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Adjunctive psychotherapeutic approaches recommended for patients with schizophrenia
(SZ) who are fully or partially resistant to pharmacotherapy have rarely utilized biomarkers
to enhance the understanding of treatment-effective mechanisms. As SZ patients with
persistent auditory verbal hallucinations (AVH) frequently evidence reduced neural
responsiveness to external auditory stimulation, which may impact cognitive and
functional outcomes, this study examined the effects of cognitive behavioral therapy for
voices (CBTv) on clinical and AVH symptoms and the sensory processing of auditory
deviants as measured with the electroencephalographically derived mismatch negativity
(MMN) response. Twenty-four patients with SZ and AVH were randomly assigned to
group CBTv treatment or a treatment as usual (TAU) condition. Patients in the group CBTv
condition received treatment for 5 months while the matched control patients received
TAU for the same period, followed by 5 months of group CBTv. Assessments were
conducted at baseline and at the end of treatment. Although not showing consistent
changes in the frequency of AVHs, CBTv (vs. TAU) improved patients' appraisal (p =
0.001) of and behavioral/emotional responses to AVHs, and increased both MMN
generation (p = 0.001) and auditory cortex current density (p = 0.002) in response to
tone pitch deviants. Improvements in AVH symptoms were correlated with change in pitch
deviant MMN and current density in left primary auditory cortex. These findings of
improved auditory information processing and symptom-response attributable to CBTv
suggest potential clinical and functional benefits of psychotherapeutical approaches for
patients with persistent AVHs.
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INTRODUCTION

Auditory verbal hallucinations (AVHs), defined as perceptions

or subjective experiences of “hearing voices” without
corresponding external auditory stimulation, occur with a high

frequency of up to 60% to 80% in patients with schizophrenia

(SZ) (1). Reflecting a diverse phenomenological experience,

AVHs can involve words, sentences, or conversations (with

varied clarity, loudness, and spatial locations) spoken as

commands, comments, insults, or encouragements by familiar
or unfamiliar single and/or multiple voices (in first, second, or

third person) (2).

Although the causes of AVHs are still unclear, improved

understanding of the neural basis of AVHs has been forthcoming

from functional magnetic resonance imaging (fMRI) studies

which have shown elevated activation of brain regions

associated with auditory stimulus processing, speech
generation, and speech perception during the experience of

active hallucinations (vs. silent rest) (3–6). Paradoxically,

although in sensory cortices hyper-excitable neuronal states are

typically associated with enhanced exogenous induced processes

(7–10), AVHs have been associated with reduced neuronal

activation of the auditory cortex in response to external
auditory stimulation (11). These opposing findings in

hallucinating patients of increased activation of the auditory

cortex in the absence of external stimulation and reduced

activation of the auditory cortex in response to externally

presented speech and non-speech sounds have been

interpreted as evidence for competition between internally

generated and externally originating neural activity in the
auditory cortex for the attentional resources of the

hallucinating patient (11). Also evidenced in SZ patients who

are prone to AVHs (vs. patients who have never hallucinated),

diminished neural responsiveness to external auditory

stimulation is believed to affect the functional cost of an

auditory cortex that is thought to be tonically “tuned on” and
“tuned in” to the internal channels broadcasting hallucinating

stimuli, with the preferential endogenous processing of AVHs

resulting in the “saturation” of neuronal resources and resulting

in limited capacity for the exogenous processing of external

auditory stimuli (12, 13).

Further evidence that the auditory cortex in hallucinating patients
is overly sensitive to activation arising from internal processing, while

being less responsive to external stimulation, comes from

electrophysiological studies assessing cortical responsiveness to

auditory stimuli with electroencephalographically (EEG)-derived

event-related potential (ERP) components that have been shown

to be generated in the auditory cortex and have been extensively used

to document profound early auditory information processing (EAIP)
deficits in SZ (14). Patients with SZ have been found to be impaired

with respect to two aspects of EAIP: inhibiting intrinsic responses to

redundant stimuli (to prevent sensory overload), and facilitating/

detecting potentially salient stimuli (for extended higher-order

processing and response) (15). These elementary pre-attentive

auditory input deficits in SZ are reflected in two candidate ERP
endophenotypes, one of which includes P50 sensory gating as a

measure of inhibitory failure. This inhibitory deficit is indexed in SZ

both by minimal suppression of P50 (an early central-maximum

positive scalp component elicited at ~50 ms in response to the

second stimulus [S2] of click pairs [S1-S2]), and by a diminished S1
P50 amplitude (16). A second ERP endophenotype of EAIP
dysfunction in SZ, mismatch negativity (MMN), is a frontal

maximum negative scalp component at ~150 to 200 ms which

indexes automatic acoustic deviance detection and, in SZ, exhibits a

reduced amplitude in response to changes in physical or abstract

features in auditory oddball paradigms (17).

Although both of these ERP-indexed elementary sensory
processes (auditory gating and auditory charge detection) have

been consistently shown to be abnormal in SZ, our findings

indicated a significant worsening of these brain sensory functions

in patients who hallucinate (trait positive) as: (1) increasing

negative affective content of AVHs was inversely related with S1
P50 amplitude (18); (2) SZ hallucinators (vs. non-hallucinators)

exhibited smaller MMNs to changes in pure tone stimuli (19),
with MMN reduction being more evident with increasing trait

ratings of hallucinatory activity (20); and (3) SZ hallucinators (vs.

healthy controls) showed smaller MMNs to pure tone and speech

deviant stimuli (21). Furthermore, in SZ patients who are prone

to hallucinate, we observed diminished involuntary attentional

orienting to speech stimuli (evidenced by a reduction in a later
[~300 ms] frontocentral positive [P3a] scalp component),

suggesting an impairment in the ability of human speech

deviations to capture attention (22). Together with findings of

reduced amplitude of the N1 component of the auditory ERP

during hallucinating states (23), observed ERP deficits in sensory

registration (N1), sensory inhibition (P50), sensory

discrimination (MMN), and stimulus selection (P3a) within the
auditory modality are consistent with the “saturation” hypothesis

of AVHs. The resulting competitive outcome favoring resource

allocation to the processing of internal auditory signals may in

part explain the profound behavioral performance deficits of SZ

patients during auditory discrimination tasks (24).

AVHs are associated with high levels of distress likely related
to idiosyncratic beliefs or cognitive appraisals involving control,

power, voice identity, authority, and consequences of not

complying with the voices (25–27). Despite adequate dosages

of antipsychotic drugs, AVHs are drug resistant in ~25% of SZ

patients, and become chronic, causing an impaired quality of life

(28) and diminished cognitive capacity, with the latter playing a
key role in functional outcome (29). Cognitive behavioral

therapy (CBT) has been suggested as a complement to

pharmacotherapy for targeting psychosis in treatment resistant

cases (30–32). Reviews (33–37) and multiple meta-analyses (38,

39, 40–42) on the effectiveness of specialized cognitive behavioral

therapy for psychosis (CBTp), developed, and recommended as

an adjunctive treatment for decreasing distress in patients with
persistent AVHs (43, 44), found a modest but significant positive

impact on positive symptoms, negative symptoms, and general

psychopathology. The proposed mechanism of change resulting

from CBTv is through changes in beliefs about voices as well as

enhancing coping skills (33).

In contrast to CBTp, which is aimed at a broad array of
symptoms, administering tailored therapies for specific

Knott et al. CBT and MMN in Schizophrenia

Frontiers in Psychiatry | www.frontiersin.org June 2020 | Volume 11 | Article 5552

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


symptoms and using a recommended symptoms specific

approach such as CBT for voices (CBTv) (34, 40) has shown

effectiveness in individual and group sessions. In three

randomized controlled group CBTv trials, improvements have

been found not only in positive and general symptoms, but also

in self-esteem, effective coping strategies and social functioning,
as well as reductions in voice frequency and perceived voice

power (35, 45–49).

The Present Study
The ultimate goal of CBTv is to help patients cope with auditory

hallucinations, which would presumably translate into improved

external auditory information processing, and to improved
functioning. The primary aim of this pilot study was to examine

change in the neuronal response to auditory stimulation following

an integrated group CBTv trial which would incorporate the use of

both acceptance and commitment therapy (ACT) to modify

painful and stressful thoughts and emotions arising from voices

(50–52), and attentional training (ATT) to reduce the attentional

capture by emotionally salient voices (53, 54). Effective cognitive
strategies that are able to reduce AVH saturation of sound

perception neurocircuitry may free up resources for external

auditory processing in limited capacity auditory cortical

networks. At the sensory processing level, the MMN may be an

ideal probe for indexing treatment associated with functional

changes in the auditory cortex as: it can be rapidly assessed and
it is highly stable over time (test-retest ranging from 0.60 to 0.80)

(55, 56); it is an automatic sensory process that is relatively free of

attentional and motivational confounds that influence effort-

demanding, higher order cognitive operations (57); and finally,

because MMN has strong external face validity (in that it is

positively related to performance in behavioral tasks of sound

discrimination) (58, 59), and its impairment in SZ is positively
correlated with cognitive (memory) (60) and executive

functioning deficits (61, 62), social skills acquisition (63), and

global daily functioning (64–67).

In addition to our study's primary objective of using MMN to

index CBTv-induced changes in neural correlates of auditory

discrimination of pure tone deviants, a complimentary objective
was to conduct a regions of interest (ROI) analysis on deviance-

elicited source localized activity in bilateral primary (pAC) and

secondary auditory cortices (sAC), putative regions implicated in

AVHs, and the main cortical areas of MMN generation (68–76).

Hypothetically, although we do not necessarily expect changes in

AVH topography (i.e., frequency and quality of voices), within
the “saturation” model we generally predicted that CBTv, in

reducing resource-demanding processing of internal (voices)

stimulation, will allow for increased processing of external

auditory stimulation. At the neural level, we specifically

hypothesized that increased exogenous processing following

CBTv will be evidenced by greater MMN responses to auditory

deviants, and by greater deviant-elicited activation in the
primary auditory cortex (pAC), and specifically the left pAC as

this is the main brain region in SZ hallucinators that exhibits

both increased activation in the absence of an external stimulus

and decreased activation in the presence of an external auditory

stimulus (11). CBTv-induced changes in symptoms were

expected to correlate with changes in deviance elicited MMN

and auditory cortex responses. MMN changes with CBTv were

also predicted to be related to response changes in the

auditory cortex.

METHODS

Study Participants
The study was approved by the Research Ethics Board of the

Royal Ottawa Mental Health Centre and the University of

Ottawa. The study recruited twenty-five (10 women, 15 men)

individuals with schizophrenia (SZ: M=45.95 years, SD=12.60)

from the Outpatient Schizophrenia Program of the Royal Ottawa

Mental Health Centre, all of which were diagnosed by trained

psychiatrists using the Structured Clinical Interview DSM-IV-TR
(SCID-I) (77). Patients included in the study: (i) were between

the ages of 18 and 60 years; (ii) reported a consistent history of

auditory verbal hallucinations over the course of their illness; (iii)

exhibited a score of 3 or greater (reflecting mild or greater

auditory/verbal hallucinatory experience) on the hallucination

item of the Positive and Negative Syndrome Scale (PANSS) (78),
and a score less than 65 on the total PANSS score (to screen out

individuals with severe level of symptoms and severe impaired

functioning that would impact their ability to participate in

group CBTv); (iv) reported no history of neurological

conditions or head injury; (v) were clinically stable, as

indicated by no significant changes in symptoms or

medication, for at least the 3-month period prior to testing;
(vi) were being treated only with one of the atypical

antipsychotics as their primary medication; (vii) were willing

to participate in 5 to 6 months of CBTv in addition to their usual

treatment; and (viii) displayed normal hearing (threshold < 30

dB SPL) as assessed by audiometric testing.

Treatment Design
Following a parallel group design, 14 (8 males) of the 25 patients

were randomly assigned to receive CBTv for 5 months in

addition to their usual treatment (CBTv group) and eleven (7

males) were randomly assigned to continue their treatment as
usual (TAU group). The recruitment and creation of groups

involved: (i) a patient referral through hospital psychiatrist to the

study team; (ii) the introduction of the study requirements and

involvement by the study team and consent from participants;

(iii) completion of screening session to ensure patients met the

study requirements; and (iv) random assignment to treatment
groups. In the CBTv group, patients received CBTv for 5 to 6

months, while patients in the TAU were followed for the same

time period. Following completion, TAU patients then

completed 5 months of CBTv treatment (Figure 1). The two

laboratory test sessions, one at baseline and one at follow-up,

included electrophysiological recordings, assessment of

psychiatric symptoms, and completion of questionnaires
relating to AVHs.

Of the fourteen patients assigned to the CBTv condition,

thirteen patients (8 males) completed all assessments at baseline
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and follow-up and provided usable EEG data. Of the eleven

patients recruited in TAU group, nine (5 males) completed all

assessments at baseline and follow-up and provided usable EEG

data. Of the nine patients who completed the TAU group, six

completed all assessment at baseline, follow-up, and post-CBTv,
and provided usable EEG data. All patients who completed the

study continued with their regular medication and psychosocial

interventions throughout the study period. The main reasons for

attrition or exclusions from the study were: (i) consent

withdrawal; (ii) incomplete or unusable EEG data at one or

both time points (e.g. noisy EEG data, less than 40 clean EEG

epochs per deviant stimulus, and missing EEG channels; (iv)
medication change; and (v) onset of medical illness.

CBTv Protocol
Consistent with the NICE (77) and PORT (78) guidelines, group

CBTv was delivered using a manualized approach, where

prescribed goals and techniques to be used during treatment

sessions are outlined and followed throughout treatment. The

treatment was implemented by one expert CBTv therapist
(N.W.), following a session-by-session treatment manual.

Conducted in eighteen planned sessions over 5 months, and

facilitated by highly trained group leaders, the CBTv intervention

incorporated CBT strategies for positive symptoms, and ATT as

well as ACT within a CBT framework. The 18 session group

CBTv was administered on a weekly basis for 5 months (during
the last 2 months, sessions were spread out to every two weeks).

Each CBTv group had approximately nine participants and each

participant had a copy of the participant manual, which included

all homework/practice assignments. Adherence to the CBTv

protocol across the groups was assessed by adherence to the

treatment manual and measured by the Cognitive Therapy Scale
for Psychosis (CTS-Psy) (79).

Symptom Assessment
Patients in the CBTv group were assessed independently at two

test sessions: at baseline, and at follow-up at the end of CBTv (5

months after baseline). The TAU group was assessed at three test

sessions: baseline, at follow-up at the end of waitlist period (5

months after baseline) and at the end of CBTv (10 months after
baseline). The following clinical outcome measures

were implemented:

Positive and Negative Syndrome Scale (78). The Structured

Clinical Interview for the PANSS is a 30-item rating scale designed

to measure the presence and severity of psychopathology in patients

with SZ, schizoaffective disorder, and other psychological disorders.

The PANSS was completed by a trained clinician following a semi-
structured interview format and using available clinical information.

The clinician was blind to the group assignments. Each item was

rated by the clinician on a Likert scale ranging from 1 (not present)

to 7 (extremely severe). Three subscales scored were derived:

Positive Symptoms scores (possible range of scored: 9–49);

Negative Symptoms Scores (possible range of scores: 7–49); and

General Symptoms Scores (possible range of scores: 16–112).
The Psychotic Symptom Rating Scales (PSYRATS) (80). The

PSYRATS includes two scales designed to measure the severity of

a number of dimensions of auditory hallucinations and

delusions. Only the Auditory Hallucinations subscale was

administered to the patients, which includes an 11-item scale

that assesses dimensions of auditory hallucinations. The items
include frequency, duration, location, loudness, amount and

intensity of distress, amount and intensity of negative content,

disruption, controllability, and number of voices. Symptoms

scores are rated on a 5-point ordinal scale (0–4). Items are

summarized for a total score, and higher scores reflect more

severe auditory hallucinations.

Beliefs About Voices Questionnaire-Revised (BAVQ-R) (81).
The BAVQ-R is a 35-item self-report questionnaire that

measures perceptions about, and emotional and behavioral

response to auditory verbal hallucinations. The items are rated

on a 4-point scale ranging from 0 (disagree) to 3 (strongly agree).

The questionnaire consists of five subscales measuring different

meanings given to the voices: omnipotence with six items (e.g.,
“My voice is very powerful”), malevolence with six items (e.g.,

“My voice is persecuting me for no good reason”), resistance with

nine items (four items for emotion: e.g., “My voice frightens me”

and five items for behavior: e.g., “When I hear my voice usually I

tell it to leave me alone”), benevolence with six items (e.g., “My

voice wants to help me”) and engagement with eight items (four

for emotion: e.g., “My voice makes me feel calm” and four for
behavior: e.g., “I seek the advice of my voice”).

Voices Acceptance and Action Scale (VAAS) (82). The VAAS

is a 31-item self-report questionnaire that measures acceptance-

based beliefs (defined as a willingness on the part of the voice

FIGURE 1 | Flow chart of treatment design.
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hearer to have voices in his or her life coupled with an effective,

non-avoidant disengagement from them) and action-based

beliefs (defined as behaviors that are self-directed rather than

being a reaction to the voices). Both the 16 acceptance-based

items (e.g., “My voices are just one part of my life”) and the 15

action-based items (e.g., “My voices stop me from doing things I
want to do”) are scored on a 5-point scale: strongly disagree,

disagree, unsure or neutral, agree, or strongly disagree.

Choice of Outcome in CBT for Psychoses (CHOICE) (83). This

outcome measure was developed to be sufficiently generic to

apply across different CBTp approaches and models, but

sensitive enough to capture change. It consisted of a two-
dimensional 24-item self-report questionnaire, which provides

measures for severity and satisfaction across a range of problems/

difficulties (e.g., “ways of dealing with distressing experiences

[e.g., beliefs, thoughts, and voices],” “the ability to approach

problems in a variety of ways”).

Auditory Paradigm
ERP test sessions occurred in the morning (8–11 a.m.) following
overnight abstinence of drugs, alcohol, caffeine and food. During

the auditory stimulation, participants sat upright and viewed a

silent video (The Blue Planet by BBC, 2001). In the optimal

MMN paradigm (84), which was designed to elicit MMN

responses to 5 separate auditory deviants, auditory tonal

stimuli of 70 dB sound pressure level (SPL) were presented
binaurally through headphones and consisted of standard

(p=0.5) stimuli (composed of three sinusoidal partials of 500,

1000, 1500 Hz, 75 ms duration) that were randomly intermixed

with deviant (p=0.5) stimuli. Stimulus onset asynchrony (SOA)

was fixed at 500 ms. The deviant tones differed from the standard

tones in terms of pitch, duration, intensity, perceived location of

sound origin, or contained a silent gap in the middle of the tone
(i.e. gap deviants). The duration deviant was only 25 ms in

duration (instead of 75 ms). Half of the pitch deviants were 10%

lower (composed of 450, 900, and 1350 Hz partials) and the other

half were 10% higher (composed of 550, 110, 1650 Hz partials).

Half of the intensity variants were at 80 dB and the other half at

60 dB. A change in perceived location was created by creating an
800 µs time difference between channels, leading to a sensation of

a change in location of approximately 90°. Half of the deviants

had an 800 µs delay in the right channel while the other half was

in the left channel. In the gap deviants 7 ms (including a 1-ms

rise and fall) were removed from the middle of the standard

stimulus. Stimuli were presented in 3 sequences of 5 minutes
each (1845 stimuli) for a total of 15 minutes (5535 stimuli). Each

sequence started with a 15 standard tones, followed by a

sequence in which every second tine was a standard (p=0.5)

and every other tone was one of the five deviants (p=0.1 each).

One deviant of each category was presented once every five

deviants and deviants of the same category were never

presented consecutively.

ERP Procedures
ERPs were recorded with a cap embedded with Ag+/Ag+Cl−

electrodes (EasyCap, Herrching-Brieibrunn, Germany)

positioned on 32 (see Figure 2) according to the 10–10 system

(85). An electrode on the nose served as reference and a ground

electrode was positioned at the AFz electrode site. Electrodes

were placed above and below the right eye to record vertical

electrooculographic (VEOG) activity. Electrical recordings were

carried out using a Brain Vision QuickAmp® (Brain Products,
GmbH, Munich, Germany) amplifier and Brain Vision

Recorder® (Brain Products GmbH, Munich, Germany)

software. Electrical activity was sampled at 500 Hz, with

amplifier bandpass filters set at 0.1 to 100.0 Hz. Electrode

impedances were kept below 5 kΩ.

Off-line analysis was performed with Brain Vision Analyzer®

software (Brain Products, GmbH, Munich, Germany). For each

stimulus, electrical epochs of 500 ms duration (beginning 100 ms

prior to stimulus onset) were digitally filtered (0.1–20 Hz) (86),

ocular (87) and baseline corrected (relative to the pre-stimulus

segment), and only epochs with EEG voltages ± 75 µV were used

for final ERP averages, which were constructed separately for the
standard and each deviant stimulus type at each electrode site.

Waveforms for the low and high pitch deviants, those for the

low- and high-intensity deviants, and those for the right and left

location, were averaged together. The mean number of epochs

for MMN averages was not significantly different between

deviants, nor were there differences in epoch numbers (for

each deviant) across test sessions or between treatment groups.
MMNs elicited by frequency (fMMN), duration (dMMN),

intensity (iMMN), gap (gMMN), and location (lMMN) deviants

were analyzed with difference waveforms, which were derived by

digital point-by-point subtraction of the standard stimulus

values from those elicited by each of the deviant stimuli.

Grand average waveforms, raw and subtracted, are displayed in
Figure 2. MMN amplitude was defined as the most negative peak

(± 5 ms) between 120 and 250 ms at the frontal electrodes (F3, Fz,

F4), the sites exhibiting maximum MMN amplitudes. Amplitude

of the N1 component (peak negativity between 90 and 120 ms)

elicited by the standard stimulus was also measured (from Fz) as

an index of sensory registration, which is typically reduced in

chronic SZ (88).

Source Localization
Intracortical current density (A/m2) measures at peak MMN

activity (based on ERP grand averages) from predefined ROIs

was computed using validated (89) exact low-resolution

electromagnetic tomography software (eLORETA, version

2081104) (90, 91). eLORETA models the cortical gray matter
as a collection of voxels (6239 voxels with a spatial resolution of

5-mm3). Relying on the standard electrode positions displayed

on the scalp (92, 93), the digitized Talairach atlas (94), the

average MRI brain template (MMI152) provided by the

Montreal Neurological Institute (95) and a cortically restrained

solution space, it calculates within a realistic head model (96) the

non-unique “inverse” problem by computing a three
dimensional distribution of intracortical source activity (with

zero location error) at each voxel based on surface-level electrical

signals. The original LORETA method has received considerable

validation from studies using EEG (97) and more established
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localization methods such as structural and functional MRI (98–

100) and intracranial electrode recordings (101). Employing the

ROI-Extractor tool, the selected ROIs were based on eLORETA-

defined Brodmann Areas (BA), and current density data from a

single centroid representative voxel of each BA (the voxel closest

to the center of the BA mass, which is an excellent representation
of the corresponding BA) were extracted for further analysis.

This included the pAC (BA 41) and secondary (sAC) auditory

cortex (BA 42).

Statistical Analyses
Statistical analysis was conducted using SPSS version 23 (SPSS

Inc., Chicago IL, USA). Two sets of analyses were carried out: 1)
the primary set compared data between two groups, including

the 13 patients completing the CBTv treatment arm and the 11

patients completing the TAU treatment arm; 2) the secondary set

combined data from two groups, including the patients assigned

to the CBTv treatment arm and the TAU patients who went on

to receive CBTv. For the primary analyses, MMNs were assessed

with separate mixed analysis of variance (ANOVA) for each
deviant, each ANOVA consisting of one between-group factor

with 2 levels (CBTv vs. TAU) and two within-group factors,

including time (baseline vs. follow-up) and frontal electrode site

(left [F3], central [Fz], and right [F4]). MMN latency (at Fz only)

for each deviant and clinical rating/questionnaire scores were

analyzed with similar ANOVAs but with no site factor. Measured

as peak negativity in an 80 to 120 ms window, the N100
amplitude/latency values derived from the standard stimulus

were also subjected to similar ANOVAs to determine if CBTv

affected simple sensory registration. For the deviants exhibiting

significant treatment-induced changes in MMN in the between-

group analyses, the eLORETA-derived CD values for the pAC

and sAC were analyzed using ANOVAs involving a between-
group factor and two within-group factors, including time and

ROI (BA41, BA42). For the secondary set of analyses, which

assessed measures in the combined CBTv treatment group,

ANOVAs did not contain a between-group factor. In order to

maintain a constant 5 month period between baseline and

follow-up sessions in these analyses, the data from the
assessments conducted at the initial follow-up session in the

TAU group served as their baseline data. For both sets, regardless

of whether significant Greenhouse-Geisser corrected (p < 0.05)

FIGURE 2 | Baseline (raw) grand-averaged ERP waveforms elicited by the standard and five deviant stimuli for all participants (N=24), shown across scalp sites and
highlighted at Fz with respect to both raw (unsubtracted) and subtracted (deviant minus standard) difference waveforms.
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treatment, time or interaction effects were observed or not,

treatment change was assessed via a priori planned

comparisons of baseline vs. follow-up data. For the deviant

MMNs and CDs exhibiting significant treatment effects in this

between-group analysis, Spearman's rho correlation coefficient

statistic was used to examine the relationship between changes in
electrophysiological measures and changes in clinical/

questionnaire measures, as well as between MMN changes and

source localized CD changes. In order to reduce the number of

statistical tests, these correlations were assessed only for

electrophysiological and clinical/AVH measures showing CBTv

treatment effects in the initial set of analyses.

RESULTS

Of the fourteen patients assigned to CBTv, thirteen (8 males)

completed all assessments at baseline and follow-up and

provided usable EEG recordings. Of the eleven patients
assigned to TAU, ten (6 males) completed all assessments at

baseline and follow-up and provided usable EEG recordings.

Thus, the attrition rate was 8%, with onset of medical illness (one

patient) and unusable EEG data (one patient) accounting for

patient-drops. During their subsequent participation in CBTv,

only six of the ten patients in the TAU group completed all
assessments at baseline (i.e., some data as from their follow-up

session post TAU) and at follow-up and provided usable EEG

recordings. Patent-drops were due to either change in

medication (one patient), or unusable EEG (two patients). The

final CBTv and TAU groups were similar in age, gender, year of

education, duration of illness, PANSS positive, PANSS negative,

PANNS total and PSYRATS total scores (Table 1).

CBTv Effects on Clinical/AVH Symptoms
Between-Group Analyses
The CBTv group did not differ from the TAU group with respect

to changes in PANSS positive, negative or general symptoms

(Table 1). Similarly, no group differences were observed with

respect to changes in the frequency and quality of AVH
symptoms assessed with PSYRATS ratings (Table 1).

For the BAVQ-R, significant time effects were observed for

two of the subscale scores, omnipotence (F = 7.36, df = 1/21, p =

0.013) and resistance behavior (F = 4.37, df = 1/21, p = 0.049).

Planned comparisons found these reductions in omnipotence

(p = 0.014) and increases in resistance behavior (p = 0.015)

ratings between baseline and follow-up to be limited to the CBTv
group (Figure 3). Analysis of VAAS rating failed to yield any

significant group, time or interaction effects but ratings scores on

both the CHOICE severity (F = 8.08, df = 1/21, p = 0.01) and

CHOICE satisfaction (F = 12.16, df = 1/21, p = 0.002)

dimensions showed significant time effects, with planned

comparisons showing significant changes in severity (p =
0.003) and satisfaction (p = 0.008) only in the CBTv group

(Figure 3).

TABLE 1 | Demographic and clinical measures for treatment groups.

Demographics CBTv group (n = 13; 7 males) TAU group (n = 10; 6 males)

Mean ± SD Baseline Mean ± SD Follow-up Mean ± SD Baseline Mean ± SD Follow-up

Age (years) 41.77 ± 14.69 47.8 ± 11.81
Education (years) 4.62 ± 1.33 5.5 ± 1.18
Duration of illness (years) 16.1 ± 11.64 21.78 ± 9.60
PSYRATS total 25.15 ± 5.38 22.53 ± 6.21 27.5 ± 4.62 27.89 ± 4.76
PANSS
Positive Scale 15.62 ± 3.31 16.2 ± 4.41 15.6 ± 3.53 16.17 ± 5.94
Negative Scale 15.77 ± 4.78 16.2 ± 4.59 15.5 ± 4.17 13.7 ± 5.28
General 33.31 ± 13.71 30.3 ± 6.17 31.3 ± 6.43 31.67 ± 7.71

PSYRATS, The Auditory Hallucinations subscale from the Psychotic Symptom Rating Scale; PANSS, Positive and Negative Syndrome Scale.

Follow-up for the PANSS measures included missing data (3 missing cases from the CBTv group and 4 missing cases from the TAU only group).

FIGURE 3 | Mean (± SE) rating scores for BAV-Q, VAAS, and CHOICE instruments administered to patients in CBTv and TAU conditions at pre- (baseline) and
post-treatment.
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Combined Group Analyses
Changes from pre- to post-CBTv were not observed for PANSS

or VAAS ratings but significant reductions were shown for total
PSYRATS (p=0.035), BAVQ-R omnipotence (p=0.0013) and

CHOICE severity (p=0.009) rating scores (Figure 4).

CBTv Effects on MMN/N100 Amplitude/
Latency
Between-Group Analyses
Analysis of frontal amplitudes did not reveal any significant

group, treatment, or time effects for MMN elicited by intensity,

duration, gap or location deviants. A significant treatment x time

interaction (F = 15.78, df = 1/40, p = 0.001) was shown for the
pitch deviant, with planned comparisons revealing significant

increases in pMMN amplitudes in the CBTv group at follow-up

compared to baseline (p = 0.001) as well as greater pMMN

amplitudes in CBTv group compared to TAU group p = 0.043) at

follow-up (Figure 5). Analysis of MMN latency yielded a

significant treatment x time interaction for the gap deviant

(F = 4.41, df = 1/25, p = 0.049) with planned comparisons
showing a reduced (earlier) gMMN latency (Figure 6) in the

CBTv group (p = 0.019) at follow-up (M = 148.68 ms, SE ± 6.86)

compared to baseline (M = 164.02 ms, SE ± 6.92). Neither the

amplitude nor latency of N100 were affected by treatment.

Combined Group Analyses
A significant time effect was observed only for the pitch deviant
(F = 14.68, df = 1/18, p = 0.001), with pMMN amplitudes

showing an increase at follow-up compared to baseline

(Figure 7). Analyses of the duration deviant yielded a

significant time x electrode interaction (F = 9.12, df = 1/36,

p = 0.002), with comparisons of left frontal (F3) amplitude

showing a greater dMMN amplitude (p = 0.029) at follow-up

compared to baseline (Figure 7). For MMN latency, analysis
showed a significant time effect for the duration deviant

(F = 6.71, df = 1/18, p = 0.018), with dMMN exhibiting a

shorter latency (M = 153.01 ms, SE ± 7.11) at follow-up

compared to baseline (M = 166.46 ms, SE ± 6.03) latency

(Figure 7). No treatment effects were observed for N100

amplitude or latency.

CBTv Effects on Source Localized CD
Between-Group Analyses
For the pMMN, analysis of localized CD yielded a significant
region effect (F = 33.53, df = 1/21, p = 0.001), with CD of the sAC

being greater than CD of the pAC. A significant treatment x time

x hemisphere interaction was also evidenced (F = 11.62, df = 1/

21, p = 0.008), with planned comparisons finding increases

(p = 0.008) in CD in the left hemisphere of the CBTv group at

follow-up compared to baseline (Figure 8).

Combined Group Analyses
Analysis of CD associated with the pMMN showed significant

(F = 17.85, df = 1/18, p = 0.001) region effect, with CD in the sAC

being greater than CD in the pAC. In significant time (F = 5.38,

df = 1/18, p = 0.032) and time x hemisphere interaction effects

(F = 8.27, df = 1/18, p = 0.010), planned comparisons showed

significant overall increases (p = 0.002) in CD of the left auditory
cortex in the CBTv group at follow-up compared to baseline

(Figure 9).

Relationships Between Symptoms and
MMN/CD
In the initial CBTv group, changes in the pMMN amplitude

(from baseline to follow-up) were positively correlated with

changes in the resistance emotion subscale of the BAVQ-R

(r = 0.64, p = 0.029), and negatively correlated with the total

(r = −0.76, p = 0.002) and both the activation (r = −0.82,

p = 0.001) and acceptance (r = −0.70, p = 0.008) scores of the
VAAS (Figure 10). Treatment-induced changes in symptoms

were found to be related to treatment-induced changes in CD of

the auditory cortex but only in the left pAC. In this region of the

auditory cortex, CD changes were positively correlated with

changes in the benevolence (r = 0.63, p = 0.021), resistance

emotion (r = 0.55, p = 0.05) and engagement behavior subscale
scores (r = 0.54, p = 0.04) of the BAVQ-R, and negatively

FIGURE 4 | Mean (± SE) pre- (baseline) and post-treatment rating scores for BAV-Q, VAAS, and CHOICE instruments administered to all patients (N=22)
completing CBTv.
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correlated with changes of the total VASS(r = −0.68, p = 0.01)

score (Figure 11).

Relationships Between MMN and CD
In the initial CBTv group, correlations between the treatment

changes in the pMMN and the associated CD were limited to the

left hemisphere, with increases in fMMN at F3 being positively

correlated with increases in CD in the left pAC (r = 0.58, p =
0.01), left sAC (r = 0.53, p = 0.02) and in combined left auditory

cortical regions (r = 0.55, p = 0.01).

DISCUSSION

This pilot study shows changes in EAIP during a pure tone
auditory oddball paradigm in a sample of patients with SZ and

persistent AVHs, attributable to the effects of CBTv. Compared

to patients receiving TAU in the initial analyses, the patients who

underwent CBTv showed significantly greater increases in

auditory deviance detection as evidenced in enhanced MMN

response to pitch deviants and faster (earlier latency) MMN

responses to auditory gap deviants at treatment follow-up. These

changes occurred independently of general psychiatric

symptoms (PANSS) and changes in sensory registration
(N100). The patients that received therapy also showed

significant increases in activation (CD) of the left auditory

cortex during the processing of auditory pitch deviants.

Although CBTv did not affect self-reports of the frequency or

quality of AVHs (PYSRATS), or the severity of psychotic

symptoms (PANSS), it improved patients' perceptions and
behavioral response to AVHs (BAVQ-R), and CBTv was

thought by patients to be associated with better outcome

(CHOICE) than TAU. Even more interestingly, these clinical

changes together with self-reported improvements in patient

FIGURE 5 | Grand-averaged subtracted pitch deviant waveforms at frontal (F3, Fz, F4) sites recorded pre- (baseline) and post-treatment in patients assigned to
CBTv and TAU conditions.

FIGURE 6 | Grand-averaged subtracted gap deviant waveforms at mid-frontal site (Fz) recorded pre- (baseline) and post-treatment in patients assigned to CBTv
and TAU conditions.
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beliefs about AVHs (VAAS) at CBTv follow-up were associated

with increases in MMN response and left auditory cortex

activation to pitch deviants.
Targeting the cognitive appraisals, perceptions, and beliefs

concerning the nature of psychotic symptoms, both individual

CBT (41) and group CBT in SZ (102) have been effective in

alleviating positive psychotic symptoms as a whole (i.e.

hallucinations and delusions) but, as with our own negative

findings, the efficacy of CBT interventions specific for

hallucinations has been mixed in regards to reductions in the
frequency and severity of these symptoms (103, 104). Similar

mixed findings in SZ have been reported in CBT trials with

added ACC and ATT techniques (105). Our augmented CBTv

A

B

FIGURE 7 | Grand-averaged subtracted pitch (A) and duration (B) deviant waveforms at frontal (F3, Fz, F4) sites recorded pre- (baseline) and post-treatment in all
patients (N=22) completing CBTv.

FIGURE 8 | Mean ( ± SE) current density values (ln[Å/m2]) of the left and right
hemisphere of the auditory cortex (pAC and sAC combined) in patients
assigned to CBTv and TAU conditions.

FIGURE 9 | Mean ( ± SE) current density values (ln[Å/m2]) of the left and right
hemisphere of the primary and secondary auditory cortex in all patients
(N=22) completing CBTv.
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did however affect AVH-related beliefs and behavioral reactions

to hallucinations, shown by reductions in BAVQ-R
Omnipotence and BAVQ-R Resistance Behavior scores, which

may in part have accounted for patients' favorable outcome

perception (CHOICE) with this therapy.

Reductions in conviction of beliefs about the power/

authority (omnipotence) of voices and compliance to voices have

been observed in previous group CBTp trials (105–107) and are
clinically important considering that our patients' hallucinations

have failed to respond to effective antipsychotic drugs. Employing

specialized interventions like CBTv to target beliefs about voice

omnipotence, particularly with respect to commanding aspects of

the voices, which have been linked to a range of dangerous

behaviors (aggression, violence, self-harm, and suicide), is a

therapeutically relevant goal as voice omnipotence predicts
compliance to hallucinations, and reductions in these beliefs

about voices are associated with reduced cognitive functioning

given their negative relationship with exogenous attentional

processes (26, 108–110).

Consistent with our hypotheses that dampening the impact of

internal voice processing with CBTv would result in the
enhanced sensory processing of external auditory stimuli,

improvements in EAIP with therapy were evidenced by larger

pMMN and shorter gMMN responses in SZ patients with

persistent AVHs. Rarely examined with other deviant types,

abnormal deviance detection in SZ has been most frequently
documented with pitch and duration, and occasionally with

intensity changes in simple sound stimuli (17, 111, 112). While

pMMN is thought to be sensitive to illness duration/disease

progression, the dMMN behaves more as a trait index and as a

valid endophenotype reflecting greater vulnerability to illness

(17). Although not consistently observed, attenuated pMMN,
dMMN, and iMMN have been observed in our laboratory in

hallucinating (vs. non-hallucinating) SZ patients and have been

correlated with hallucinatory severity ratings (19–22, 113, 114).

Possibly reflecting contributions from bilateral prefrontal

cortices, the auditory MMN response to both simple sound

and speech deviants is mainly dependent on synaptic plasticity

mediated by glutamatergic N-methyl-D-aspartate (NMDA)
receptors in the auditory cortex (115–117). Although also

shown with the detection of duration deviants in our

combined group analysis, the more reliable improvements in

deviance detection with CBTv were observed in response to the

pitch deviant, with pMMN being shown to be increased in both

sets of analyses along with pitch CD in auditory cortices. Not
always associated with auditory hallucinatory experiences, SZ is

associated with deficits in the perception of a broad range of

auditory features, including pitch discrimination as measured in

FIGURE 10 | Scatterplots showing relationships between pitch MMN amplitude change and BAV-Q and VAAS ratings change in the initial group receiving CBTv.

FIGURE 11 | Scatterplots showing the relationships between changes in pitch MMN current density (CSD) in the left primary auditory cortex (pAC) and BAVQ-R and
VAAS rating changes in the initial group receiving CBTv.
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tone-matching tasks (118). Dependent on the low-level acoustic

features or type of complex naturalistic sound, the neural

representation and processing of acoustic stimuli is confined to

different regions within the human auditory system. The neural

mechanisms underlying pitch perception are still largely debated

but are assumed to involve a hierarchy of pitch processing steps,
starting in the subcortical structures and terminating at the

cortical level, where perceived pitch (variations) is most likely

encoded (119). Certain areas of the auditory cortex are

specifically sensitive to pitch, and although the locations are

still another debate (120), previous functional neuroimaging has

identified pitch-coding regions, including anterior-lateral pAC
(on Heschl's gyrus [HG]) and adjacent sAC processing areas (on

the superior temporal gyrus [STG]) (121), and extending to the

planum temporale during the passive influences of infrequent

pitch changes (122, 123). Increased pMMN (and dMMN)

amplitudes with CBTv in patients experiencing persistent

AVHs is consistent with brain volumetric studies showing
negative relationships between left hemisphere HG/STG

volume and both hallucination severity (122, 123) and MMN

amplitude in SZ patients (124).

Changes in the appraisal of and response to AVHs with CBTv

were associated with enhanced pMMN amplitudes and selective

increases in pitch CD in the left pAC, and are consistent with the

current status of AVHs in that they implicate speech perception
areas in the left temporal lobe, improving perception of and

attention to external sounds. These relationships between

changes in auditory neural responsiveness and AVH symptom

ratings are in line not only with structural studies showing the

left pAC gray matter volume reduction in SZ to be associated

with AVH severity (122, 123, 125), but also with functional
neuroimaging studies confirming a “paradoxical” brain

activation in relation to AVHs—the left pAC evidencing

increased activation (during silent rest) in the absence of an

external stimulus, and decreased activation in the presence of an

external auditory stimulus (11). Although the specific brain

mechanisms underlying these alterations are not understood, it

is reasonable to speculate that they may be mediated by changes
in glutamate neurotransmission. Aberrant glutamate levels in

temporal and prefrontal cortical areas are found in SZ with

frequent and severe hallucinations (126, 127) and glutamate

receptor mediated synaptic plasticity in the pAC, as indexed by

MMN alteration, is compromised in patients with SZ and

particularly in patients with AVHs. Although not necessarily
affecting tonic glutamate levels, changes in MMN responsiveness

to pitch deviance with CBTv and adjunctive ATT and ACC

techniques may indicate an increased ability to adequately

modify synaptic plasticity in response to auditory (glutamate)

neurotransmission resulting from external auditory stimulation.

The co-occurrence of altered ratings of beliefs/responses to

AVHs together with changes in neural response (pMMN) to
auditory deviance, which was shown to be statistically correlated

with changes in beliefs, behavioral/emotional (BAVQ-R) and

coping response (VAAS) to hallucinations, may be tentatively

explained by the influence of CBTv on a common underlying

NMDA receptor-mediated process—prediction error signaling.

In a predictive coding framework, predictive coding is viewed as

a hierarchical information processing model which posits

interactions between lower-order (bottom-up) perceptual

signals and higher-order cognitive processes in a dynamic,

interactive fashion to generate predictions about the

environment and compare incoming stimuli with these
predictions (128, 129). Within this model, neural responses to

stimuli that match predictions are suppressed, while stimuli that

are unexpected, violating these predictions, trigger a mismatch

“prediction error” signal, which signals that updating of

expectations is required to accommodate the discrepant stimuli

(130–132). It has been proposed that in hallucinating patients,
excess aberrant spontaneous activation of the auditory sensory

cortex may be confused by the brain with activity typically seen

with external auditory stimulation, leading to erroneous

expectations of a perceptual event (predictive coding failure)

with the brain inferring externally located voices which in turn

leads to a false (AVH) perception (129, 133, 134). Predictive tone
signaling has been observed at the earliest levels of auditory

cortical hierarchy—in the pAC (135). The MMN is hypothesized

to reflect a prediction error signal (e.g. the properties of the

deviant stimulus do not match the predictive model formed by

the train of preceding standards, thus the model must be updated

in order to improve predictive accuracy) (136), which is

attenuated during NMDA receptor antagonist treatment with
ketamine (137–139) and can be used to examine abnormalities in

predictive coding. In a roving standard MMN paradigm, which

allows for optimal evaluation of prediction errors (140), MMN

deficits in SZ have reflected attenuated prediction error signaling

(141). This is particularly pronounced in hallucinating (v. non-

hallucinating) patients and consistent with a predictive coding
account of hallucinations in SZ (142).

Hallucinatory experiences are associated with hyper-

activation of the primary and secondary sensory areas, possibly

due to dysregulation related to frontal lobe hypo-activation.

Different brain mechanisms appear to underlie the clinical

effects of pharmacotherapy and psychotherapy (143, 144). It

has been argued that psychotherapeutic approaches such as CBT
may exert their affects by gaining control of the function of

particular circuits, such as changes in appraisal, control of

attention, modulation of interceptive processes, and may

involve key nodes, such as anterior cingulate and medial

prefrontal areas (involved in error detection and conflict

monitoring), dorsolateral prefrontal cortex areas (involved in
cognitive control/working memory), and insula (interceptive

sensitivity) (105). We can also speculate that different

psychotherapeutical strategies may have different brain effects

within a circuit. In our augmented treatment protocol, CBT and

AAC focused on controlling the emotional response to

hallucinations might be based on decreasing endogenous brain

activity in the temporal/limbic areas, while ATT focused on
auditory perceptual processes might be based on increasing

externally induced brain activity in these same regions.

Although not directly comparable with ATT, targeted cognitive

training (TCT) of the auditory system in SZ patients has been

shown to drive plasticity in cortical activation patterns related to
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both sensory representations as well as higher order cognitive

processes (145, 146). In patients with SZ, TCT has not only

produced significant improvements in auditory perception and

learning, which was predicted by MMN (147), but also increases

in verbal learning and reductions in AVHs (148, 149).

Improvements in higher order auditory processing gained
through TCT in SZ are dependent on the severity of basic

auditory deficits (150). Given that the MMN response to

deviant sounds has also been shown to have a direct mediating

effect on cognition and functional outcome in SZ patients (151),

future research may want to examine the effects of pairing CBTv

with TCT aimed at improving auditory discrimination as a
potential optimal strategy that would benefit both AVH

symptoms and cognitive and psychosocial functioning.

LIMITATIONS

This study has several limitations. Regarding adherence to CBTv,

a fidelity/treatment response scale was not used, and future

research would benefit from audiotaping (with consent) and
using a fidelity measure and independently trained raters.

Although the results are relatively consistent across the two

sets of analyses, they require replication in a larger sample.

Patients were randomized to CBTv and TAU vs TAU only

conditions but blindness was not a component of the study

design and should be an aim in future work. Concurrent

antipsychotic treatment may have influenced the results, but
both groups of patients were receiving similar treatments. In

order to reduce Type 1 error rates our source analysis with

eLORETA was limited to two ROI, and additional studies are

required to examine CBTv effects on non-auditory brain regions,

especially frontal areas which are thought to contribute to MMN

generation during deviance detection and to interact with
auditory cortices in producing AVHs. External auditory

stimulation for MMN generation was limited to pure tone

deviants and additional studies need to examine CBTv effects

on the processing of complex natural sounds including MMN

response to speech deviants, which appear to be particularly

sensitive to EAIP dysfunction in patients with SZ (21, 152) and as
with MMN to response to pure tone deviants are reflective of

NMDA receptor-mediated neurotransmission in auditory

cortices (117). Functional neuroimaging has shown that the

neural encoding of natural sounds (e.g., speech, voice) entails

the formation of multiple representations of sound spectrograms

with different degrees of spectral and temporal resolution (152–

154). Combining the superior temporal and spatial resolution of
EEG and fMRI techniques, respectively, to image neural activity

during resting-state (absence of external auditory stimulation)

and in response to behaviorally relevant, real-world sound

stimuli would be an optimal strategy for achieving a more

complete picture of brain mechanisms involved in AVH

responsiveness to CBTv in SZ patients (155–160).
Finally, we assessed responsivity to external auditory

stimulation on the neural level and there is a need to

incorporate behavioral assessments (e.g., tone-matching and

dichotic listening tasks) in order to examine performance

changes associated with auditory processing. Optimally, these

would be complemented with tests assessing changes in cognitive

and functional outcome with CBTv.

CONCLUSION

In conclusion, we have shown for the first time significant

changes in MMN responsiveness to external auditory deviants

in SZ patients undergoing cognitive therapy for persistent

auditory hallucinations. Correlated with improvements in

patient's response to hallucinations, these neural findings

improve our understanding of how psychotherapy may benefit

patients with AVH, possibly by shifts in perceptual processing
from internal distressing auditory (voices) stimulation to

potentially relevant changes in external auditory stimuli. As

these present observations were captured in a relatively small

test sample, confirmation of these observations in larger studies

integrating biomarkers like MMN to elucidate treatment effect

mechanisms will help to increase our understanding of and
ability to personalize psychotherapeutic approaches such as

CBTv (153, 154).
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