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Change Detection of RSSI Fingerprint Pattern
for Indoor Positioning System

Jaehyun Yoo , Member, IEEE

Abstract—A set of Wi-Fi RSSI (Received Signal Strength
Indicator) measurements is one of basic sensory observation
available for indoor localization. One major drawback of the
RSSI based localization is maintenance of the RSSI finger-
print database, which should be periodically updated against
measurement pattern changes caused by relocation, removal
and malfunction of Wi-Fi APs (access points). To address
this problem, a new change detection method is proposed
in this paper. First, by machine learning techniques, the RSSI
database is reconstructed to a probabilistic feature database
by the implementations of PCA (Principal Component Analy-
sis) and GP (Gaussian Process). Then, KL (Kullback-Leibler)
divergence is used as a metric to measure the similarity of
the existing database and a newly arrived test sets. The proposed method is evaluated by a real experiment at a multi-
storey building. For experimental study, different cases that provoke changes of RSSI patterns are considered, and the
positioning accuracy is examined by the k-NN (Nearest Neighbor) method. From the experimental results, it is found that
the bigger the RSSI pattern changes, the large the KL divergences become. Also, when a modified change detection
algorithm as the benchmark, which does not implement the PCA feature extraction, is compared, the proposed algorithm
yields accurate and fast computing performances. In addition, the required number of survey points is empirically found
associated with the threshold value to trigger the detection alarm.

Index Terms— Wi-Fi RSSI fingerprint, indoor localization, feature extraction, machine learning, Gaussian process, KL
divergence.

I. INTRODUCTION

W
i-Fi RSSI based positioning [1]–[3] is one of stan-

dard approaches for indoor localization. It collects the

complimentary Wi-Fi signals sent from a large number of

APs that are already installed in indoor buildings. Regardless

of private or public APs, their signals constitute a huge

fingerprint database to mapping RSSI sets to locations. Due

to its unbiased estimation capability, the Wi-Fi RSSI based

localization is likely to be combined with other kinds of

sensors such as IMU (Inertial Measurement Unit) [4], [5],

camera [6], [7] and magnetic [8], [9].

One major drawback of the RSSI based approach is main-

tenance of the fingerprint database. The dimensionality of the

RSSI set is defined as the number of APs that are scanned

across the entire positioning field. Normally, the size of a

Wi-Fi fingerprint database is so huge that consuming the
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considerable effort and resources for constructing and updating

database are inevitable. Moreover, a study to recognize when

we have to update the old database has not been enough

addressed. Many APs used to be relocated, removed, and

out of order. In these cases, the Wi-Fi RSSI pattern sud-

denly varies and the existing database does not fit a newly

modified pattern.

To be robust to the environmental variation and to alleviate

the effort for collection and calibration of the training data,

many approaches have been suggested. Some works [10]–[12]

propose to construct an alternative fingerprint map to replace

the original RSSI fingerprint. In [10], the gradient fingerprints

are made, and in [11], [12], the artificial fingerprints between

labeled data points are estimated by the interpolation methods.

The transfer learning, which identifies transfer knowledge of

the localization models against the environmental variation

over time and across space, has been applied for being adaptive

localization [13]–[15]. The crowdsourcing is a strategy to

exploit unlabeled data that include only RSSI measurements

without the position labels. A huge amount of the unlabeled

data can be easily collected inexpensively. In this context,

the semi-supervised Laplacian learning [16]–[18] and semi-

supervised deep learning [19]–[21] use the unlabeled data

to improve the data efficiency without sacrificing the accu-

racy. The trajectory learning [22] to learn map information,
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the fusion with IMU (Inertial Measurement Unit) [23], and

the probabilistic clustering [24] utilize also the crowdsourcing

for the same purpose.

All of those methods focus on developing the positioning

methods by leveraging some helpful models and crowdsourc-

ing. However, they cannot help avoiding the degradation of

accuracy by sudden and radical environmental changes such

as the relocation of APs. This paper proposes a different aspect

to prevent a loss of accuracy by suggesting a change detection

algorithm to alarm to update the old database.

The main contribution of this paper is to develop a new

change detection algorithm, which can recognize a rapid

variation of the RSSI pattern and can decide when to update

based on the analysis of the variation impact on the posi-

tioning accuracy. First, the original Wi-Fi RSSI dataset is

transformed to a feature database by a feature extraction

algorithm. It has been demonstrated from many works [22],

[25]–[27] that the feature extraction method improve the

localization accuracy. In this paper, the main reason for

requiring the feature extraction is that the comparison between

an original dataset and a test dataset becomes clearer on the

feature space. For the purpose of the feature extraction, PCA

(Principal Component Analysis) [28] is used to reduce the

high dimensionality of the original RSSI fingerprint sets by

eliminating the meaningless components in the data sets. Due

to the data size reduction, the transformed feature database

can reduce computation time significantly for change detection

algorithm.

Second, Gaussian process [29] is applied to produce the

likelihood distribution across physical space after the PCA

implementation. The GP is one of machine learning algorithm,

which estimates a target by means of probabilistic mean and

variance. In this paper, by learning a relationship between

the feature data produced by PCA and the positions, we can

obtain the estimated distribution of the feature values across

the entire interesting area. That is, the GP estimates can

recover the region in which RSSI fingerprints are not observed.

By the consecutive implementation of the PCA and the GP,

a probabilistic fingerprint database is made to replace the

original Wi-Fi RSSI fingerprint database.

Finally, the change detection algorithm based on informa-

tion theory is suggested to derive a similarity between the

existing database and a test set. KL divergence also known

as the relative entropy [30] is a measure of the similarity

between two probabilistic distributions, and it has been widely

used in aspects of pattern recognition such as clustering,

matching, and optimization [31]–[33]. For RSSI-based local-

ization application, some works [33]–[35] also apply the KL

(or Hölder) divergence to improve the positioning accuracy

in clustering-based localization frameworks. In this paper,

the KL divergence is used to find closeness between training

database and test data set. Because the reconstructed database

made by the PCA and GP algorithms is probabilistic, the KL

divergence is a natural metric for the similarity judgement.

When we set one density distribution from the reconstructed

feature database and the other distribution as the test sets,

the similarity can be calculated by the KL divergence. When

the average of the KL divergences over some survey points

(SP) exceeds a certain threshold, the change detection is

triggered.

For evaluation of the proposed change detection algorithm,

2207 number of Wi-Fi RSSI training data and 204 number

of test data from a multi-floor office building are collected.

To evaluate the change detection performance, four different

scenarios to provoke signal pattern variation are considered.

The positioning is executed by the k-NN (Nearest Neighbor)

method [36]. From the experimental results, it is found that

the similarity metric decreases corresponding to the increment

of the positioning error. The bigger the RSSI pattern changes,

the larger the KL divergence becomes. Based on the analysis,

the developed algorithm’s accurate detection performance is

validated. We additionally compare a modified change detec-

tion algorithm, which does not implement the feature extrac-

tion. The suggested algorithm yields more accurate and faster

computing performances. Moreover, the required number of

survey points is empirically found with respect to the threshold

value to trigger the detection alarm.

The rest of this paper is as follows. Section II presents

the Wi-Fi RSSI fingerprint reconstruction method by PCA

and GP. Section III describes the change detection algorithm.

Section IV and Section V report the experimental results and

conclusion, respectively.

II. PROBABILISTIC FINGERPRINT

DATABASE RECONSTRUCTION

Let us define N number of Wi-Fi RSSI fingerprint data sets

in the following:

D = {(xi , yi )}
N
i=1, (1)

where xi and yi are the i -th RSSI set and location, respectively.

The i -th RSSI set xi is composed of RSSI measurements,

given by

xi = [x1
i , x2

i , · · · , xd
i ]T ∈ R

d , (2)

where x
j
i is the RSSI measurement between the j -th AP and

the i -th receiver (e.g, a smartphone). The dimension of the

RSSI data set equals to d number of APs scanned across

the measurement collecting area. These data can be obtained

by a single or multiple collectors. The i -th RSSI elements

x
j
i for j = 1, · · · , d have the same received time-stamp. For

i �= k ∈ {1, · · · , N}, the i -th and k-th data sets xi , xk might

have the same time-stamp. Nonetheless, they are treated as

independent data sets, so time notation is omitted in this paper.

The location yi is given by

yi = [fi , pi ]
T ∈ R

3, (3)

where fi is a floor level and pi is a 2-D position. In this

paper, pi is recorded by UTM (Universal Transverse Mercator)

coordinate system. Later, the original database D will be

transformed to a new feature database, given by:

F = {(zi , yi )}
N
i=1, (4)

where zi ∈ R
r is a transformed feature set. The outstanding

difference to the original database D is the much smaller

dimensionality than the original one, i.e., r ≪ d .
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Fig. 1. In (a), the original Wi-Fi RSSI distribution of the training database is shown where x-axis and y-axis indicate the AP (Access Point) and
RP (Reference Point) indices, respectively. The distribution in (a) shows how much sparse the raw Wi-Fi RSSI fingerprints are, where there are too
many slots having -100 dBm as the value of the possibly smallest value. In (b), the transformed database made by PCA. The feature distribution
is drawn along the transformed feature dimension instead of AP index. The feature influence appears until the 20-th feature dimension since the
feature values after the 20-th dimension are biased to zero.

The rest of this section will describe how to construct the

feature database by the PCA in Section II-A and the GP in

Section II-B.

A. PCA

PCA (principal component analysis) is an unsupervised

learning method and it does not need labels of input data,

e.g., locations.

By the PCA, the transformation from the original dataset

xi to the feature dataset zi is executed by the matrix P in the

following:

zi = PT xi . (5)

To find P, the PCA solves a generalized eigenvalue problem.

Let {ρi }
d
i=1 be the generalized eigenvectors associated with the

generalized eigenvalues {λi }
d
i=1 of the following generalized

eigenvalue problem:

Aρi = λi Iρi , i = 1, . . . , d, (6)

where I is an identity matrix and A is a scatter matrix,

given by:

A =

N
∑

i=1

(xi − µ)(xi − µ)T , (7)

with the mean of all the RSSI samples µ:

µ =
1

N

N
∑

i=1

xi . (8)

Then, the transformation matrix P is obtained by solving the

following optimization problem:

P = argmaxP

|PT AP|

|PT IP|
. (9)

The condition of the eigenvalue problem is as follows. The

generalized eigenvectors are orthogonal:

ρT
i ρ j = 0, for i �= j, (10)

and the generalized eigenvectors are normalized:

ρT
i ρi = 1, for i = 1, . . . , d. (11)

When the eigenvalues are sorted in descending order:

λ1 ≥ λ2 ≥ · · · ≥ λd , (12)

the transformation matrix P is obtained by:

P =
(

√

λ1ρ1|
√

λ2ρ2| · · · |
√

λrρr

)

. (13)

From (13), we can figure out that the influence of the transfor-

mation becomes weaker as the dimensionality order increases,

because the values of eigenvalues and eigenvectors decreases

according to the dimensionality increment.

Fig. 1 shows the original Wi-Fi RSSI distribution and the

PCA-driven feature distribution. In Fig. 1(a), the original

database suffers from the sparsity in which many slots on

the AP (Access Point) indices on x-axis and RP (Reference

Point) indices on y-axis are filled with the possibly lowest

value −100 dBm. Because one AP can cover only small area

relative to the entire positioning field, the majority of the

elements in the RSSI vector in (2) are rarely filled with some

meaningful values between 0∼-60 dBm. In Fig. 1(b), those

useless elements dominated by −100 dBm values are filtered

out as a result of the PCA transformation. The important

features appear at the front part on the feature dimension (see

0∼20-th feature dimension on x-axis). This can be confirmed

by the PCA equation in (13). The feature data after the 20-th

feature dimension lose their influence because they are almost

biased to zero.

Given the PCA-transformed database as shown in Fig. 1(b),

the following section introduces the next step to complete the

reconstruction of the RSSI fingerprint database.

B. GP (Gaussian Process)

The GP seeks to find a hidden posterior distribution over

functions g(·) from training data F = {(zi , yi )}
N
i=1 defined in

(4) under the assumption of

zi = g(yi) + ε,

where the noise ε follows the Gaussian distributionN (0, σ 2
G P )

with zero mean and variance σ 2
G P . A key idea underlying

GP is the requirement that the function values at different

data points are correlated, where the covariance between two
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function values g(yi) and g(y j ) depends on the inputs yi and

y j . This dependency can be specified via the Gaussian kernel

function k(yi , y j ), given by

k(yi , y j ) = θ1exp

(

− ‖ yi − y j ‖2

2θ2

)

, (14)

where the hyper-parameters θ1 and θ2 represent a smoothness

of the function estimated by the GP.

According to the GP, the joint distribution over the training

outputs Z = [z1, · · · , zN ] is a function of the training inputs

Y = [y1, . . . , yN ]T , where zi is a feature value at the interested

location yi , given by:

Z ∼ N
(

0, K (Y, Y) + σ 2
G P I

)

, (15)

where K (Y, Y) is an N × N kernel matrix whose (i, j)-th

element is k(yi , y j ) in (14).

In this paper, the GP is used to estimate the feature

distribution over the workspace by setting the input y∗ as the

every location grid. The estimate consists of the mean µy∗ and

the variance σ 2
y∗

, given by:

p (g(y∗)|y∗, Y, Z) = N
(

µy∗, σ
2
y∗

)

,

and

µy∗ = kT
∗

(

K (Y, Y) + σ 2
G P I

)−1
Z (16)

σ 2
y∗

= k(y∗, y∗) − kT
∗

(

K (Y, Y) + σ 2
G P I

)−1
k∗, (17)

where k∗ is the N ×1 vector referring to covariances between

a test set y∗ and the training input data Y. The mean values

represent the predicted feature values for newly coming RSSI

measurements at a certain position. The GP outcomes will

be used to detect change of the RSSI pattern, which will be

introduced in the next section.

III. CHANGE DETECTION BY KL DIVERGENCE

The KL divergence is defined as a measure of difference

between two probability density functions f (y) and h(y):

K L( f ||h) �

∫

f (y) log
f (y)

h(y)
dy. (18)

In the case of both f (y) and h(y) are Gaussian distribution,

the KL divergence is of the form

K L( f ||h) =
1

2

(

tr(�−1
h � f ) − r + ln

|�h |

|� f |

+(µh − µ f )
T �−1

h (µh − µ f )
)

, (19)

where r is the dimensionality of the feature set, µ and �

are the mean and variance of a Gaussian distribution. In our

application, f (y) is defined as the distribution of the the

training database calculated by the GP, while h(y) is the

approximation by the GP estimation for the test sets.

To detect the change of the RSSI pattern over the

workspace, we need to designate some position points pre-

liminarily to survey the signal variation. This paper call these

Fig. 2. The description of a feature database Y∗
SP by GP estimates on

SPs (Survey Points). The number of the SPs would be smaller than the
RPs (Reference Points) at which all training data points are collected.
The location consists of (floor level, x meter, y meter), where 2D position
is recorded as the UTM (Universal Transverse Mercator) coordinate
system. The feature values including mean and variance are the results
of the GP estimation as in (16) and (17).

points SPs (Survey Points) as shown in Fig. 2. Let us define

Ysurvey as the set of m number of the survey points:

Ysurvey = {y∗
1, y∗

2, . . . , y∗
m}, (20)

where the position label y∗
j has the same form of (3). By using

the training data with GP implementation (16) and (17),

the reconstructed feature set at each y∗
j can be defined as

Y ∗
SP =

{

(µy∗
1
, σy∗

1
), · · · , (µy∗

m
, σy∗

m
)
}

. (21)

We note that the feature sets Y ∗
SP at every survey point are

obtained once in the offline phase. Each set of (µy∗
i
, σy∗

i
) is

used to calculate f (y∗
i ) for the KL divergence. Fig. 2 illustrates

the production of Y ∗
SP with the GP.

Similarly, suppose a test set Y ∗
tst is given by an examiner

who collects new RSSI measurement sets at the SPs. Then,

by using Y ∗
tst to calculate h(y∗

t st), we can obtain (19) at a SP.

Then, the average of the KL divergences at all SPs is calculated

and can be used for the change detection.

IV. EXPERIMENTAL RESULTS

For experimental study, we collect the Wi-Fi RSSI data from

a multi-story office building. Total 2207 number of training

data points and 204 number of test data points are used, and

508 number of different AP devices is scanned. The original

data dimensionality is 508, i.e. d = 508, and the reduced

dimensionality is set 10, i.e. r = 10. The RPs at which trainers

record the RSSI measurements and positions are designated

preliminarily on 1×1 m2 grid. Also, 100 number of SPs are

used for the change detection evaluation. The used training

data and SPs are illustrated in Fig. 3(d).

To test positioning accuracy, we perform position estimation

by k-NN method. The k-NN is one of standard positioning
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Fig. 3. Positioning results by k-NN with k = 2 when using three different test data sets, where (a): original test data, (b): severely polluted test data
by Case 1 and (c): minorly polluted test data by Case 2. In (d), the training data and survey points are illustrated.

algorithm, which selects k number of the points in the training

database nearest to a test measurement. Then, it decides

the estimated position by averaging the selected positions.

The position error is defined as the average of norm. For

the positioning, k = 2 is determined after tuning for best

performance.

To make radical changes to the RSSI pattern, we consider

4 different cases belonging to 2 individual scenarios:

• Scenario 1: Switch some APs’ locations with some APs’

locations.

– Case 1: APs to be switched are important.

– Case 2: APs to be switched are not important.

• Scenario 2: Remove some APs.

– Case 3: APs to be removed are important.

– Case 4: APs to be removed are not important.

Scenario 1 considers when the locations of two groups of

APs are switched. Scenario 2 refers to when some APs are

removed or broken. For that, the values obtained from those

APs are preset to the possibly minimum value −100 dBm.

The important APs generate meaningful RSSI and play a

pivotal role in localization. Although the true locations of the

508 APs are not known in the experimental site, we can infer

which APs are more important than the others. In Fig. 1(a),

certain meaningful RSSI values (between 0∼-60 dBm) are

recorded on the indices of the important APs, whereas almost

−100 dBm values are stamped along the indices of the

majority of the unimportant APs. For Case 1, 1∼101th APs on

the dimensionality indices are switched with 401∼501th APs.

For Case 2, 350∼399th APs are switched with 400∼499th

APs. For Case 3, 1∼50th APs are removed. For Case 4,

450∼499th APs are removed. It is noted that investigating

the situation for randomly selected APs is not helpful for the

analysis because the corresponding result is dependent on how

many important APs are included in the random selection.

Fig. 3 shows three positioning results. Fig. 3(a) is the

result when using the normal test data set. Fig. 3(b) is the

result when testing the severely polluted data set followed
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Fig. 4. Experimental results of the KL divergence between the normal test data and the polluted data sets made by rule of Case 1∼4. The outstanding
differences are found in (a) and (c) due to the big change of the RSSI pattern, whereas the trivial differences appear in (b) and (d) by the minor
change. We can make a simple detection alarm logic such as ‘detect if ave.diff > 1.5’. With this setup, it can detect the change that causes the
significant localization error such as Case 1 in Fig. 3(b) while allowing the trivial localization loss such as Case 2 in Fig. 3(d).

by Case 1, and Fig. 3(c) is the result when the minorly

polluted test data set by Case 2. As shown in Fig. 3(a),

when a test set comes from the same RSSI distribution of the

existing database, it yields high accuracy. However, as shown

in Fig. 3(b), when a test set is distorted by the environmental

change of RSSI pattern, the accuracy significantly decreases.

In Fig. 3(c), the localization can still hold small error when

the RSSI pattern is minorly changed. The average positioning

errors for each Cases 1∼4 are 22.5 m, 1.3 m, NaN, 2.7 m,

respectively, where NaN refers to the tremendous error due to

wrong floor level estimation.

Fig. 4 shows the results of the KL divergence between the

test data and the polluted data sets produced by Case 1∼4. The

RSSI changes with respect to the modification of the important

APs following Case 1 and Case 3 cause the large distinctions

of the KL divergence as shown in Fig. 4(a) and 4(c). On the

other hand, Fig. 4(b) and 4(d) do not indicate outstanding

difference of KL divergence due to the minor RSSI changes

following Case 2 and Case 4. By defining a threshold (≈ 1.5 in

this paper) on the average of KL divergence, we can determine

the detection alarm moment.

The proposed change detection method consists of the

PCA feature extraction, GP learning and KL divergence.

Among these, the PCA feature extraction could be theoreti-

cally optional for completing the change detection algorithm.

To investigate the effect of the feature extraction, we revise

the proposed change detection method by extracting the PCA

feature extraction from the original change detection algo-

rithm. Fig. 5 shows the KL divergence results of the modified

algorithm according to the four cases under the same experi-

mental setup as in Fig. 4. The result of this modified method

is not accurate because the minor-variation by Case 4 has

large KL divergence difference (compare the difference of

Fig. 4(d) and Fig. 5(d)), which leads the false detection alarm.

In addition, without the feature extraction, much computation

time is required as summarized in TABLE I, because it needs

the d = 508 number of GP executions, whereas the proposed

method consumes only r = 10 GP executions. As a result,
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Fig. 5. The performances of the modified change detection method that does not implement the PCA feature extraction are shown under the same
experiment setup to Fig. 4. This compared algorithm cannot distinguish the AP variation situation because the minor change in (d) Case 4 has large
KL divergence values, which causes a fault detection alarm.

TABLE I

COMPUTATION TIME (SEC)

in terms of the accuracy and computation efficiency, the

PCA-based feature extraction is functionally essential for the

change detection algorithm.

Finally, we additionally investigate the effect of the number

of SPs on the change detection mechanism. In the primary

results shown in Fig. 4, the 100 SPs as illustrated in Fig. 3(d)

are used in which the change detection was perfectly per-

formed. To vary the number of SPs, ten out of 100 to be

removed in turn are selected by uniform random distribution.

The average differences of KL divergence between the normal

data and the polluted data for each case are drawn in Fig. 6.

Regardless of the SP number variation, Case 2 and Case 4 have

similar the average differences of KL divergences. This can

be validated from that the KL divergences of the polluted data

have the almost same KL values of normal data, as shown in

Figs. 4(b) and 4(d). On the other hand, Cases 1 and 3 are

Fig. 6. Average difference (Ave.diff) of KL divergences of Cases 1∼4 with
respect to the variation of SP numbers. To meet the setup of thresh-
old value 1.5 defined in Fig. 4, which triggers the detection moment,
it requires more than 50 number of SPs.

majorly-changing scenarios, and the average differences of

KL divergences are decreasing with respect to the decrement

of the SP numbers. In this paper, we set 1.5 ave.diff value

as the threshold so that the required SP numbers to work for
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the desired change detection confirmed in Fig. 4 are more

than 50.

V. CONCLUSION

This paper presents a new change detection algorithm for

the situation where RSSI fingerprint pattern is changed com-

pared to an initial RSSI fingerprint database. The comparison

mechanism is built by the feature database reconstruction and

the KL divergence calculation. When we test the polluted

data compared with the normal data, the developed algorithm

accurately recognized the similarity between the polluted data

and the normal data.
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