identify them, remains to be deter-

mined.

One possible means of testing is to use synthetically-

generated imagery, enabling a more thorough analysis

of the limitations of this change detection method.
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