
Change Detection with Weightless Neural Networks

Massimo De Gregorio

Istituto di Cibernetica

“E. Caianiello” (ICIB–CNR)

Via Campi Flegrei, 34

80078 Pozzuoli, ITALY

massimo.degregorio@cnr.it

Maurizio Giordano

Istituto di Calcolo e Reti

ad Alte Prestazioni (ICAR–CNR)

Via P. Castellino, 111

80131 Naples, ITALY

maurizio.giordano@cnr.it

Abstract

In this paper a pixel–based Weightless Neural Network

(WNN) method to face the problem of change detection in

the field of view of a camera is proposed. The main features

of the proposed method are 1) the dynamic adaptability to

background change due to the WNN model adopted and 2)

the introduction of pixel color histories to improve system

behavior in videos characterized by (des)appearing of ob-

jects in video scene and/or sudden changes in lightning and

background brightness and shape. The WNN approach is

very simple and straightforward, and it gives high rank re-

sults in competition with other approaches applied to the

ChangeDetection.net 2014 benchmark dataset.

1. Introduction

The ChangeDetection.net (CDNET) 2014 competition

invites academies and industries to publish results of their

more advanced change&motion detection (CD) methods

and techniques. As in the previous CDNET 2012 chal-

lenge, competing solutions would be classified according to

different background modeling approaches, from statistical

(KDE, single and mixture of Gaussian), to clustering mod-

els, from computer vision techniques (median or histogram

analysis) to neural network modeling.

Up to now, previously proposed neural network ap-

proaches to CD problem falls in the class of weighted neu-

ral network systems [8][7]. On the contrary, our approach,

which is called CwisarDH and extends a previous method

[4] still competing in the CDNET 2012 challenge, relies on

a weightless neural network architecture named WiSARD

[3].

In this paper1 the proposed CwisarDH method to CD

problem is described by emphasizing its main characteris-

1This research work was partially funded by the EU FP7-ICT-2012-8

under the MIDAS Project – Grant Agreement no. 318786.

tics: 1) pixel–based processing without the need of neigh-

borhood information; 2) the simplicity of pre– and post–

processing of video data; 3) straightforward use of a WNN

for the purpose without ad hoc modifications.

The paper is so organized: in Section 2 the adopted

WNN model is introduced; in Section 3 the proposed

WNN–based approach to change detection is presented to-

gether with the experimental settings; Section 4 reports

and discusses the experimental results of CwisarDH detec-

tion capabilities when running on the CDNET 2014 video

dataset; finally, Section 5 summarizes concluding remarks

and future perspectives.

2. The WiSARD weightless neural model

Weightless neural networks are based on networks of

Random Access Memory (RAM) nodes [1]. As illustrated

by Figure 1, a RAM–based neuron/node is capable of recog-

nizing n bit inputs (n–tuple) coming from the retina (usu-

ally a black and white image). The WNNs have a basis

for their biological plausibility because of the straightfor-

ward analogy between the address decoding in RAMs and

the integration of excitation and inhibitory signaling per-

formed by the neuron dendritic tree. WiSARD systems are

a particular type of WNN. While the use of n–tuple RAM

nodes in pattern recognition problems is old, dating about

Figure 1. A WiSARD discriminator.

1403



60 years, with the availability of integrated circuit mem-

ories in the late 70s, the WiSARD (Wilkes, Stonham and

Aleksander Recognition Device) was the first artificial neu-

ral network machine to be patented and produced commer-

cially [3]. The WiSARDs can be, in fact, developed directly

on reprogrammable hardware. This characteristic finds a

concrete applicability in embedded robotic systems.

In the WiSARD model, RAM input lines are connected

to the retina by means of a biunivocal pseudo–random map-

ping as a set of uncorrelated n–tuples. For instance, in Fig-

ure 1, the n–tuple, and so the memory address of RAM1, is

always formed by the colors of the 3 pixel labeled with “1”.

In our example and for the “T” represented on the retina,

RAM1 will receive as input the tuple 110. Each n–tuple is

used as a specific address of a RAM node memory location,

in such a way that the input pattern is completely mapped

to a set of RAM locations.

A WiSARD discriminator, composed by m RAM–based

neurons, is trained with representative data of a specific

class/category. In order to use the network as a discrimi-

nator, one has to set all RAM memory locations to ‘0’ and

choose a training set formed by binary patterns of (m× n)
bits. For each training pattern, a ‘1’ is stored in the mem-

ory location of each RAM addressed by this input pattern.

Once the training of patterns is completed, RAM memory

contents will be set to a certain number of ‘0’s and ‘1’s.

The information stored by RAM nodes during the training

phase is used to deal with previous unseen patterns. When

one of these is given as input, RAM memory contents ad-

dressed by the input pattern are read and summed by the

summing device Σ. The number r thus obtained, which is

called the discriminator response, is equal to the number

of RAMs that output ‘1’. It is easy to see that r necessar-

ily reaches the maximum m if the input pattern belongs to

the training set. r is equal to zero if no n–bit component

of the input pattern appears in the training set (not a single

RAM outputs ‘1’). Intermediate values of r express a kind

of “similarity measure” of the input pattern with respect to

the patterns in the training set. The summing device en-

ables this network of RAM nodes to exhibit – just like other

ANN models based on synaptic weights – generalization

and noise tolerance [2].

3. The CwisarDH approach to CD

Algorithm 1 describes the CwisarDH method pseu-

docode. In order to feed the discriminators with the right

input, CwisarDH creates one discriminator for each pixel of

the video frame. The RGB color of the pixel is represented

by a binary (black & white) image, where the columns rep-

resent the color channel (R, G and B) and the rows the color

channel values (see Figure 2). CwisarDH adopts 192 values

(that is, the retina size is 192 × 3) to represent the channel

values. This is the value the system works at the best (the

Input: video
Output: outvideo (B&W video with detected moving objects)

1 while getting a new frame from video do

2 if frame belogs to trainset then

3 foreach pixel in frame do

4 train the pixel discriminator with RGB encoding;

5 set pixel as bg in outframe;

6 else

7 foreach pixel in frame do

8 use RGB encoding to get response from pixel
discriminator;

9 if response > σ then

10 empty pixel history buffer;

11 train the pixel discriminator with RGB encoding;

12 set pixel as bg in outframe;

13 else

14 if pixel history buffer is full then

15 re-train the pixel discriminator with RGB

encodings stored in the pixel history buffer;

16 empty pixel history buffer;

17 else

18 store RGB encoding in pixel history buffer;

19 set pixel as fg in outframe;

Algorithm 1. CwisarDH method pseudocode

less is the value the faster is the system). Other two parame-

ters have been fixed to face the CD challenge: RAM address

memory and threshold σ. With 16 bit address location and

86% as threshold the average performance of the system is

the best.

The system parameters are constrained to the application

domain. For instance, in case of dynamic backgrounds the

system can better face the problem with threshold values

around 80%. This is because it can absorb and better clas-

sify shimmering water or trees shaken by the wind.

CwisarDH is trained on a certain number of pixel in-

stances taken in different frames of the video under exam-

ination. After the training phase, the system classifies the

pixel as belonging to the background only if the correspond-

ing discriminator response is greater than the fixed thresh-

old σ, otherwise the pixel is considered belonging to the

foreground. The system takes the correctly classified pix-

els to further train the associated discriminator: the on–line

training is a peculiar characteristic of weightless systems.

In this way, CwisarDH adapts itself both to dynamic back-

grounds and to gradual changes in light.

CwisarDH extends the previous method CwisarD [4] by

introducing a pixel classification History support: a k–sized

Figure 2. CwisarDH input encoding

404



Figure 3. CwisarDH retrain on new pixel background

buffer is associated to each pixel to stores pixel colors con-

tinuously classified as foreground in k successive frames.

When the buffer is full, the color history is used to reset

and then to train the associated discriminator on buffered

data (see Figure 3). On the contrary, each time the pixel is

classified as background the history is emptied.

The history buffer support was introduced to improve

performance of the previous CwisarD system, especially

to face with both the case of intermittent objects, like

(des)appearing of objects that change status from back-

ground to foreground in the scene, and the case of sudden

changes in light, shape and colors of background regions

(like in Bad Weather and Turbulence dataset categories).

As an example, Figure 3 shows the case of a light

switched on and left on for all the video duration. Be-

cause the corresponding pixels are continuously classified

as foreground in the successive k frames, the buffer gets

full and the discriminator is retrained on the buffered RGB

instances. From this point on, the pixels representing the

switched light are absorbed and considered as part of the

background.

The result of CwisarDH is displayed after the application

of two post–processing filters: erosion and dilation. This

is to reduce the salt and pepper effect in the output video

frames.

3.1. CwisarDH parallelism on multicores

CwisarDH is implemented in C++ and uses the OpenCV

library [9] for image pre/post–processing and visualization.

CwisarDH software is characterized by a high degree of

potential parallelism, since pixel–based computation in a

frame has neither data nor control dependency on other

pixel computations in the same frame. In fact, one WiS-

ARD discriminator is associated to each pixel and trained

by pixel values gathered in successive frame of the timeline.

While computation on each pixel of the same video frame

can be parallelized, synchronization is require at each new

frame. For this reason we implemented an OpenMP C++

version of CwisarDH to better exploit parallelism on a mul-

ticore CPUs. We used the parallel for OpenMP [10]

No. of

Threads

320×240 pixels 720×480 pixels

Frame Rate (in fps)

Sequential

no optimization 9 5.25 1.38

optimization lvl. 02 9 7.45 2.23

OpenMP with opt. lvl. 02

schedule(dynamic,1) 16 18.5 4.22

Table 1. CwisarDH OpenMP vs Sequential timing

directive to parallelize the loop iterating on frame pixels.

This directive forces the compiler to generate threads2 act-

ing in parallel on separated regions of the image frame.

We carried out timing measurements on a 3.4 Ghz Intel

Core i7 (quadcore) with 8GB RAM and Mac OS X v.10.9.2

operating system to compare the OpenMP version of Cwis-

arDH with the sequential one. The results are reported in

Table 1. We measured the mean value of video frame pro-

cessing rate over one hundred frames soon after CwisarDH

starts classifying. It is worth noticing the significant speed

up gained in both resolutions: the number of threads in-

creases, and, much more interesting, they exploit the multi-

cores more efficiently.

4. CwisarDH results evaluation

Some snapshots of the system outputs are reported in

Figure 4. Table 2 reports system results on all videos in

the dataset while Table 3 reports the average measures of

all CDNET 2014 competing methods.

As one can notice, the system behaves quite well in most

of the situations. This is due both 1) to the characteristic

of artificial neural networks that well adapt to background

changing and 2) to the pixel colors history buffer support

proposed in the new method. In fact, being based on an ar-

tificial neural network paradigm, CwisarDH gives the best

results (first in the Average ranking) on the videos belong-

ing to the category Camera Jitter and very good results on

videos belonging to PTZ and Dynamic Background where

one has to face the problem of, for instance, continuous

change of the background or shimmering water or waving

trees. On the other side, the introduction of the pixel col-

ors buffer allows the system to dial even with situations

in which the original background changes because of the

(des)appearance of an object in the scene (like in the In-

termittent Object Motion dataset category). This is based

on the absorption in the new background of persistent pix-

els continuously classified as foreground in k consecutive

video frames. The overall best metric values obtained by

CwisarDH are reported in Table 3 with black cells.

2The number of threads is chosen by the C++ runtime and it depends

on several dynamic parameters, such as the OS version and current load,

the user environment settings, and so on.

405



(a) Baseline (b) Dynamic Background

(c) Camera Jitter (d) Intermittent Object Motion

(e) Shadow (f) Thermal

(g) Bad Weather (h) Low Framerate

(i) Turbulence (j) PTZ

(k) Night Videos

Figure 4. CwisarDH outputs on CDnet

5. Conclusions

CwisarDH is a method based on Weightless Neural Net-

works to face the change&motion detection problem in

videos. CwisarDH outperforms other competitors in the

CDNET 2014 challenge. The main features of CwisarDH

are: 1) the dynamic adaptability to background change due

to the WiSARD model adopted; 2) the use of pixel color

history buffers to improve the system behavior in videos

characterized by (des)appearing of objects in the scene and

slow/fast changes in lightning and background brightness.

406



R
a

n
k

in
g

a
cr

o
ss

ca
te

-
g

o
ri

es

R
a

n
k

in
g

R
ec

a
ll

S
p

ec
ifi

ci
ty

F
P

R

F
N

R

P
W

C

F
–

m
ea

su
re

P
re

ci
si

o
n

FTSG (Flux Tensor with Split Gaussian models) 1.64 2.00 0.7657 0.9922 0.0078 0.2343 1.3763 0.7283 0.7696
SuBSENSE 3.00 4.43 0.7842 0.9742 0.0258 0.2158 3.3712 0.6889 0.7135
CwisarDH 3.45 4.57 0.6608 0.9948 0.0052 0.3392 1.5273 0.6812 0.7725
Spectral-360 4.36 4.43 0.7345 0.9861 0.0139 0.2655 2.2722 0.6732 0.7054
Bin Wang Apr 2014 6.27 5.57 0.7035 0.9794 0.0206 0.2965 2.9009 0.6577 0.7163
KNN 6.55 7.00 0.6650 0.9802 0.0198 0.3350 3.3200 0.5937 0.6788
SC SOBS 7.64 7.57 0.7621 0.9547 0.0453 0.2379 5.1498 0.5961 0.6091
KDE - ElGammal 8.64 9.71 0.7375 0.9519 0.0481 0.2625 5.6262 0.5688 0.5811
Mahalanobis distance 9.00 8.14 0.1644 0.9931 0.0069 0.8356 3.4750 0.2267 0.7403
GMM | Stauffer & Grimson 9.27 8.14 0.6846 0.9750 0.0250 0.3154 3.7667 0.5707 0.6025
CP3-online 9.82 8.43 0.7225 0.9705 0.0295 0.2775 3.4318 0.5805 0.5559
GMM | Zivkovic 10.18 10.71 0.6604 0.9725 0.0275 0.3396 3.9953 0.5566 0.5973
Multiscale Spatio-Temporal BG Model 11.45 12.00 0.6621 0.9542 0.0458 0.3379 5.5456 0.5141 0.5536
Euclidean distance 13.00 12.29 0.6803 0.9449 0.0551 0.3197 6.5423 0.5161 0.5480

Table 3. Average measures comparison among all methods

R
ec

a
ll

S
p

ec
ifi

ci
ty

F
P

R

F
N

R

P
W

C

P
re

ci
si

o
n

F
-m

ea
su

re

B
a
se

li
n

e pedestrians 0.9681 0.9995 0.0005 0.0003 0.0766 0.9546 0.9613
PETS2006 0.8084 0.9985 0.0015 0.0025 0.3968 0.8766 0.8411
office 0.8898 0.9989 0.0011 0.0082 0.8603 0.9840 0.9346
highway 0.9225 0.9949 0.0051 0.0049 0.9379 0.9195 0.9210

D
y
n

a
m

ic
B

a
ck

g
ro

u
n

d

overpass 0.8285 0.9997 0.0003 0.0023 0.2563 0.9766 0.8965
canoe 0.8979 0.9994 0.0006 0.0037 0.4215 0.9815 0.9378
fall 0.8430 0.9926 0.0074 0.0028 1.0065 0.6722 0.7480
fountain02 0.9184 0.9999 0.0001 0.0002 0.0296 0.9423 0.9302
fountain01 0.6382 0.9996 0.0004 0.0003 0.0673 0.5872 0.6116
boats 0.7604 0.9997 0.0003 0.0015 0.1810 0.9394 0.8405

C
a
m

er
a

J
it

te
r

boulevard 0.6031 0.9943 0.0057 0.0195 2.4093 0.8382 0.7015
sidewalk 0.7138 0.9987 0.0013 0.0077 0.8734 0.9360 0.8100
badminton 0.8079 0.9948 0.0052 0.0068 1.1608 0.8466 0.8268
traffic 0.8498 0.9846 0.0154 0.0100 2.3798 0.7855 0.8164

In
te

rm
it

te
n

t
O

b
j.

M
o
ti

o
n

abandonedBox 0.2984 0.9959 0.0041 0.0354 3.7621 0.7872 0.4327
winterDriveway 0.4999 0.9860 0.0140 0.0038 1.7665 0.2119 0.2976
sofa 0.8294 0.9955 0.0045 0.0078 1.1745 0.8940 0.8605
tramstop 0.1625 0.9971 0.0029 0.1832 15.2681 0.9241 0.2764
parking 0.6017 0.9729 0.0271 0.0334 5.5843 0.6501 0.6250
streetLight 0.9376 0.9992 0.0008 0.0032 0.3806 0.9832 0.9598

N
ig

h
t

V
id

eo
s tramStation 0.5107 0.9925 0.0075 0.0138 2.0761 0.6577 0.5749

busyBoulvard 0.1738 0.9971 0.0029 0.0302 3.1947 0.6877 0.2775
streetCornerAtNight 0.7249 0.9880 0.0120 0.0014 1.3339 0.2306 0.3499
fluidHighway 0.5955 0.9724 0.0276 0.0058 3.2948 0.2363 0.3384
winterStreet 0.5394 0.9778 0.0222 0.0141 3.5153 0.4262 0.4762
bridgeEntry 0.1622 0.9969 0.0031 0.0121 1.4980 0.4266 0.2350

T
h

er
m

a
l lakeSide 0.4540 0.9981 0.0019 0.0107 1.2373 0.8198 0.5844

park 0.6417 0.9976 0.0024 0.0074 0.9610 0.8482 0.7306
diningRoom 0.7199 0.9945 0.0055 0.0263 2.9048 0.9253 0.8098
library 0.9357 0.9898 0.0102 0.0154 2.0642 0.9563 0.9459
corridor 0.8825 0.9944 0.0056 0.0040 0.9324 0.8434 0.8625

P
T

Z

twoPositionPTZCam 0.7215 0.9956 0.0044 0.0043 0.8586 0.7152 0.7184
zoomInZoomOut 0.5275 0.9941 0.0059 0.0010 0.6887 0.1587 0.2440
continuousPan 0.2157 0.9978 0.0022 0.0050 0.7066 0.3866 0.2769
intermittentPan 0.0683 0.9996 0.0004 0.0133 1.3513 0.7290 0.1249

T
u

rb
u

le
n

ce turbulence2 0.8889 1.0000 0.0000 0.0000 0.0046 0.9850 0.9345
turbulence3 0.7140 0.9996 0.0004 0.0047 0.5035 0.9638 0.8203
turbulence0 0.6980 0.9999 0.0001 0.0006 0.0658 0.9362 0.7998
turbulence1 0.5479 0.9993 0.0007 0.0017 0.2379 0.7592 0.6365

S
h

a
d

o
w

copyMachine 0.8705 0.9917 0.0083 0.0096 1.6663 0.8869 0.8786
bungalows 0.9627 0.9763 0.0237 0.0024 2.4489 0.7218 0.8250
busStation 0.8676 0.9924 0.0076 0.0051 1.2176 0.8145 0.8402
peopleInShade 0.9666 0.9889 0.0111 0.0020 1.2325 0.8394 0.8985
backdoor 0.8357 0.9997 0.0003 0.0033 0.3576 0.9817 0.9028
cubicle 0.7686 0.9971 0.0029 0.0046 0.7392 0.8413 0.8033

B
a
d

W
ea

th
er skating 0.8345 0.9996 0.0004 0.0086 0.8586 0.9905 0.9058

wetSnow 0.2834 0.9997 0.0003 0.0094 0.9553 0.9195 0.4332
snowFall 0.7236 0.9992 0.0008 0.0022 0.2945 0.8816 0.7948
blizzard 0.8372 0.9986 0.0014 0.0019 0.3258 0.8777 0.8570

L
o
w

F
ra

m
er

a
te tunnelExit 0 35fps 0.6065 0.9960 0.0040 0.0111 1.4717 0.8090 0.6932

port 0 17fps 0.4118 0.9999 0.0001 0.0002 0.0292 0.5105 0.4559
tramCrossroad 1fps 0.8279 0.9932 0.0068 0.0049 1.1380 0.7768 0.8015
turnpike 0 5fps 0.8175 0.9904 0.0096 0.0147 2.2504 0.8721 0.8439

Table 2. CwisarDH results on CDnet

In many real situations, there is no opportunity to have

a certain number of frames representing the background

(busy highway, underground stations, ...). In these cases, the

system cannot be appropriately trained and its performance

degrades. To overcome this problem, we are going to adopt

a self–adaptive version of CwisarDH that already gave very

good results in the problem of tracking deformable objects

[6][5]. This new system version does not need to be trained

in advance and it is able to dynamically generate the back-

ground model very quickly.

References

[1] I. Aleksander, M. De Gregorio, F. M. G. França, P. M. V.

Lima, and H. Morton. A brief introduction to weightless

neural systems. In ESANN 2009, pages 299–305, 2009.

[2] I. Aleksander and H. Morton. An introduction to neural com-

puting. Chapman & Hall, London, 1990.

[3] I. Aleksander, W. V. Thomas, and P. A. Bowden. WiSARD

a radical step forward in image recognition. Sensor Review,

4:120–124, 1984.

[4] M. De Gregorio and M. Giordano. A WiSARD-based ap-

proach to CDnet. In Proc. of 1st BRICS Countries Congress

(BRICS-CCI), 2013.

[5] M. De Gregorio, M. Giordano, S. Rossi, and M. Staffa. Can

you follow that guy?. In ESANN 2014, pages 511–516, 2014.

[6] M. De Gregorio, M. Giordano, S. Rossi, and M. Staffa.

Tracking deformable objects with WiSARD networks.

In Workshop on Deformable Object Manipulation – IN-

NOROBO2014, 2014.

[7] S. Ghosh, M. Roy, and A. Ghosh. Semi–supervised change

detection using modified self–organizing feature map neural

network. Applied Soft Computing, 15(0):1 – 20, 2014.

[8] L. Maddalena and A. Petrosino. The SOBS algorithm: What

are the limits?. In CVPR Workshops, pages 21–26, 2012.

[9] OpenCV. Open source computer vision.

http://www.opencv.org.

[10] OpenMP. The openmp api specification for parallel program-

ming. http://www.openmp.org.

407


