
Change Impact Analysis of Enterprise Architectures

F.S. de Boer1,2 M.M. Bonsangue2∗† L.P.J. Groenewegen2

A.W. Stam2,3 S. Stevens4 L. van der Torre1,5

1CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
2LIACS, Leiden University, The Netherlands

3Ordina SI&D Technology Consulting, Amersfoort, The Netherlands
4Innoveer Solutions, United Kingdom

5Delft University of Technology, The Netherlands

Abstract

An enterprise architecture is a high-level description in-
tended to capture the vision of an enterprise integrating all
its dimensions: organization structure, business processes,
and infrastructure. Every single part of an enterprise is
subject to change, and each change may have significant
consequences within all domains of the enterprise. A lot of
effort is therefore devoted to maintaining the integrity of an
architectural description.

In this paper we address the problem of mastering the
ripple effects of a proposed change. This allows architects
to assess the consequences of a particular change to the
enterprise, in order to identify potential impacts of a change
before it actually takes place.

1. Introduction

In a large modern enterprise, a rigorously defined frame-
work is necessary to be able to capture a vision of the “entire
system” in all its dimensions and complexity; an enterprise
consists of many elements, resources, business processes
and infrastructures. All these parts have a certain role and
their relationships can be rather complex but are fundamen-
tal to achieve the goal of the enterprise. To manage this
intrinsic complexity of an enterprise, architectural descrip-
tion is necessary. The added values of an architecture are to
create insight, to aid communication between stakeholders,
and to analyze the enterprise. One of the most important
kinds of analysis of an enterprise is the assessment of the
impact of changes.

∗The research of Dr. Bonsangue has been made possible by a fellow-
ship of the Royal Netherlands Academy of Arts and Sciences

†Corresponding author. Email:marcello@liacs.nl

Changes in an enterprise’s strategy and business goal
may have significant consequences within all domains of
the enterprise, such as the organization structure, business
processes, software systems, data management and tech-
nical infrastructure. The study of the ripple effect that a
change may cause in an organization is calledchange im-
pact analysis[1]. The goal of a change impact analysis is
to see what would happen if a change occurs, before the
change really takes place. This information can then be used
to help in making a decision on the necessity of a change.

An example of a question where such an input is nec-
essary is “what is the impact on my business processes if
we modify our infrastructure by removing a server”? If an
undesired impact occurs as a ripple effect of the proposed
change, actions can be taken to prevent it.

Architectural description languages facilitate impact of
change analysis because they allow 1) to extract informa-
tion from the model to see where the first change will ap-
pear, and 2) to calculate change impact on the other parts of
the model for the change proposals. For an enterprise, how-
ever, this means that an architectural description language
has to offer an integrated view of the entire enterprise: only
if such a description integrates the several perspectives of
the enterprise, we can, for example, analyze the effect at
a business level of a change that takes place at a technical
level.

In this paper we propose a framework for mastering the
ripple effects of the proposed change within ArchiMate
models. ArchiMate [7, 6] is an enterprise modeling lan-
guage that focuses on the description of several domains of
an enterprise as well as the relevant relations between the
domains. Within the ArchiMate language there are many
concepts and relationships, each with its own intended se-
mantics. Building on the semantics of these relationships,
we define heuristic rules for calculating the direct impact



of a changed entity in an ArchiMate model on the ones re-
lated to it. Furthermore, we distinguish between different
kinds of change, so to achieve a more fine-grained impact
analysis. The effect of a change is then propagated in the
model using the graph induced by the ArchiMate relation-
ships, resulting in a labeling of all entities with the change
they may need to undergo in order to maintain the integrity
of the design.

Clearly this process can be easily mechanized, with
as result a powerful tool for planning changes, making
changes, accommodating certain types of changes, and trac-
ing through the effects of changes.

The layout of this paper is as follows. In Section 2 we
introduce the ArchiMate modeling language for enterprise
architecture and a running example to explain our defini-
tions. In Section 3 we explain the framework for calculating
the ripple effect of a change in an enterprise description. In
Section 4 we draw some conclusions from our work, men-
tion related work and discuss possible future activities.

2 ArchiMate and ArchiCable

ArchiMate is an enterprise architecture modeling lan-
guage [7, 6]. Based on a meta-model, it provides sev-
eral concepts for architectural design at a very general
level, covering business, applications, and infrastructure.
The ArchiMate language resembles the business language
Testbed [5] but it has also a UML-flavor, introducing con-
cepts like interfaces, services, roles and collaborations.

Throughout this paper we will consider, as a running
example, the enterprise architecture of a small TV cable
company, calledArchiCable, modelled using the ArchiMate
language. To describe this architecture we will need some
ArchiMate concepts and relationships. It is not our intention
to show the complete use of all ArchiMate concepts. Rather,
we consider few basic ones in this example to be used for
calculating the impact of change in the next section. More
specifically, we will use structural concepts (role, compo-
nent and data object) and behavioral ones (trigger, process
and service). Concepts are connected by means of use, as-
sign, realize, access, and triggering relationships.

A role is the representation of a collection of responsi-
bilities that may be fulfilled by some entity capable of per-
forming behavior. The assignment relation links processes
with the roles that perform them. Further, roles can use ser-
vices provided by others, where a service is a description of
a functionality realized by some entities that make it avail-
able to the environment. Services are logically realized by
a process and physically realized by a component. A com-
ponent is a software entity that can be a reusable part of one
or more applications, but also a complete software appli-
cation, or information system. The passive counterpart of
the component is the data object, used for the representa-

customer

request for
subscription

Customer 
information

Customer
administration

access
Customer 

inf. services

realize

Validate
request

Accept 
request

Reject
request

use

Subscription 
services

realize

use

employee

assign

Figure 1. Subscription in ArchiCable

tion of data-type. Data objects can be observably accessed
(i.e. modified, created, or deleted) by entities realizing ser-
vices. Finally, the triggering relation between processes de-
scribes the temporal relation between them.

In Figure 1, we consider the ArchiMate description of
the ArchiCable relative to an existing “customer” who may
subscribe for some extra TV channels. Subscription is re-
quested through the “subscription services”. Such a request
triggers the process “request subscription”, that will initiate
a process performed by an “employee” of the company. The
“employee” first “validates the request” by using the “cus-
tomer administration” application of the company to check
the administrative situation of the customer, as recorded in
the “customer information” database. If no problem arises,
the employee will accept the request for subscription, oth-
erwise the request will be rejected.

The proposed architectural description distinguishes two
main layers: thebusiness layeroffers services to external
customers that are realized in the organization by business
processes (performed by business actors or roles), and the
application layersupports the business layer with appli-
cation services that are realized by software applications.
More generally, ArchiMate allows for an integrated descrip-
tion of all dimensions of an enterprise, such as business, ap-
plications and technology, where thetechnology layeroffers
infrastructure services (e.g. processing, storage and com-
munication services) needed to run applications, realized by
computers and communication devices.



3. Calculating concept dependencies

An enterprise architecture represented by ArchiMate
consists of a set of concepts and of some relationships con-
necting them. In this section we consider the impact of
a change that takes place in a single concept. There are
different kinds of changes that can be considered. In this
paper we calculate the possible ripple effects of a change
when the proposed change consists of removing, extending
or modifying an existing concept of an ArchiMate diagram.
By anextensionhere we mean the substitution of an entity
with another one that preserves the information, behavior
and structure of the initial entity. For example, the exten-
sion of a component can be another component providing
more services. In contrast to extension,modificationmeans
the substitution of an entity with another one that (partially)
destroys the initial information, behavior and structure. For
example, a component can be modified by changing the ser-
vices it provides.

To calculate the ripple effect of a change, we proceed as
follows: we repeatedly change the labeling of the concepts
of an ArchiMate model, until no change in the labeling is
possible. The changes in the labeling are performed by cal-
culating the immediate impact from one concept on another
one, based on both the semantics of the relation that relates
the concepts, and the kind of change we consider. In gen-
eral, if two concepts are related, then the change on one of
them does not need to have an impact on the other one: the
presence of an impact mainly depends on the semantics of
the relation between the two concepts. Relations thus pro-
vide the semantic context of each concept.

Within ArchiMate, twelve different relationships are dis-
tinguished. In the next paragraphs, we examine the impact
of a change for the most important relationships, with re-
spect to each different kind of change.

Access The access relationship models the access of a be-
havioral conceptA to a data objectsB. For example, con-
sider the services “Customer information services” that ac-
cess the data object “Customer information”, for retrieving
data about customers of the enterprise.

If the behavioral objectA is deleted then it will have no
immediate effect on the data objectB, becauseB does not
depend onA. However, an extension (or modification) of
the processA may involve a new (or different, respectively)
way of accessing the data inB. In order to maintain the
integrity of the model,B has to be extended (or modified).

Conversely, if the data objectB is deleted, then the pro-
cessA cannot accessB anymore. This in itself does not
mean that the processA has to be changed, but rather that
its access relationship remains dangling, a signal for the ar-
chitecture maintainer to adjust the model by relinking the
access relationship to another (or novel) appropriate data

object.
If the data objectB is extended then it still preserves the

original structure of the data, and hence can be accessed
by the processA without modification. However, if the
data objectB is modified then its data structure can be par-
tially destroyed, and hence a modification of the way the
processA is accessing it may be required.

Assign The assignment relationship links a unit of behav-
ior A with an active elementB that performs it. If we delete
or modify A, this in principle does not have any impact on
B, except for the case no unit of behavior is assigned to it
anymore. In this case, the absence of an entity capable to
perform the processB should be signalled. If we extendA,
then it will still be able to execute the behaviorB, i.e. the
change onA does not have impact onB.

Conversely, a change inB leads to a respective change
in A. For example, an extension of “validate request” with
a check on the legal situation of a customer may require a
new responsibility of the “employee” as to be able to use
confidential data stored in a law court.

Use The use relationship describes the relation between a
serviceA that is offered to the environment and an entityB
in that environment that depends on the functionalities de-
clared inA. If we deleteA, thenB will be affected because
it cannot use the functionality ofB anymore. This dangling
dependency should be signalled. IfA is extended then it
will have no impact onB, as it can still use the older func-
tionalities. However ifA is modified,B may need to be
modified as well, because the older functionalities may no
longer be declared inA.

Conversely, deletingB will have no effect onA, but a
modification or extension ofB may require an appropriate
modification or extension ofA. For example, if the “cus-
tomer information services” are deleted (because the appli-
cation “customer administration” is removed, for example)
then the process “validate request” will have a dangling de-
pendency that needs to be signalled to the architect, who
can either remove/modify the process or relink the use rela-
tionships to another appropriate service.

Realize The realization relationship links a logical entity
A with a more concrete entityB that realizes it. The log-
ical entity A is meant to declare to the environment some
of the services realized byB, the concrete entity. If we
deleteB, the logical entityA does not have a reason to ex-
ist anymore and will be deleted as well, unless it is also by
another concrete entity as well. If we extendB this does not
have impact onA because the structure ofB is preserved,
whereas if we modifyB this may require a modification of
A as well.



Conversely, if we deleteA this will have no effect onB,
but if we modify or extendA this may require a respective
change inB. For example, if the “subscription services” are
modified by allowing only on-line subscription, the realiz-
ing trigger “request for subscription” has to be modified as
well, by using, for example, new application software.

Trigger The trigger relationship describes the temporal or
causal relationship between processes. A processA triggers
another processB only afterA has ended. Please note that
triggering involves no transfer of data (for this purpose, the
flow relationship should be used). This means that the two
processes are independent of each other, so a change in one
process will have no impact on the other. However, if the
deletion of processA causes the situation that no trigger for
processB is present anymore, this should be signalled to
the user.

3.1. Some examples of impact analysis

Consider the situation that no support will given any-
more for the current version of the application represented
by the component “Customer information administration”.
Assume furthermore that an upgraded version exists, and
that this version is guaranteed to be an extension of the older
application. The company ArchiCable decides to upgrade
this application, because an extension of the component will
have no impact on the “customer information services”.

Note that if the component is modified because it is sub-
stituted with a completely different one, then its impact may
be rather large. In that case, for example, the “customer
information services”, the data object “customer informa-
tion”, and even the process “validate request” and the role
of the “employee” executing it may need to be modified.

Finally, consider the following situation: although cus-
tomers of ArchiCable show their enthusiasm about the fact
that they can subscribe to extra channels, a new law imposes
the company to offer all its channels in a single package
only. As a consequence, ArchiCable decides to remove the
“request for subscription” process. The impact will cause
the removal of the “subscription services” (but the “cus-
tomer” is not removed!) and results in a dangling trigger to
the process “validate request”, signalling the architect that
the rest of the process cannot start and hence can be deleted
too. This entire change may possibly even result in the re-
allocation of “employee”.

4. Conclusion

In this paper we presented a novel analysis technique for
enterprise architectures that involves analyzing change im-
pact from a semantic perspective. This in contrast to the

more usual syntactic perspective that calculates a depen-
dency graph [1] between concepts of a model purely by
composing the relationships between the concepts them-
selves. Our approach is inspired by the work of Kung et
al. [3], who describes various sorts of relationships between
classes in an object relation diagram, classifies types of
changes that can occur in an object-oriented program, and
presents a technique for determining change impact using
the transitive closure of these relationships. Our technique
for change impact analysis uses the semantic classification
of the different relationships already present in the modeling
language ArchiMate, and applies different kinds of atomic
changes that could affect concepts in an enterprise.

In the recent years, a vast number of tools and techniques
have been developed for change impact analysis depending
on the definition of a software program, i.e. the code. Ex-
amples are forward static slicing techniques [10], Law and
Rothermel’s dynamic impact analysis based on whole-path
profiling [8], and Zeller delta debugging [11]. Our change
impact analysis technique is applied tomodels instead of
code: change impact analysis for an enterprise is merely an
analysis on the level of its conceptual structure.

We used a running example to demonstrate the possibil-
ity of implementing the proposed approach in an interactive
tool. Admittedly, our running example is very simple, and
in this case the effect of a change could have been easily ex-
tracted from the ArchiMate model. In reality, however, the
model of an enterprise will be much larger, requiring tech-
niques for selecting and visualizing the elements that are
relevant for a particular stakeholder [7]. As a consequence,
the identification of the concepts affected by a change be-
comes impossible without algorithmic techniques like the
one we propose in this paper.

The outcome of an impact of change analysis can be used
as a measure for the effort of a change: the more the change
causes other rippling changes, in general, the higher the
cost is. In the near future, we plan to study a suitable set
of enterprise change impact analysis metrics. Despite the
importance of change impact analysis on enterprise archi-
tectures, we are aware of works in this direction only for
object-oriented modeling languages [4].

An interesting modification of our approach is to intro-
duce more interaction when a change action causes a ripple
effect, trying to understand the nature of the change by a
refinement of the specification of the exact modifications
within the model. This may lead to a better understanding
of both the architectural design and the nature of the change.

Another future research possibility is the combination of
change impact analysis with temporal logics [9] for a tem-
poral reasoning about the impact of a change on processes.
For this goal the logical viewpoint on architectures, as pre-
sented in [2], can be useful.



References

[1] R. S. Arnold and S. A. Bohner. An Introduction to Software
Change Impact Analysis. InSoftware Change Impact Analy-
sis, IEEE Computer Society Press 1996.

[2] F.S. de Boer, M.M. Bonsangue, J. Jacob, A. Stam, and L. van
der Torre. A Logical Viewpoint on Architectures. InProceed-
ings of the 8th IEEE International Enterprise Distributed Ob-
ject Computing Conference (EDOC 2004), IEEE Computer
Society Press, 2004.

[3] D.C. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C.
Chen. Change impact identification in object oriented soft-
ware maintenance. InProceedings of the International Con-
ference on Software Maintenance, 1994.

[4] Michelle L. Lee. Change Impact Analysis of Object-Oriented
Software. PhD Thesis, 1998

[5] H. Eertink, W. Janssen, P. Oude Luttighuis, W. Teeuw, and
C. Vissers. A business process design language. InProceed-
ings of the 1st World Congress on Formal Methods, 1999.

[6] H. Jonkers, M. Lankhorst, R. van Buuren, S. Hoppenbrouw-
ers, M.M. Bonsangue, and L. van der Torre. Concepts for
modeling enterprise architectures.International Journal of
Cooperative Information Systems, 2004.

[7] M.M. Lankhorst (ed.),Enterprise Architecture at Work: Mod-
elling, Communication and Analysis, Springer-Verlag, May
2005.

[8] J. Law, and G. Rothermel. Whole program path-based dy-
namic impact analysis. InProceedings of the International
Conference on Software Engineering, 2003.

[9] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag, 1992.

[10] F. Tip. A survey of program slicing techniques.J. of Pro-
gramming Languages3(3):121–189, 1995.

[11] A. Zeller. Isolating Cause-Effect Chains from Computer Pro-
grams. InProceedings 10th International Symposium on the
Foundations of Software Engineering (FSE-10), 2002.


