
Change Impact Analysis with a Goal-Driven

Traceability-Based Approach

Wen-Tin Lee,∗ Whan-Yo Deng,† Jonathan Lee,‡ Shin-Jie Lee§

Software Engineering Lab., Department of Computer Science and Information
Engineering, National Central University, Jhongli, Taiwan 320

Recently, the growing popularity of requirements engineering attracts an increasing attention
on requirements traceability and change impact analysis, which also imposes a great demand
for a systematic approach in developing software systems to handling traceability relations and
requirements changes in an automaticmanner. In this work, a goal-driven requirements traceability
approach is proposed to develop and manage requirements changes along three dimensions: (1) to
develop software and manage requirements based on the goal-driven use case (GDUC) approach,
(2) to establish andmaintain the traceability relationwith a design structurematrix (DSM) to derive
the traceability tree, and (3) to analyze requirements change impacts through the partitioning of
DSM into blocks to serve as a basis for calculating use case points. The proposed approach
is illustrated by a benchmark problem domain of a meeting scheduler system. C© 2010 Wiley
Periodicals, Inc.

1. INTRODUCTION

A major challenge in requirements management is that creeping requirements,

namely, changes in current requirements are not controlled or analyzed, affect all

downstream deliverables.1 Consequently, projects with such creeping requirements

are likely to fail. Recent progress in requirements traceability has demonstrated its

applicability to performing impact analysis of requirements changes and to ensuring

all source requirements being fully addressed.2

Analyzing change impacts with requirements traceability usually encounter

three main problems:3 (1) the traceability relations to be maintained are often

imprecise and out of date, (2) the establishment of traceability relations among

requirements and work products is not integrated with the development process, and

(3) the manual impact analysis is tedious and time consuming.

∗Author to whom all correspondence should be addressed: e-mail: wtlee@selab.csie.ncu
.edu.tw.

†e-mails: deng@selab.csie.ncu.edu.tw.
‡e-mail: yjlee@selab.csie.ncu.edu.tw.
§e-mail: jielee@selab.csie.ncu.edu.tw.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 25, 878�908 (2010)
C© 2010 Wiley Periodicals, Inc. Published online in Wiley InterScience

(www.interscience.wiley.com). • DOI 10.1002/int.20443

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 879

Several investigations have been conducted to address the requirements trace-

ability problems, either by generating and maintaining traceability relations,4−9 or

by deÞning and adapting traceability models.10−12 Inspired by the requirements

traceability reference model proposed by Ramesh and Jarke,10 and as a continuous

endeavor of our previous work on goal-driven requirements engineering to analyze

the interactions among requirements,13−17 this work presents a goal-driven approach

with two key features to establishing the trace relations of goals and use cases:

• to identify the three types of links proposed in the referencemodel: evolution, dependency,
and satisfaction, to serve as a basis for formulating the trace relations among goals and
use cases; and

• to establish andmaintain the traceability relationwith design structurematrix (DSM),18−22

and to utilize the DSM partition mechanism to perform change impact analysis.

The meeting scheduler problem,23 a widely used benchmark problem domain

in requirements engineering community, is adopted throughout this work as an

example to illustrate the proposed approach. In the sequel, we give an outline of

our goal-driven use case model as a background information in Section 2.1, detail

the main features of the proposed approach in Section 3, compare related work

on requirements traceability and change impact analysis in Section 4, and Þnally

summarize the beneÞts of the fusion of goal-driven approach and DSM in Section 5.

2. BACKGROUNDWORK

In this session, we introduce background information on work that have signif-

icant impacts on this work, especially, researches on goal-driven use case13,14 and

design structure matrix.18,20−22

2.1. Goal-Driven Use Case Method

A brief summary of our goal-driven use case model13 to construct a use case

model with goals is outlined below for the readers� reference. To identify goals from

domain descriptions and system requirements, we propose a faceted classiÞcation

scheme so that each goal can be classiÞed with three facets: competence, view, and

content. The competence describes whether a requirement is satisÞed completely

or only to a degree. A rigid type of goal describes a minimum requirement that a

target system must satisfy utterly. A soft goal describes properties or concerns that

stakeholder care about for a target system and can be satisÞed to a degree. The view

facet concerns whether a goal is actor speciÞc or system speciÞc. Actor-speciÞc

goals are actors objectives in using a system; system-speciÞc goals are requirements

on services that the system provides. A goal can be further distinguished based on

its content and can be either related to a systems functional aspects or associated

with the systems nonfunctional aspect.

A goal can be achieved, optimized, or maintained by its associated use case.

The use cases of the meeting scheduler system are established for actors meeting

initiator and meeting participant (see Figure 1). For the actor meeting initiator, the

use casePlan ameeting covers the scenario for an initiator to achieve an original goal

International Journal of Intelligent Systems DOI 10.1002/int

880 LEE ET AL.

Figure 1. Use case model for meeting scheduler system template.

MeetingPlanned, which is a goal of rigid, actor speciÞc, and functional. Meanwhile,

in the case of the actor meeting participant, the use case Register a meeting covers

the case for a participant to achieve an original goal MeetingRegistered, which is a

goal that is rigid, actor speciÞc, and functional.

To achieve a system-speciÞc goal, an extension use case may be created.

Referring to our example, the original use case Plan a meeting describes the process

to create a meeting from the view of the actor initiator. The extension use cases

Handle meetings in parallel and Resolve conßicts extends it to take all initiators into

account, that is, to achieve the system-speciÞc goals MeetingHandleInParallel and

SupportConßictResolution. The extension use cases Accommodate evolving data

and Enforce privacy rules extend the original use case Register a meeting to achieve

the soft, system-speciÞc, and functional goals EvolvingDataAccommondated and

PrivacyRulesEnforced, respectively.

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 881

To achieve a nonfunctional goal, an extension use case serves as a constraint

to qualify its original use case. In our example, several constraints (may be rigid

or soft) on a meeting are considered as extension use cases to extend or constrain

the behavior of the original use case Plan a meeting, which is a direct course to

create a meeting, including Minimize Interactions, Keep Appropriate Performance,

Support Reusability, and Maximize Usability. To enhance reusability, the use case

models are further elaborated by extracting the common fragments among various

use cases into an included use case by using �include� relationships. For example,

the use casesMaintain constraints and Authorize users are included by the use case

Plan a meeting and use case Register a meeting.

2.2. Design Structure Matrix

The design structure matrix (DSM) developed by Steward18 is a square matrix

with identical row and column labels to identify the dependencies between tasks

and to sequence the engineering design processes. DSM is a complexity manage-

ment tool to design and optimize complex systems, project tasks, and organization

structures. There are three basic conÞgurations in a DSM: parallel, sequential, and

coupled, to describe the relationships among the system elements (see Figure 2).

The parallel conÞguration is a conÞguration of no interaction between the two

elements A and B, and the DSM entries between these two elements contain no

marking. The sequential conÞguration shows that if element A sends information to

or inßuences the behavior of element B, then the (Column A, Row B) entry contains

a mark. The coupled conÞguration indicates that if two elements A and B require

information from each other or inßuence each other, then each entry of (A,B) and

(B,A) in the DSM contains a mark.

In Ref. 20, Browning reviewed four DSM applications to demonstrate their

usefulness for product and process development, project planning and management,

system engineering, and organization design. The four DSM applications, includ-

ing component-based, team-based, activity-based, and parameter-based DSM, are

categorized into Static DSM and Time-based DSM.

Figure 2. DSM conÞgurations.

International Journal of Intelligent Systems DOI 10.1002/int

882 LEE ET AL.

• StaticDSM: representing systemelements existing at the same time, including component-
based and team-based DSM.

1. Component-based or ArchitectureDSM: A system architecture can bemodeled in
terms of the relations among its components/elements. The potential reintegration
of the elements can be further analyzed via clustering.

2. Team-based or Organization DSM: An organization can be decomposed into
teams, and modeled as a system by documenting the interactions between the
teams. The integration analysis can be applied to cluster teams into metateams
and to minimize the interactions among clusters.

• Time-basedDSM: representing system elements in a ßow through time, including activity-
based and parameter-based DSM.

1. Activity-based or Schedule DSM: A process can be modeled through its consti-
tuted activities by documenting the information ßow among the activities. The
iterations/feedbacks in the processes can then be minimized by analyzing the
DSM using sequence analysis methods, such as partitioning, tearing, banding,
simulation, and eigenvalue analysis.

2. Parameter-based DSM: The low-level activities, design variables, system pa-
rameters can be modeled by documenting the interrelationships between the
parameters. The sequencing analysis methods can be utilized to reduce process
duration and enhance design quality.

DSM employs several analysis methods to optimize complex systems and

project tasks, such as partitioning, clustering, and simulation.21,22

3. GOAL-DRIVEN TRACEABILITY-BASED APPROACH

TO CHANGE IMPACT ANALYSIS

There are four main features involved in this work to establish the traceability

relations among goals and use cases and to evaluate the change impacts (see Figure 3

for an overview):

1. G2U and U2U relation identiÞcation: Goal to use case (G2U) evolution links and use
case to use case (U2U) dependency links are identiÞed and maintained in the DSM.

2. U2G and G2G relation evaluation: Users are engaged to identify the satisfaction links
related to use case to goal (U2G), and the goal-to-goal (G2G) dependency links are then
established automatically in the DSM based on graph theory.

3. DSM partitioning and traceability tree derivation: The DSM, with four submatrices:G2U,
U2U, U2G, and G2G, is partitioned into blocks to derive the traceability tree from the
DSM.

4. Change impact analysis: When user proposes changes during software evolution, change
impacts are analyzed to Þnd affected requirements as well as affected use cases and their
corresponding use case points.24

3.1. G2U and U2G Relation IdentiÞcation

Although DSM is a powerful complexity management tool to design and op-

timize the complex system with various DSM techniques, it is still limited in sys-

tematically identifying and capturing the interactions/relations among the system

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 883

Figure 3. Overview of GART

elements. This work presents a systematic way to evaluate the relations between

goals and use cases. A DSM is divided into four submatrices:G2U, U2U, U2G, and

G2Gmatrices, to capture the traceability links (see Figure 4). Detail discussions are

as follows.

3.1.1. Identify Relation from Goal to Use Case

To capture the links between goals and use cases, the three link types of

traceability relations: evolution, dependency and satisfaction, between goals and use

cases are required to be elaborated. Traceability link is deemed as an impact relation

to reßect its applicability to performing impact analysis of the requirement changes.

The impact relation can be applied to work products as a result of performing a

process, such as goals, use cases, designs, test cases, etc. An impact relation from

a work product x to a work product y indicates that by changing work product x,

work product y may be affected, which is formally deÞned below.

DEFINITION 1. Let R be the impact relation on a set of work productsW. For every

x, y ∈ W , x R y if and only if change x may affect y. R is transitive because if x

impact y and y impact z then it follows that x impact z for every x, y, z ∈W.

Figure 5 illustrates the three types of traceability links between goals and use

cases. In Figure 5a, a goal evolves to a use case, namely, a goal has an evolution link

International Journal of Intelligent Systems DOI 10.1002/int

884 LEE ET AL.

Figure 4. Traceability links between goals and use cases in DSM.

to its derived use case, by changing the goal, its derived use case may be affected.

Therefore, we can view evolution link as a kind of impact relation. In Figure 5b,

a goal/use case depends on another goal/use case, that is, a goal/use case has a

dependency link to its dependent goal/use case, changing the goal/use case may

affect its dependent goal(s)/use case(s). Thus, we can treat dependency link as a

kind of impact relation. In Figure 5c, a use case satisÞes its related goals to some

Figure 5. Link types between goal and use case.

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 885

Figure 6. Use case to use case dependency link.

degree, i.e. a use case has a satisfaction link to its related goal, changing the use

case may affect its related goal(s). The deÞnition of these three types of traceability

links is formally given below.

DEFINITION 2. Let evolution link, satisfaction link, and dependency link ∈ R be a

kind of impact relation. The relations between goal and use case are deÞned by

1. an impact relation from a goal to a use case is an evolution link.
2. an impact relation between goals/use cases is a dependency link.
3. an impact relation from a use case to a goal is a satisfaction link.

We begin with identifying the evolution links from goals to use cases after the

goals and use cases have been modeled. Since each goal is evolved to its associated

use case, the goal to use case evolution links is one-to-one relations and is kept in

the G2U submatrix of the DSM (see G2U matrix in Figure 4). The (Gi , Ui) entries

(for i = 1, . . . , n) in DSM are marked as �1� to indicate the evolution links between

them.

Referring to our example, the goal to use case evolution links�a one-to-one

relation, of the meeting scheduler system are identiÞed in G2U matrix in Figure 4.

The evolution link from goalGMP to use case UPAM is identiÞed since use case UPAM

is discovered with respect to goal GMP. The (GMP, UPAM) entry in G2U matrix is

marked as �1� to indicate the evolution link from goal GMP to use case UPAM. As a

result, G2U Matrix in Figure 4 is a diagonal matrix since goals {GMP, . . . , GMU}
have an evolution link to use case {UPAM, . . . , UMU}, respectively.

3.1.2. Identify Relation between Use Cases

The use case dependency links are illustrated in Figure 6. Use case U1 includes

use case U2 and is extended by use case U3. Use case U5 generalizes use case U4.

U1 depends on U2 through the �include� relation between U1 and U2, which implies

that a change in U2 may inßuence U1. U3 depends on U1 through the �extend�

International Journal of Intelligent Systems DOI 10.1002/int

886 LEE ET AL.

relation between U1 and U3, that is, a change in U1 may inßuence U3. Owing to the

semantics of the �generalize� relation, U5 depends on U4, since changing U4 may

inßuence U5 but not being inßuenced by any changes in U5.

When include, extend or generalize relation occurs between use cases, the

corresponding DSM entries are marked as �1� based on the dependency links

between them in the U2U submatrix of the DSM (see U2U matrix in Figure 4).

The use case to use case dependency links extracted from the use case model of

meeting scheduler system is identiÞed in U2U matrix in Figure 4. Use cases URAM,

URC, UMI, UFMT, and UKAP depend on UPAM through the �extend� relations between

them, that is, a change in UPAM may inßuence URAM, URC, UMI, UFMT, and UKAP. To

indicate the dependency links between these use cases, the entries (UPAM, URAM),

(UPAM, URC), (UPAM, UMI), (UPAM, UFMT), and (UPAM, UKAP) are marked as �1� in the

U2U matrix.

Use cases UPAM and URM depend on UMC through the �include� relations be-

tween them, namely, a change inUMCmay inßuenceUPAM andURM. The correspond-

ing DSM entries (UMC, UPAM) and (UMC, URM) in U2U matrix are marked as �1�

based on the dependency links between them. The diagonal entries in U2U matrix

are marked as �1� to specify that each use case has a dependency link to itself.

3.2. U2G and G2G Relation Evaluation

Traceability link strength and direction are crucial factors in structuring require-

ments traceability. The satisfaction degree of U2G satisfaction links are evaluated

and resulted in U2G matrix in the �Evaluate Relations from Use Case to Goal�

section. The G2G dependency links between goals are analyzed to produce G2G

matrix in the �Analyze Relations between Goals� section.

3.2.1. Evaluate Relation from Use Case to Goal

Goal and use case evaluation process involvesmeasuring the satisfaction degree

of U2G satisfaction links, which are maintained in the U2G submatrix of the DSM

(see U2G matrix in Figure 4). In GDUC,13 each goal Gi , where {Gi | 1 ≤ i ≤ n,

n is the total number of goals}, is achieved/optimized/maintained by its directly
associated use caseUm, where {Um| 1≤ m ≤ n, n is the total number of use cases}.
In addition to the directly achieved/optimized/maintained relationships, we further

examine the relationships between goals and use cases caused by side effects. The

side effects to a goal Gi , where {Gi | 1 ≤ i ≤ n}, are analyzed by considering
the effects of a use case Um to the goal Gi , where {Um| 1 ≤ m ≤ n, i �= m}.
By investigating all the effects, including the side effects among goals and use

cases, the relationships between goals and use cases�the satisfaction degree, can

be determined. In the evaluation, the satisfaction degree (Sdegree) of a goal is rated

from −5 to 5 to represent the satisfaction degree to the goal while performing the

use case. The score can be assigned by domain experts based on a rating table (see

Table I as suggested in Ref. 25). In Table I, Þve means the goal can be fully satisÞed

by the use case;−5 means the goal will be fully denied by the use case; and 0 means

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 887

Table I. DeÞne ratings of satisfaction links.

Score Explanation

5 The goal is fully satisÞed after the use case is performed

3 The goal is largely satisÞed after the use case is performed

1 The goal is partially satisÞed after the use case is performed

0 The goal is not affected after the use cases is performed

−1 The goal is partially denied after the use case is performed

−3 The goal is largely denied after the use case is performed

−5 The goal is fully denied after the use case is performed

2,4, −2, −4 Represent the degrees between scores listed above

the use case does not have any effect on the goal. Detail explanation of the rating of

satisfaction degree can be found in Table I.

We further normalize the satisfaction degree to Sdegree/5 (−1≤ Sdegree/5≤ 1) to

obtain the link strength of U2G satisfaction link. A fuzzy threshold T1 is introduced

to provide the ßexibility that the satisfaction link can be Þltered out if |Sdegree/5| <

T1. The default value of fuzzy threshold T1 is 0 to keep all the satisfaction links

identiÞed by users.

To analyze the satisfaction links from use cases to goals, we examine the

relationships among goals and use cases in a pairwise manner by means of Table I,

which results in the satisfaction links in U2G matrix in Figure 4. For example, the

effect of performing use case UPAM is evaluated with respect to all goals in the

system. GMP is rated as 5 since performing UPAM can fully satisfy the goal. GSF

is rated as 3 to indicate that performing UPAM can largely satisfy the goal. The

effect of performing use case URC with respect to goal GMI is rated as −2 to show

that performing URC can partially to largely deny the goal. The link strength of

satisfaction links (UPAM, GMP), (UPAM, GSF), and (URC, GMI) are normalized to 1,

0.6, and −0.4 in U2G matrix, respectively.

3.2.2. Analyze Relation between Goals

To derive the dependency links between goals, we formulate goals and use

cases as a vertex set and traceability links as edges between goals and use cases

in a graph. The G2U, U2U, and U2G links identiÞed in previous sections can be

captured in the adjacency matrix of goals and use cases. Figure 7 illustrates how the

concept works behind this formulation.

In Figure 7, goal G1 is evolved to use case U1, which satisÞes goal G2 to

some degree. The adjacency matrix A of graph (a) is identiÞed and the entries (G1,

U1) and (U1, G2) are marked as 1 to indicate the evolution and satisfaction links,

respectively. The entry (G1, G2) in A
2, the square of matrix A, is 1, which means

that there exists an edge sequence of length 2 from G1 to G2. This edge sequence is

a path through G1 → U1 → G2, an evolution link from G1 → U1 and a satisfaction

link from U1 → G2, which implies there exists a dependency link from G1 to G2,

according to the DeÞnitions 1 and 2.

Theorem 1 summarizes the formulation to derive goal-to-goal (G2G) depen-

dency links based on graph theory (see Ref. 26 for a reference.)

International Journal of Intelligent Systems DOI 10.1002/int

888 LEE ET AL.

Figure 7. Graph and its adjacency matrix.

THEOREM 1. Let T be a graph with vertex set {G1, . . . , Gn}, {U1, . . . , Un} and
adjacency matrix A with G2U, U2U and U2G traceability links (n = number of

goals/use cases).

If the (i, j)-entry of A2 > 0 where i, j = 1 . . . n, then Gi has a dependency link

to Gj .

Proof. The (i, j)-entry of A2 is the number of edge sequences of length 2 from

Gi to Gj with a path Gi → Ui → Gj . Suppose the (i, j)-entry of A2 > 0, that is,

there exists at least one edge sequence through the path Gi → Ui → Gj . Therefore,

Gi has an evolution link to Ui and Ui has a satisfaction link to Gj . According

to DeÞnitions 1 and 2, evolution link and satisfaction link are a kind of impact

relation that is transitive, Gi has an impact relation to Gj . From DeÞnition 2, the

impact relation between goals is a dependency link. Thus, Gi has a dependency link

to Gj . �

Referring to our meeting scheduler system, we obtain aG2Gmatrix in Figure 4

with the dependency links between goals. For example, the values 0.6 and 0.4 of the

entries (GMP, GSF) and (GMP , GRC) in G2G matrix in Figure 4 are added from the

same entries in theA2matrix created by applying Theorem 1, whichmeans that there

exist two dependency links from GMP to GSF and from GMP to GRC, respectively.

The two dependency links are generated through the paths GMP → UPAM → GSF

and GMP → UPAM → GRC. This indicates that to change GMP may affect GSF and

GRC, and therefore, GSF and GRC depend on GMP.

Figure 4 presents the DSM with G2U, U2U, U2G, and G2G submatrices to

show all the traceability links between goals and use cases. The entries in the G2U

matrix containing the evolution links from goal to use case are kept in the (i,j)-

entry (where i = 16, . . . , 30, and j = 1, . . . , 15) of the DSM. The entries in the

U2U matrix, which contains the dependency links between use cases, are kept in

the (i,j)-entry (where i = 16, . . . , 30, and j = 16, . . . , 30). The satisfaction degree

Sdegree of U2G satisfaction links are established and normalized in the (i,j)-entry

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 889

(for i = 1, . . . , 15, j = 16, . . . , 30). The entries in the G2G matrix containing the

dependency links between goals are kept in the (i,j)-entry (where i = 1, . . . , 15,

and j = 1, . . . , 15).

3.3. DSM Partitioning and Traceability Tree Derivation

DSMpartitioning is adopted here to group the goals and use cases into blocks to

assist project managers to manage the requirements and plan the successive project

tasks. The traceability tree can be derived from the DSM partition blocks to facilitate

impact analysis in the case of any requirement change occurs.

3.3.1. Perform DSM Partitioning

According to Steward,27 DSM partitioning is an algorithmic process of Þnding

the blocks and ordering them such that all the predecessors of a block appear

somewhere before that block. A block is the largest set of interdependent system

elements involved in the iteration cycle. In our work�GART, DSM partitioning is

to group the coupled system elements (goals and use cases) into blocks that can

help project managers plan the successive project tasks and analyze the impacts of

requirements changes.

Figure 8 shows the DSM partition result of our meeting schedule system, in

which the traceability links are grouped into Þve blocks. Each block includes all the

coupled goals and use cases that bidirectionally inßuence each other owing to the

Figure 8. DSM partition result of meeting scheduler system.

International Journal of Intelligent Systems DOI 10.1002/int

890 LEE ET AL.

loop relations between these couples. That is, if an element in one block changes,

all the elements in the same block may be affected.

Block 1, including goalGDRH andUAU, has links with blocks 3, 4, and 5, which

means to change goal GDRH or use case UAU in block 1 may affect the other goals

and use cases in blocks 3, 4, and 5. Because use case UAU is included by use cases

UPAM and URM, by changing UAU may affect use cases UPAM and URM, as well as

those use cases that extend UPAM and URM, and goals satisÞed by those use cases.

Block 2, including goal GKPC and use case UMC, has the same links as goal

GDRH and UAU in block 1 to blocks 3, 4, and 5. Since use case UAU is also included

by use cases UPAM and URM, by changing UMC may affect the same goals and use

cases as changing the use case UAU in block 1.

The goals and use cases in blocks 3 and 4 can be viewed as goals and use cases

for actor meeting initiator and meeting participant, respectively. There is no link

between the elements in block 3 and block 4, hence changes in block 3 will not

affect elements in block 4, and not being affected by any changes in block 3. Each

block can be divided into four submatrices (see block 4 in Figure 8), which shows

the G2U, U2U, U2G, and G2G relations between goals and use cases in each block.

Block 5 includes goals GAP, GSR, and GMU, which are soft, system speciÞc,

and nonfunctional, and use casesUKAP,USR, andUMU, which are extension use cases

with respect to use cases UPAM and URM. Changes in these goals and use cases in

block 5 will not affect goals and use cases in blocks 1�4 since there is no link from

the elements in block 5 to the elements in blocks from 1 to 4.

3.3.2. Derive Traceability Tree

Representing the system elements in a tree structure facilitates impact analysis

of changes. From the DSM partition result, we can represent the traceability trees

in terms of blocks or system elements. Figure 9 represents the DSM blocks in tree

structure, which provides a higher level view to understand the relations among

DSM blocks. Blocks 1 and 2 have no traceability relations between each other but

have the traceability relation to blocks 3, 4, and 5, respectively. Blocks 3 and 4 have

the traceability relations to block 5 but have no relation between each other. Block 5

has no traceability relation to other blocks.

Figure 10 shows the traceability tree T1 whose root is goal GDRH and contains

the use case UAU in block 1 and related goals and use cases in blocks 3, 4, and 5.

From the tree structure, it is easy to identify the relations between elements in

blocks. If the goal GDRH changes, the related goals and use cases can be traversed

and regarded as affected work products.GDRH traverses the use caseUAU in block 1

and related goals GMP, GMHP, GMI, GRC, and GSF ,which further discover the use

cases UPAM, UHMP, UMI, URC, and URAM in block 3. In block 4, GDRH traverses the

related goalsGEPR,GWM,GAED,GDP, andGRM, which further discover the use cases

UEPR, UWM, UAED, UDP, and URM. In block 5, GMP also traverses the related goals

GMU,GSR, andGAP, which further discover the use casesUMU,USR, andUKAP. DSM

partition blocks together with traceability trees provide a visual way for project

managers to organize project tasks, facilitate team communication, and perform

change impact analysis.

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 891

Figure 9. Tree representation of DSM blocks.

Figure 10. Traceability tree T1 of goals and use cases.

International Journal of Intelligent Systems DOI 10.1002/int

892 LEE ET AL.

Figure 11. Change impact analysis.

3.4. Change Impact Analysis

To successfully manage requirements change, change impacts should be cor-

rectly analyzed to determine what would be modiÞed for the changes and to avoid

the unforeseen ripple effects that frequently result in failures of a project.

When a user requests for a change, the traceability relations between work

products can be utilized to analyze the affected work products to implement the

changes. The proposed change impact analysis approach to analyzing the affected

work products and the effort required to make the changes (see Figure 11).

• Step 1, the traversed change request with change items and the changed work products
are grouped based on the DSM blocks where they reside.

• Step 2, the effect of the grouped change work products in the DSM blocks are analyzed to
trace the impacted work products of each change work product and get the impact value
by summed the results of the multiplication of each impacted use case�s use case points
and the normalization value of the evolution, dependency and satisfaction links between
goals and use cases in a rippled way.

• Step 3, the effects of the changes to related DSM blocks are analyzed, and the total
affected work products, system size and effort required to make the changes are generated
by utilizing use case point analysis method.

In order to show the practicability of our method with different conditions of

requirements change, three changes,Change A,B andC are proposed and illustrated

below.

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 893

Figure 12. Traversal result to change A.

3.4.1. Change A: Modify an Existing Requirement

We take Change A: Modify an existing requirement GRC and URC to support

conßicts resolution with additional knowledge, as an example in meeting scheduler

system to illustrate how change impact analysis together with use case point analysis

can be applied to analyze change impacts.

Figure 12 shows the ripple traversal results of Change A. Starting with GRC

in Block 3, there are three dependency links from GRC to GSF , GMI and GMP,

which will lead us to {URAM, UMI and UPAM}, respectively. By following the links
originating from GMP, GMHP and UHMP can be further reached in block 3. Again,

by tracing the dependency links from GMP to block 5, three sets of nodes can be

found: goals {GSR, GAP, GMU}, and use cases {USR, UKAP, UMU}. Figure 12 also
shows two important information: (1) the result after normalizing the dependency

links between goals, for example 0.18 between GRC and GSF; and (2) the use case

points of each affected use case, such as 15 points for UPAM.

Figure 13 presents the detail speciÞcation of use case URC. The original use

case transactions, T1�T8, describe the scenario to solve the date conßict problem.

The new added use case transactions, T9�T12, describe the scenario to solve the

problem when no allowable location available. We deÞne the change impact ratio

(CIR) of a changed use case as

CIR =
Transaction Added+ModiÞed

Base Use Case Transaction
(1)

International Journal of Intelligent Systems DOI 10.1002/int

894 LEE ET AL.

Figure 13. Use case speciÞcation of URC.

Referring to Change A, we can obtain its CIR as 4/8 = 0.5.

The impact metric V of a change with the changed use cases Ui is deÞned in

Equation 2, where UCPj are the use case points of impacted use cases Uj of Ui in

the same block, and Linksij are all the traversed links from Ui to Uj . UCPk are the

use case points of impacted use cases Uk of Ui in other blocks, and Linksik are all

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 895

the traversed links from Ui to Uk . The fuzzy threshold T 2 is introduced to provide

the ßexibility that the traceability links from Ui to Uk can be Þltered out if

∏

Linksik(normalized value of Linksik) < T2.

V = CIR×

⎛

⎝UCPi +

n
∑

j=1

∏

Linksij

(normalized value of Linksij)× UCPj

+

m
∑

k=1

∏

Linksik

(normalized value of Linksik)× UCPk

⎞

⎠ (2)

where n is the number of impacted use cases in the same block of Ui ,m is the number

of impacted use cases in other blocks, and
∏

Linksik
(normalized value of Linksik) ≥

T 2 = 0.002.

Impact metric V of Change A can be derived as follows:

V = 0.5× (15+ 0.2× 1× 10+ 0.18× 1× 5+ 0.07× 1× 15+ 0.07× 0.29

×1× 5+ 0.07× (0.1× 1× 5+ 0.07× 1× 5+ 0.11× 1× 5)) = 9.57

To obtain the value of V, UCP of URC is added with the result of the sum of

the use case points of the normalized value of the traversed links from GRC. For

example, the impacted UCP of the use case UMI is added from the result of 0.2 ×

1× 10, where 0.2 is the normalized value of the dependency link fromGRC toGMI,

1 is the value of evolution link from GMI to UMI and 10 is the UCP of use case UMI,

respectively.

The technical complexity factor (TCF) and the environment factor (EF) of

the meeting scheduler system are set to 0.85 and 0.8 based on the use case point

approach to deriving impacted UCP, respectively.

Impacted Use Case Points (UCP) of Change A

= TCF× EF× V of Change A (3)

We then calculate the impacted use case points by Equation 3 after the change as

follows:

0.85× 0.8× 9.57 = 6.5 UCP

Suppose we use a factor of 20 person-hours per UCP, then the effort required to

implement Change A can be obtained below:

Effort required to implement Change A = 6.5× 20 = 130 person-hours

International Journal of Intelligent Systems DOI 10.1002/int

896 LEE ET AL.

To further verify our estimation, a second estimate effort in person-months based

on COCOMO228 is also adopted as follows:

Code Size = 9.57 Unadjusted UCP× 0.8× 50 = 383 LOC

Person-month required to implement Change A

PMNS = A × SizeE ×

n
∏

i=1

EMi

= 2.94× (0.383)1.15 × 0.85 = 0.83 person-month

= 132.8 person-hours

The way the code size is calculated is followed by the conversion ratios given

in Ref. 29. The conversion ratios from unadjusted UCP to IFPUG function points

and from IFPUG function points to java statement per function point are 0.8 and

50, respectively. As an average project, the effort multipliers of meeting scheduler

system are all equal to 1.0 except the ACAP is 0.85 (analyst capability is high) to

comply with the setting of UCP environment factors. A and E are set to 2.94 and

1.15, respectively. The result to implement the change is 131.2 person-hours by

taking 1 person-month= 20 person-days. As a result, the two estimates end up with

a 2.8 person-hours difference.

3.4.2. Change B: Add a New Requirement

We take Change B: Add a new requirement GEN and UEN to notify meeting

initiator and participants by e-mail, as an example in meeting scheduler system

to illustrate how to analyze change impacts of a new requirement (see Figure 14

for the traversal results of Change B). Since Change B is a new requirement, the

CIR of Change B is 1 and the UCP of UEN is 5 obtained by analyzing its use case

speciÞcation in Figure 15.

To obtain the value of V, UCP of UEN is added with the result of the sum of

the use case points of the normalized value of the traversed links from GEN. For

example, the impacted UCP of the use case URAM is added from the result of 0.07×

0.15 × 1 × 5, where 0.07 is the normalized value of the dependency link fromGEN

to GMP, 0.15 is the normalized value of the dependency link from GMP to GSF, 1 is

the value of evolution link from GSF to URAM, and 5 is the UCP of use case URAM,

respectively.

Impact metric V of Change B can be derived as follows:

V = 1× (5+ 0.07× 1× 15+ 0.07× (0.15× 1× 5+ 0.12× 1× 15+ 0.13

×1× 10+ 0.15× 1× 5)+ 0.07× (0.1× 1× 5+ 0.07× 1× 5+ 0.11

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 897

Figure 14. Ripple traversal to change B.

Figure 15. Ripple traversal to change B.

International Journal of Intelligent Systems DOI 10.1002/int

898 LEE ET AL.

×1× 5)+ 0.08× 1× 15+ 0.08× (0.14× 1× 10+ 0.14× 1× 10+ 0.15

×1× 5+ 0.12× 1× 5)+ 0.08× (0.1× 1× 5+ 0.07× 1× 5+ 0.11

×1× 5)) = 8.11

We then calculate the impacted use case points by Equation 3 after the change

as follows:

0.85× 0.8× 8.11 = 5.5 UCP.

The effort required to implement Change B can be obtained by using a factor

of 20 person-hours per UCP below:

Effort required to implement Change B

= 5.5× 20 = 110 person-hours

Based on COCOMO2, a second estimate effort in person-months is also

adopted as follows:

Code Size = 8.11 Unadjusted UCP× 0.8× 50 = 324 LOC

Person-month required to implement Change B

PMNS = A × SizeE ×

n
∏

i=1

EMi = 2.94× (0.324)1.15 × 0.85

= 0.68 person-month = 108.8 person-hours

The result to implement the change is 108.8 person-hours by taking 1 person-

month = 20 person-days. As a result, the two estimates of Change B end up with

only a 1.2 person-hours difference.

3.4.3. Change C: Modify Two Requirements

We take Change C: Modify two requirements GAED and UAED to support the

meeting customization, and GDP and UDP to support partial meeting participation.

Figure 16 show the traversal results of Change C. Referring to Change C on the use

case speciÞcations of UDP and UAED (see Figures 17 and 18), both the CIR of UDP

and UAED are 1/4 = 0.25.

To obtain the value of V, UCP of UDP and UAED are added with the result

of the sum of the use case points of the normalized value of the traversed links

from GDP and GAED. For example, the impacted UCP of the use case URM is

added from the result of 0.08 × 1 × 15, where 0.08 is the normalized value of the

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 899

Figure 16. Ripple traversal to change C.

dependency link from GDP to GRM, 1 is the value of evolution link from GRM to

URM, and 15 is the UCP of use case URM, respectively. The traceability links from

GDP → GAED → GRM → GSR,GAP andGMU, and fromGAED → GGDP → GRM →

GSR, GAP, and GMU can be Þltered out by Equation 2, since the results of

∏

Linksik

(normalized value of Linksik) < T 2.

Impact metric V of Change C can be derived as follows:

V = 0.25× (10+ 0.08× 1× 15+ 0.08× (0.15× 1× 5+ 0.12× 1× 5+ 0.1

× 1× 5+ 0.07× 1× 5+ 0.11× 1× 5)+ 0.13× 1× 10+ 0.13× 0.08

× (1× 15+ 0.15× 1× 5+ 0.12× 1× 5))+ 0.25× (10+ 0.08× 1× 15

+ 0.08× (0.15× 1× 5+ 0.12× 1× 5+ 0.1× 1× 5+ 0.07× 1× 5

+ 0.11× 1× 5)+ 0.13× 1× 10+ 0.13× 0.08× (1× 15+ 0.15× 1× 5

+ 0.12× 1× 5)) = 6.44

International Journal of Intelligent Systems DOI 10.1002/int

900 LEE ET AL.

Figure 17. Use case speciÞcation of UDP.

We then calculate the impacted use case points by Equation 3 after the change as

follows:

0.85× 0.8× 6.44 = 4.38 UCP

Suppose we use a factor of 20 person-hours per UCP, then the effort required to

implement Change C can be obtained below:

Effort required to implement Change B

= 4.38× 20 = 87.6 person-hours

A second estimate effort in person-months based on COCOMO2 is adopted as

follows:

Code Size = 6.45× 0.8× 50 = 258 LOC

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 901

Figure 18. Use case speciÞcation of UAED.

Person-month required to implement Change C

PMNS = A × SizeE ×

n
∏

i=1

EMi

= 2.94× (0.258)1.15 × 0.85 = 0.53 person-month

= 84.8 person-hours

The result to implement the change is 84.8 person-hours by taking 1 person-

month = 20 person-days. As a result, the two estimates of Change C end up with a

2.8 person-hours difference.

International Journal of Intelligent Systems DOI 10.1002/int

902 LEE ET AL.

4. RELATEDWORK

Work in a number of Þelds has made its mark on our research. Our approach

has drawn upon several ideas from requirements traceability techniques and change

impact analysis methods.

4.1. Requirements Traceability

Several studies11,30−32 have shown the importance and issues of using the re-

quirements traceability techniques to trace the requirements with other work prod-

ucts, such as design, source code, and test cases, in the software development

life-cycle.

Gotel and Finkelstein30 investigated and reported the requirements traceability

problems and recommended several solutions. They observed a lack of �pre-RS

traceability,� meaning that no traceability informationwas available before inclusion

in the requirements speciÞcation. D�omges and Pohl12 proposed a framework of

adaptable traceability environments to support the deÞnition and usage of project-

speciÞc trace data and strategies. The organizational learning about project-speciÞc

requirements traceability should be empowered to guide stakeholder in trace capture

and usage, and support continuous process improvement.

Spanoudakis et al.4 developed a rule-based approach to automatically generate

four traceability relations between requirement statement documents, use cases

documents, and analysis object models of a software system by using two different

traceability rules, the requirements-to-object-model and interrequirement rules.

Egyed proposed a scenario-driven approach5 to generating and validating trace

dependencies among model elements that are related to code. A test scenario or

usage scenario is tested to generate observed traces for further trace analysis with

other hypothesized traces. The new trace dependencies among model elements and

code are then yielded and validated to solve the inconsistency and incompleteness.

To address the human source issue of requirement traceability, Gotel and

Finkelsten7 presented contribution structure to locate people with their contributed

artifacts in the contribution format. The social roles, role relations, and commitments

can be further inferred to form the personnel-based requirements traceability.

Cleland-Huang et al.9 developed an event-based traceability (EBT) approach,

based on event notiÞcation, to tracing and maintaining the artifacts and their related

links during the software life cycle. The EBT�s architecture has the following three

main parts: Requirements Manager handles requirements evolution with identiÞed

change events and triggers the events by publishing an event message when a change

occurs. Event Server manages subscriptions and receives event messages from the

requirement manager. It then customizes event notiÞcations into a speciÞc update

directive, and forwards it to the subscriber manager. Subscriber Manager receives

and resolves event notiÞcations and restores an artifact and related traceability links

to a current state if necessary. Cleland-Huang et al.8 also presented a goal-centric

approach to manage nonfunction requirements in four steps. First, nonfunctional

requirements are modeled by a soft goal interdependency graph (SIG). Second,

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 903

when the changes occur, the trace links are dynamically generated using probabilistic

networkmodel and Þltered by users to remove the irrelevant ones. Third, the affected

SIG elements are analyzed and evaluated to determine whether other goals are

affected and still satisÞed after the changes. Finally, the decision on whether to

implement changes is made, and risk mitigation strategies are identiÞed before

performing the changes.

These requirements traceability work can be characterized with criteria listed

below, which are then served as a basis for making the comparison for the pros and

cons of the above-mentioned work (see Table II).

• Traceability Techniques: the traceability technique/method proposed or adopted,
• Requirements Types: the requirements that the approaches can handle, in particular,
whether the approaches can handle nonfunctional requirements,

• Vertical Traceability: whether the approaches can manage the traceability relation from
�a requirements to its derived requirements and allocation to functions, interface, objects,
people, process and work products,�33

• Horizontal Traceability: whether the approaches handle relations across requirements or
interfaces,33 and

• Traceability Visualization: how the traceability relations are presented.

4.2. Change Impact Analysis

Managing changes to a software system is critical to the success of the system,

since software undergoes change during the whole life cycle of software. Change

impact analysis is deÞned as �identifying the potential consequences of a change,

or estimating what needs to be modiÞed to accomplish a change�.34 To successfully

manage requirements changes, change impacts should be correctly analyzed to

determine what should be modiÞed for the changes and to avoid the unforeseen

ripple effects that frequently result in failures.

Bohner35 has proposed a basic software change impact analysis process to

iteratively discover impacted �software life-cycle objects (SLOs)�. The fan-in/out

relations of the SLOs are identiÞed in the connectivity matrix. The reachability

matrix using the notion of distance indicators can then be used to indicate potential

impacts to a SLO. The semantics of the relations are employed to increase the

accuracy of Þnding the impacted elements. Three key challenges of impact analysis:

huge information sources, semantics of software artifacts relationships, and work

product dependency analysis methods are discussed, and the change effect on the

middleware and COTS components are addressed to solve the change problem

through interoperability dependency relationships.

In Ref. 36 and 37, an impact analysis method was presented to evaluate re-

quirements change based on traceability relations between the work products. For

each change, the impacted work products are traced to compute the impact metrics,

the changes are then categorized into groups (compatibility class) from low to high

based on the computed impact values using the compatibility relation.

To analyze the change impact on UML models, Briand et al.38 has proposed

an impact analysis approach to analyze and prioritize the impacted model elements

in the UML models using the impact analysis rules and distance measure for each

International Journal of Intelligent Systems DOI 10.1002/int

904 LEE ET AL.

T
a
b
le
II
.
C
o
m
p
ar
is
o
n
o
f
w
o
rk
o
n
re
q
u
ir
em
en
ts
tr
ac
ea
b
il
it
y.

O
u
r
W
o
rk

C
le
la
n
d
-H
u
an
g
et
al
.

E
g
y
ed
et
al
.

Z
is
m
an
et
al
.

G
o
te
l
an
d
F
in
k
el
st
ei
n

T
ra
ce
ab
il
it
y
T
ec
h
n
iq
u
es

G
o
al
-D
ri
v
en
an
d
D
S
M

E
v
en
t-
B
as
ed
an
d

P
ro
b
ab
il
it
y
In
fe
re
n
ce

M
o
d
el

S
ce
n
ar
io
-B
as
ed

R
u
le
-B
as
ed

C
o
n
tr
ib
u
ti
o
n
S
tr
u
ct
u
re
s

R
eq
u
ir
em
en
ts
T
y
p
es

G
D
U
C
ca
n
h
an
d
le

fu
n
ct
io
n
al
an
d

n
o
n
-f
u
n
ct
io
n
al

re
q
u
ir
em
en
ts

U
se
S
o
ft
g
o
al

In
te
rd
ep
en
d
en
cy

G
ra
p
h
(S
IG
)
to

m
o
d
el
n
o
n
-f
u
n
ct
io
n
al

re
q
u
ir
em
en
ts

N
o
n
-f
u
n
ct
io
n
al
re
q
u
ir
em
en
ts

ca
n
b
e
ad
d
re
ss
ed

N
o
n
-f
u
n
ct
io
n
al

re
q
u
ir
em
en
ts
ar
e
n
o
t

ex
p
li
ci
tl
y
ad
d
re
ss
ed

R
eq
u
ir
em
en
ts
ty
p
es
ar
e

n
o
t
ex
p
li
ci
tl
y

sp
ec
iÞ
ed

V
er
ti
ca
l
T
ra
ce
ab
il
it
y

S
u
p
p
o
rt
b
y
ev
o
lu
ti
o
n

an
d
sa
ti
sf
ac
ti
o
n
li
n
k
s

F
ro
m
g
o
al
s
to
lo
w
-l
ev
el

ar
ti
fa
ct
s

R
eq
u
ir
em
en
ts
/m
o
d
el

el
em
en
ts
re
la
te
d
to
co
d
e

ca
n
b
e
tr
ac
ed

F
ro
m
re
q
u
ir
em
en
ts
/
u
se

ca
se
s
to
o
b
je
ct

m
o
d
el
s

E
x
te
n
d
A
rt
if
ac
t-
b
as
ed

tr
ac
ea
b
il
it
y
w
it
h

P
er
so
n
al
-b
as
ed

tr
ac
ea
b
il
it
y

H
o
ri
zo
n
ta
l
T
ra
ce
ab
il
it
y

S
tr
en
g
th
an
d
d
ir
ec
ti
o
n

o
f
d
ep
en
d
en
cy
li
n
k

ar
e
su
p
p
o
rt
ed

U
se
S
IG
fo
r
g
o
al
s

d
ep
en
d
en
ci
es

T
ra
ce
d
ep
en
d
en
ci
es
ca
n
b
e

g
en
er
at
ed
am
o
n
g
an
y

el
em
en
ts
th
at
re
la
te
to

co
d
e

F
ro
m
re
q
u
ir
em
en
ts
to

re
q
u
ir
em
en
ts
/

re
q
u
ir
em
en
ts
to
u
se

ca
se
s

N
o
t
ex
p
li
ci
tl
y

ad
d
re
ss
ed

T
ra
ce
ab
il
it
y

V
is
u
al
iz
at
io
n

D
S
M
b
lo
ck
s
an
d

tr
ac
ea
b
il
it
y
tr
ee

T
ab
le
an
d
m
at
ri
x
v
ie
w

F
o
o
tp
ri
n
t
g
ra
p
h
is
p
ro
p
o
se
d

T
ab
le
v
ie
w

C
o
n
tr
ib
u
ti
o
n
fo
rm
at

W
ea
k
n
es
s

U
se
r
ev
al
u
at
io
n
is
st
il
l

re
q
u
ir
ed
fo
r
tr
ac
e

re
la
ti
o
n
an
al
y
si
s

T
h
e
re
ca
ll
an
d
p
re
ci
si
o
n

ra
te
s
o
f
th
e
re
tr
ie
v
ed

li
n
k
s
ar
e
th
e
m
aj
o
r

co
n
ce
rn

C
o
m
p
le
te
tr
ac
ea
b
il
it
y

co
v
er
ag
e
m
ay
n
o
t
b
e

p
ro
v
id
ed

T
h
e
re
ca
ll
an
d
p
re
ci
si
o
n

ra
te
s
o
f
th
e

g
en
er
at
ed
tr
ac
e
li
n
k
s

ar
e
th
e
m
aj
o
r

co
n
ce
rn

T
h
e
w
o
rk
in
v
o
lv
ed
to

es
ta
b
li
sh
an
d
u
ti
li
ze

th
e
co
n
tr
ib
u
ti
o
n

st
ru
ct
u
re
s

S
tr
en
g
th

S
y
st
em
at
ic
w
ay
to

id
en
ti
fy
tr
ac
e

re
la
ti
o
n
s
an
d
u
se

D
S
M
to
p
ar
ti
ti
o
n

an
d
v
is
u
al
iz
e
th
e

tr
ac
e
re
la
ti
o
n
s

D
y
n
am
ic
al
ly
re
tr
ie
v
e
th
e

li
n
k
s
to
re
d
u
ce
th
e

o
v
er
h
ea
d
o
f

tr
ac
ea
b
il
it
y

es
ta
b
li
sh
m
en
t

T
ra
ce
li
n
k
s
ca
n
b
e
g
en
er
at
ed

b
y
an
al
y
zi
n
g
th
e
sc
en
ar
io
,

co
d
e
an
d
m
o
d
el
el
em
en
ts

A
u
to
m
at
ic
g
en
er
at
io
n

o
f
tr
ac
ea
b
il
it
y

re
la
ti
o
n
s
u
si
n
g
ru
le

in
fe
re
n
ce

T
h
e
tr
ac
ea
b
il
it
y
to

h
u
m
an
so
u
rc
es
o
f

re
q
u
ir
em
en
ts
is

p
ro
v
id
ed

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 905

change. The impact analysis of changed model elements can be automated using

the OCL rules deÞned for each change type. In their approach, very detailed UML

model information should be used and the method to perform automatic impact

analysis is not clearly stated.

In Ref. 39, a traceability-based approach to analyze change impacts between

requirements, test cases, design (packages and classes), and code (methods) is

presented. The traceabilitymodel and code parserwith structure relationships inC++

are illustrated to support the top-down and button-up analysis of change impacted

artifacts. However, how to establish the trace links between software artifacts is not

clearly addressed and the required effort and schedule for a change are not analyzed.

Based on use case map (UCM) technique, Hassine et al.40 use requirement de-

pendencies with forwarded slicing algorithm to analyze ripple effect of the changes

at the requirement level. The requirement dependencies include scenario dependen-

cies and component-based dependencies. The scenario dependencies are classiÞed

in three types: functional, containment, and temporal. The component dependen-

cies include forward and backward dependence to identify the relations between

components using the scenario execution sequence.

Lock and Kotonya41 provide an integrated approach that integrates traceability

extraction methods to determine impactables affected by the change in the impact

propagation structures using propagation probability. The traceability analysis then

be conducted to produce a single impact propagation structure using vertical com-

position, lateral composition, duplication resolution, and probability decay. In their

approach, how to solve the loop problem is not addressed in the analysis process.

To predict software change impact, a study had conducted to investigate the

correlations between standard diagrams (UML diagrams and dataßow diagram) and

the change request characteristics (type, scope, estimated, and actual effort).42 The

analysis results of three change requests are presented to show the relationship

between actual implementation effort and impacted diagrams. However, it is lack

the systematic analysis approaches to analyze the affected software artifacts and to

predict the required effort.

In Ref. 43, amodel calledArchitecture Rationale and Element Linkage (AREL)

is proposed to model the relations between architecture elements and decisions.

The Bayesian Belief Network (BBN) is used to capture the probabilistic relations

between the elements in the AREL model and to predict the change impacts when

the requirement changes occur.

In Ref. 44, a framework for comparison of the impact analysis (IA) approaches

is proposed. It includes three parts: �IA application� to examine how the approach is

used to perform IA, �IA parts� to examine the internal elements and methods used

by the IA approach and �IA effectiveness� to examine how well and accuracy the

approach does. The IA approaches they compared include the dependence analysis

techniques among program entities. We summarize the comparison between these

change impact analysis approaches with a list of criteria in Table III. The detailed

descriptions of these criteria are as follows:

• Impact analysis methods: What technique the impact analysis approaches proposed or
used to performed change analysis?

International Journal of Intelligent Systems DOI 10.1002/int

906 LEE ET AL.
T
a
b
le
II
I.

C
o
m
p
ar
is
o
n
o
f
re
se
ar
ch
es
o
n
ch
an
g
e
im
p
ac
t
an
al
y
si
s.

S
im
o
n
L
o
ck
an
d

Ja
m
el
ed
d
in
e

Ja
m
es
S
.

O
u
r
W
o
rk

S
h
aw
n
A
.
B
o
h
n
er

G
er
al
d
K
o
to
n
y
a

L
.C
.
B
ri
an
d
et
al
.

H
as
si
n
e
et
al
.

O
N
ea
l
et
al
.

Im
p
ac
t
an
al
y
si
s

m
et
h
o
d
s

Im
p
ac
t
an
al
y
si
s

u
si
n
g
D
S
M
an
d

tr
ac
ea
b
il
it
y

re
la
ti
o
n
s

Id
en
ti
fy
im
p
ac
ts
b
y

ex
te
n
d
in
g

se
m
an
ti
c
in
tr
ac
e

re
la
ti
o
n
s

In
te
g
ra
te
tr
ad
it
io
n
al

im
p
ac
t
an
al
y
si
s

ap
p
ro
ac
h
es
w
it
h

ex
p
er
ie
n
ce
b
as
ed

te
ch
n
iq
u
es

U
M
L
m
o
d
el
-b
as
ed

ap
p
ro
ac
h
(I
m
p
ac
t

an
al
y
si
s
ru
le
s
an
d

d
is
ta
n
ce
m
ea
su
re
)

U
se
ca
se
m
ap
s

(U
C
M
)
fo
rw
ar
d

sl
ic
in
g

T
ra
ce
-b
as
ed
Im
p
ac
t

A
n
al
y
si
s

M
et
h
o
d
o
lo
g
y

(T
IA
M
)

T
ra
ce
ab
il
it
y

T
ec
h
n
iq
u
e

G
o
al
-D
ri
v
en
an
d

D
S
M

C
o
n
n
ec
ti
v
it
y
m
at
ri
x

an
d
re
ac
h
ab
il
it
y

m
at
ri
x
w
it
h

d
is
ta
n
ce

in
d
ic
at
o
rs

Im
p
ac
t
p
ro
p
ag
at
io
n

st
ru
ct
u
re
s
w
it
h

p
ro
b
ab
il
it
y
v
al
u
es

N
o
t
ad
d
re
ss
ed

U
C
M
re
q
u
ir
em
en
ts

d
ep
en
d
en
ci
es
at

sc
en
ar
io
an
d

co
m
p
o
n
en
t
le
v
el

W
o
rk
P
ro
d
u
ct

R
eq
u
ir
em
en
ts

T
ra
ce
M
o
d
el

Im
p
ac
t
A
n
al
y
si
s

R
es
u
lt
s

Im
p
ac
te
d
w
o
rk

p
ro
d
u
ct
tr
ee
an
d

im
p
ac
t
m
et
ri
c

D
ir
ec
te
d
an
d

in
d
ir
ec
te
d

im
p
ac
te
d
S
L
O
s

Im
p
ac
ta
b
le
s
in

Im
p
ac
t

p
ro
p
ag
at
io
n

st
ru
ct
u
re
s

Im
p
ac
te
d
U
M
L

m
o
d
el
el
em
en
ts

Im
p
ac
te
d
U
C
M

el
em
en
ts

O
rd
er
ed

co
m
p
at
ib
il
it
y

cl
as
se
s
o
f

re
q
u
ir
em
en
ts

ch
an
g
es

E
ff
o
rt
o
r
im
p
ac
t

d
eg
re
es

p
re
d
ic
te
d

C
IA
M
ca
n
es
ti
m
at
e

th
e
ef
fo
rt
to

im
p
le
m
en
t

ch
an
g
es

N
o
t
ad
d
re
ss
ed

N
o
t
ad
d
re
ss
ed

N
o
t
ad
d
re
ss
ed

N
o
t
ad
d
re
ss
ed

Im
p
ac
t
m
et
ri
c
v
al
u
e

fo
r
ea
ch
ch
an
g
e

ca
n
b
e
g
en
er
at
ed

W
ea
k
n
es
s

T
h
e
u
se
ca
se
p
o
in
t
o
f

ea
ch
u
se
ca
se
ar
e

n
ee
d
ed

H
o
w
to
an
al
y
ze
th
e

ch
an
g
e
im
p
ac
t
is

n
o
t
ex
p
li
ci
tl
y

ad
d
re
ss
ed

T
h
e
w
o
rk
in
v
o
lv
ed
to

an
al
y
ze
ch
an
g
es

b
y
in
te
g
ra
ti
n
g

v
ar
io
u
s

te
ch
n
iq
u
es

R
eq
u
ir
ed
d
et
ai
le
d

U
M
L
m
o
d
el

in
fo
rm
at
io
n

Im
p
ac
t
an
al
y
si
s
is

o
n
ly
p
er
fo
rm
ed
at

th
e
U
C
M

sp
ec
iÞ
ca
ti
o
n
le
v
el

O
n
ly
re
q
u
ir
em
en
ts

ca
n
b
e
ch
an
g
ed

S
tr
en
g
th

A
u
to
m
at
ic
im
p
ac
t

an
al
y
si
s
fo
r

p
o
te
n
ti
al

im
p
ac
te
d
w
o
rk

p
ro
d
u
ct
s
an
d

ef
fo
rt
re
q
u
ir
ed

E
x
te
n
d
se
m
an
ti
c

re
la
ti
o
n
sh
ip

b
et
w
ee
n
S
L
O
s,

E
x
te
n
d

re
ac
h
ab
il
it
y

m
at
ri
x
w
it
h
th
e

d
is
ta
n
ce
m
ea
su
re
s

V
ar
io
u
s
im
p
ac
t

an
al
y
si
s

te
ch
n
iq
u
es
ar
e

u
ti
li
ze
d
to

p
er
fo
rm
im
p
ac
t

an
al
y
si
s

A
n
al
y
ze
ch
an
g
e

im
p
ac
t

au
to
m
at
ic
al
ly
b
y

u
si
n
g
th
e
ch
an
g
e

ta
x
o
n
o
m
y
an
d

im
p
ac
t
an
al
y
si
s

ru
le
s

S
u
p
p
o
rt
ea
rl
y
im
p
ac
t

an
al
y
si
s
o
f

re
q
u
ir
em
en
ts

ch
an
g
e

T
h
e
im
p
ac
t
m
et
ri
c

an
d
co
m
p
at
ib
il
it
y

cl
as
se
s
o
f
ch
an
g
es

ar
e
an
al
y
ze
d

International Journal of Intelligent Systems DOI 10.1002/int

A GOAL-DRIVEN TRACEABILITY-BASED APPROACH 907

• Traceability Technique: What the traceability technique/method they proposed or used.
• Impact Analysis Results: How the impact analysis results were presented.
• Effort or impact degrees predicted: Does the approach predict the required effort or impact
degrees of the requirements changes?

5. CONCLUSION

This work proposes a goal-driven approach to managing requirements trace-

ability and analyzing change impacts by fusing the goal-driven and design structure

matrix (DSM) techniques. The change impact analysis method identiÞes potentially

impacted work products and compute an impact metric based on DSM blocks. An

implementation of the DSM partition and use case points has also been developed

to assess the scalability of this work.

The main beneÞt of the proposed approach is to provide a visual way for

project managers to organize project tasks, facilitate team communication, and

perform change impact analysis.

References

1. Jones C. Software change management. IEEE Comput 1996;29(4):80�82.
2. Chrissis MB, Konrad M, Shrum S. CMMI: Guidelines for process integration and product

improvement, 2nd edition. Reading, MA: Addison-Wesley; 2006.
3. Rovegard P, Angelis L, Wohlin C. An empirical study on views of importance of change

impact analysis issues. IEEE Trans Softw Eng 2008;34(4):516�530.
4. Spanoudakis G, Zisman A, Pe�rez-Minana E, Krause P. Rule-based generation of require-

ments traceability relations. J Syst Softw 2004;72(2):105�127.
5. Egyed A. A scenario-driven approach to trace dependency analysis. IEEE Trans Softw Eng

2003;29(2):116�132.
6. Antoniol G, Canfora G, Casazza G, Lucia AD, Merlo E. Recovering traceability links

between code and documentation. IEEE Trans Softw Eng 2002;28(10):970�983.
7. Gotel O, Finkelstein A. Extended requirements traceability: results of an industrial case

study. In: Proc 3rd IEEE Int Symp on Requirements Engineering, Jan 1993. pp 169�178.
8. Cleland-Huang J, Settimi R, BenKhadra O, Berezhanskaya E, Christina S. Goal-centric

traceability for managing non-functional requirements. In: Proc Int Conf on Software Engi-
neering, May 2005. pp 362�371.

9. Cleland-Huang J, Chang CK, Christensen M. Event-based traceability for managing evolu-
tionary change. IEEE Trans Softw Eng 2003;29(9):796�810.

10. Ramesh B, Jarke M. Toward reference models for requirements traceability. IEEE Trans
Softw Eng 2001;27(1):58�93.

11. Ramesh B, Edwards M. Issues in the development of a requirements traceability model. In:
Proc Int Conf on Requirements Engineering, Jan 1993. pp 256�259.

12. D�omges R, Pohl K. Adapting traceability environments to project-speciÞc needs. Commun
ACM 1998;41(12):54�62.

13. Lee J, Xue N-L. Analyzing user requirements by use cases: a goal-driven approach. IEEE
Softw 1999;16(4):92�101.

14. Lee J, Xue N-L, Kuo J-Y. Structuring requirements speciÞcations with goals. Inf Softw
Technol 2001;43(2):121�135.

15. Lee J, Hsu K-H. Modeling software architectures with goals in virtual university environ-
ment. Inf Softw Technol 2002;44(6):361�380.

16. Lee J, Fanjiang Y-Y. Modeling imprecise requirements with XML. Inf Softw Technol
2003;45(7):445�460.

International Journal of Intelligent Systems DOI 10.1002/int

908 LEE ET AL.

17. Lee J, Kuo JY. New approach to requirements trade-off analysis for complex systems. IEEE
Trans Knowl Data Eng 1998;10(4):551�562.

18. Steward DV. The design structure system: A method for managing the design of complex
systems. IEEE Trans Eng Manage 1981;28:71�74.

19. Eppinger SD, Whitney DE, Smith RP, Gebala DA. A model-based method for organizing
tasks in product development. Res Eng Des 1994;6:1�13.

20. Browning TR. Applying the design structurematrix to system decomposition and integration
problems: A review and new directions. IEEE Trans Eng Manage 2001;48(3):292�306.

21. Browning TR, Eppinger SD. Modeling impacts of process architecture on cost and schedule
risk in product development. IEEE Trans Eng Manage 2002;49(4):428�442.

22. Danilovic M, Browning TR. Managing complex product development projects with design
structure matrices and domain mapping matrices. Int J Proj Manage 2007;25(3):300�314.

23. Feather MS, Fickas S, Finkelstein A, van Lamsweerde A. Requirements and speciÞcations
exemplars. Autom Softw Eng 1997;4(4):419�438.

24. Karner G. Resource estimation for objectory projects. Objectory Syst 1993.
25. Satty TL. Analytic hierarchy process. New York: McGraw-Hill International; 1980.
26. Garnier R, Taylor J. Discrete mathematics for new technology, 2nd edition. Boca Raton, FL:

CRC Press, Taylor and Francis Group; 2001.
27. Steward DV. Partitioning and tearing systems of equations. J Soc Ind Appl Math: Ser B,

Numer Anal 1965;2(2):345�365.
28. Boehm BW, Horowitz Clark, Reifer Brown, Madachy Chulani, R, Steece B. Software cost

estimation with COCOMO II with CDROM. Singapore: Prentice Hall PTR, 2000.
29. Jones C. Estimating software costs: Bringing realism to estimating. McGraw-Hill Osborne

Media, 2007.
30. Gotel OCZ, Finkelstein ACW. An analysis of the requirements traceability problem. In: Proc

Int Conf on Requirements Engineering; April 1994. pp 94�101.
31. Jarke M. Requirements tracing. Commun ACM 1998;41(12):32�36.
32. Watkins R,NealM.Why and howof requirements tracing. IEEESoftw 1994;11(4):104�106.
33. Institute SE. CMMI for development version 1.2, Technical Report CMU/SEI-2006-TR-008,

2006.
34. Bohner SA, Arnold RS. Software change impact analysis. Los Alamitos, CA: IEEE Com-

puter Society Press; 1996.
35. Bohner SA. Software change impacts�an evolving perspective. In Proc IntConf onSoftware

Maintenance (ICSM�02); 2002. pp 263�272.
36. O�Neal JS. Analyzing the impact of changing software requirements: A traceability-based

methodology, Ph.D. dissertation of Louisiana State University, 2003.
37. O�Neal JS, Carver DL. Analyzing the impact of changing requirements. In: Proc IEEE Int

Conf on Software Maintenance; November 2001. pp 190�195.
38. Briand L, Labiche Y, OSullivan L, So�wka M. Automated impact analysis of UML models.

J Syst Softw 2006;79(3):339�352.
39. Ibrahim S, Munro M. A requirements traceability to support change impact analysis. Asian

J Inf Technol 2005;4(4):329�338.
40. Hassine J, Rilling J, Hewitt J. Change impact analysis for requirement evolution using use

case maps. In: Proc 2005 Eighth Int Workshop on Principles of Software Evolution; 2005.
pp 81�90.

41. Lock S, Kotonya G. An integrated, probabilistic framework for requirement change impact
analysis. Australas J Inf Syst 1999;6(2):38�63.

42. Ackermann C, Lindvall M. Understanding change requests to predict software impact. In:
Proc 30th Annual IEEE/NASA Software Engineering Workshop; April 2006. pp 66�75.

43. Tang A, Jin Y, Han J, Nicholson A. Predicting change impact in architecture design with
bayesian belief networks. In: Proc 5th Working IEEE/IFIP Conf on Software Architecture;
2005. pp 67�76.

44. Arnold RS, Bohner SA. Impact analysis�towards a framework for comparison. In: Proc
Conf on Software Maintenance; Sept 1993. pp 292�301.

International Journal of Intelligent Systems DOI 10.1002/int

