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CHANGE OF DIET OF THE GREENLAND VIKINGS DETERMINED FROM STABLE 
CARBON ISOTOPE ANALYSIS AND 14C DATING OF THEIR BONES 

Jette Arneborgl Jan Heinemeier2 Niels Lynnerup3 Henrik L Nielsen2 Niels Rude 
Arny E Sveinbjornsdottir4 

ABSTRACT. Bone samples from the Greenland Viking colony provide us with a unique opportunity to test and use 4C dat- 
ing of remains of humans who depended upon food of mixed marine and terrestrial origin. We investigated the skeletons of 
27 Greenland Norse people excavated from churchyard burials from the late 10th to the middle 15th century. The stable car- 
bon isotopic composition (813C) of the bone collagen reveals that the diet of the Greenland Norse changed dramatically from 
predominantly terrestrial food at the time of Eric the Red around AD 1000 to predominantly marine food toward the end of 
the settlement period around AD 1450. We find that it is possible to 14C-date these bones of mixed marine and terrestrial origin 
precisely when proper correction for the marine reservoir effect (the 14C age difference between terrestrial and marine organ- 
isms) is taken into account. From the dietary information obtained via the S13C values of the bones we have calculated indi- 
vidual reservoir age corrections for the measured 14C ages of each skeleton. The reservoir age corrections were calibrated by 
comparing the 14C dates of 3 highly marine skeletons with the '4C dates of their terrestrial grave clothes. The calibrated ages 
of all 27 skeletons from different parts of the Norse settlement obtained by this method are found to be consistent with avail- 
able historical and archaeological chronology. The evidence for a change in subsistence from terrestrial to marine food is an 
important clue to the old puzzle of the disappearance of the Greenland Norse, obtained here for the first time by measurements 
on the remains of the people themselves instead of by more indirect methods like kitchen-midden analysis. 

INTRODUCTION 

Bone Dating 

The 14C dating of bone is by now technically well established, relying on refined chemical extraction 
techniques combined with accelerator mass spectrometry (AMS) (for example, Brown et al. 1988). 
Since very small, even submilligram-sized, samples of bone collagen can be dated with AMS, it has 
become possible to select the best samples from a skeleton, minimizing problems with degradation 
and contamination. If the bone is reasonably well preserved, AMS 14C ages as well as stable carbon 
isotopic ratios can be determined reliably for skeletal remains of archaeological interest without 
destroying the object. If the bone collagen is of terrestrial origin, the measured (conventional) 14C 

age is converted into a true calendar age by using the global tree-ring calibration curve (Stuiver and 
Polach 1977). However, this simple procedure is not applicable when the bone collagen is derived 
in part from marine carbon which, due to the marine reservoir effect, appears several hundred 14C 

years older than the corresponding terrestrial carbon. This seriously constrains the dating of bones 
of people who have had access to food protein from the sea. Therefore, archaeologists have gener- 
ally distrusted the precision of 14C dates of human bones. But precise 14C dating of human bones is 
so attractive to the archaeologist that it is highly desirable to add bone to the list of datable material. 
To extend the calibration of measured 14C ages to "marine" bones one needs to know both the 
marine food fraction and the reservoir age, that is, the age difference between the atmosphere and 
the particular region of the sea at the time the protein was produced. 

Carbon Isotope Fractionation and Diet 

Previous investigations have shown that 613C of bone collagen can be used as an indicator of food 
composition (b13C is the fractional deviation of the 13C/12C ratio from the VPDB standard). The 
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composition determined may be either the relative components of marine/terrestrial food protein 

(Tauber 1981; Chisholm et al. 1982; Johansen et al. 1986) or plants of C3 and C4 photosynthesis 

(e.g., van der Merwe and Vogel 1978; van der Merwe 1982) and according to some authors (Chis- 

holm et al. 1982; Lovell et al. 1986; Chisholm et al. 1983; Heinemeier and Rud 1997), the marine 

food fractions can even be deduced with reasonable precision (±10%) via b13C measurements of 

bone collagen for individuals in a human population. The data compiled in Table 1 are for popula- 

tion groups from high northern latitudes where the b13C signal provides a sharp distinction between 

marine and terrestrial food, since C4 plants (with a different photosynthetic pathway and isotopic 

fractionation [Lovell et al. 1986]) are not present in these areas. The b13C distribution for a single 

population group can be extremely narrow (standard deviation about 0.3%0, just a few times the 

measuring uncertainty) (Table 1). This means that the variability in metabolic isotope fractionation 

among individuals is negligible. Hence we conclude that differences in b13C of human bone collagen 

from high latitudes must reflect real differences in the average diet consumed by the individual over 

roughly 10 years, which represents the collagen turnover time in human bone. 

Table 1 Bone collagen b13C values for population groups from northern regions 

613C %o Percent 

Locality Period Type N diet 

Tuna, Swedena Viking age Inland 7 0.26 6 

Leksand I, Swedena Medieval Inland 1 

Leksand II, Swedena 17th century Inland 0.33 4 

Heidal, Norwaya Medieval Inland 0.3 5 

Saskatchewan, Canadab Prehistoric Inland 0.3 -b 
British Columbia, Canada Prehistoric Coastal 0.4 91 

West Greenland, Eskimosd 15th century Coastal 8 0.18 100 

N is number of individuals in the population group. S13C is the relative deviation of the 13C/12C isotopic ratio from the 

VPDB standard. The variabilities in the 813C values are one standard deviation. Percent marine diet is calculated from 

813C by linear interpolation between the 813C values -12.5%o and -21%0, taken to be the endpoint values for purely marine 

and purely terrestrial (pure C3) diet respectively. 

aThese data are for inland populations from Sweden (Liden and Nelson 1994) and Norway (Johansen et al. 1986) known 

to have negligible access to marine food. 

bThe less negative 8'3C average for this inland population is ascribed to admixtures of C4 plants in diet (Lovell et al. 1986). 

Chisholm et al. 1983. 

TThis West Greenland Eskimo population were close neighbors to the Norse (Heinemeier and Rud 1997). The 813C average 

is identical to our choice of endpoint value for 100% marine food. 

All inland sites where C3 plants compose local vegetation, such as in Greenland and Scandinavia, 

show narrow b13C distributions without significant difference in absolute values (Table 1). This is 

consistent with the geographically and archaeologically expected well-defined (terrestrial) food pat- 

tern and leads us to adopt the endpoint S13C value of -21%o for a 100% terrestrial diet. The marine 

endpoint value is more difficult to establish, as no human population a priori can be expected to have 

a 100% marine diet. This is probably reflected in the scatter and absolute value of the prehistoric 

British Columbia Indian population, which is archaeologically expected to have had a dominantly 

marine food pattern, but probably with a non-negligible (and individually varying) terrestrial com- 

ponent. We have adopted the marine endpoint value -12.5%o from the results of our previous mea- 

surements (Heinemeier and Rud 1997, see Table 1) of a series of Thule Culture Eskimos who lived 

close to the Norsemen in location and time period (Grummesgaard-Nielsen 1997; Lynnerup et al. 

1997). As they are the most "marine" individuals that we are aware of at present, we assume a 100% 

https://doi.org/10.1017/S0033822200019512 Published online by Cambridge University Press

https://doi.org/10.1017/S0033822200019512


Change of Diet of the Greenland Vikings 159 

marine diet, although only future isotopic research (for example, b15N as an indicator of trophic 

level) can reveal whether a significant terrestrial (e.g., reindeer) diet component was present. In any 

case, the known, extremely marine, economy of this Eskimo population represents a natural refer- 

ence for the degree of adaptation of the Greenland Norse to a similar diet pattern. The endpoint val- 

ues adopted for the present work are close to those suggested by Chisholm (1989). As it turns out, 

our calibrated ages are rather insensitive to the exact choice of endpoints (see below). 

The Greenland Norse 

The aim of the present work was to investigate the potential of using a simple linear interpolation 

between the endpoint (pure marine versus pure terrestrial) b13C values to 1) calculate the marine 

fraction of each individual, and 2) correct 14C dates of mixed marine material. Our test material is 

bones of Greenland Norse. The story of the Greenland Norse (Krogh 1967; Jones 1986) began 

around AD 985, when a group of Icelandic farmers, lead by Eric the Red, colonized Southwest 

Greenland. Together with other small chieftains, Eric the Red and his household founded the Eastern 

Settlement (see Figure 1). Another group of settlers went farther north to the area around present 

Nuuk, where they founded the Western Settlement. The number of Norse people in Greenland is 

estimated to have peaked at 4000-5000 individuals. For reasons that have been debated for years, 

their number declined and the settlements were finally abandoned completely, probably in the mid- 

dle of the 15th century. Present knowledge of the Norse culture in Greenland is based chiefly on the 

available written sources and the results of archaeological excavations of the remains of farmsteads 

and churchyards. The excavations indicate that Norse subsistence depended on the products of ani- 

mal husbandry and seal hunting. However, quantitative information on the diet of the Norse is diffi- 

cult to obtain from the usual archaeological sources, since the food refuse preserved in farms and the 

Settlement 

Eastern 
Settlement 

Brattahlio 

GarOar V' 
Undir Hofoa 
Narsarsuaq 

Herjolfsnes 

Figure 1 Map showing the location of Norse churchyards in Greenland. Sandnes is in the 

Western Settlement near Nuuk, the modern capital of Greenland. Five churchyards are in 

the Eastern Settlement in the southernmost part of Greenland. 
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middens may not be truly representative (e.g., Renfrew and Bahn 1991). To throw more light on this 

aspect of Norse history by establishing the necessary, '4C-based, chronology in the absence of other 

means of dating burials, it was decided to investigate the skeletal remains of the people themselves 

by carbon isotope analysis. The present research was initiated to help determine the corrections on 
'4C ages of bone collagen required because of its mixed marine and terrestrial origin of ingested 

foods. 

METHODS AND ANALYSIS 

The 14C-dating was carried out on a set of bone samples from 6 Norse churchyards in Southwest 

Greenland, 5 from the Eastern Settlement and 1 from the Western Settlement (Table 2). The 27 indi- 

vidual bones were selected from about 450 skeletons excavated between 1921 and 1981 by the Dan- 

ish National Museum and now kept at the Laboratory of Biological Anthropology in Copenhagen. 

The selection strategy was meant to cover the entire settlement period and provide some geographi- 

cal variation. Care was taken to choose skeletons from graves with at least some stratigraphic infor- 

mation available or to choose skeletons that had been found in close stratigraphic connection with 

other datable finds. Unfortunately, grave goods are normally absent in Christian graves, making 14C 

human bone dating the only means of establishing the ages of the burials, but in several cases, instead 

of using wooden coffins, the Norse Greenlanders buried their dead wrapped in clothes that could be 

used as a dating reference. Sex and age of the buried persons were determined when possible. 

Samples of bones and textiles were analyzed for 14C and stable carbon isotopes (Table 2). We had to 

address the question of possible contamination from carbon-containing preservatives. Thus, the tex- 

tiles from Herjolfsnes may have been treated at the time of excavation with Beticol, an animal col- 

lagen glue (Norlund 1924). This preservative is not expected to cause problems, since it dissolves 

during pretreatment (A-A-A) with IM HCl at 100 °C for 10 min. Some of the bones had visible 

signs (a thin, shiny film) of conservation treatment. Likely preservatives are either white joiner's 

glue (collagen, typically extracted from horse bone) used during early excavation in Greenland 

(Hansen 1924) or Bedacryl (a synthetic polymer) used more recently. Prior to chemical pretreat- 

ment, the surface of bone samples was removed by scalpel to eliminate contamination and possible 

preservatives. Bedacryl is insoluble in the collagen extraction process, but the collagen preservative 

potentially poses a problem. However, we feel confident that the mechanical surface cleaning 

reduces the possible contamination level to below a few percent. As an example, it would take 5% 

contamination and the worst case of a strongly marine influenced bone treated with horse glue to 

produce a shift in b13C of -0.4% and a 14C shift of 50 yr BP for a very early bone (e.g. Brattahlid) 

treated with modem (pre-bomb) glue. 

Collagen was extracted from 100-200 mg bone samples and combusted to carbon dioxide. We used 

a modified Longin method (Longin 1971; Brown et al. 1988) with pretreatment consisting of demin- 

eralization with 1M HCl at 5 °C for about 30 min, humic acid removal with 0.2M NaOH, and reflux 

with 0.O1M HCl at 70 °C for 16 h. Nearly all samples had collagen yields of close to 5% or above, 

which is a safe limit for reliable dating recommended by Hedges and van Klinken (1992) and others. 

Only 1 sample was as low as 1 % and therefore rejected for dating. Most of the CO2 was converted 

to graphite for AMS 14C dating with the EN tandem accelerator at the University of Aarhus, and the 

rest was used for b13C measurement by conventional mass spectrometry at the Science Institute, 

University of Iceland (Table 2). Detailed archaeological and anthropological information about the 

samples may be found in Lynnerup (1998). To improve the accuracy, at least 2 samples were pre- 

pared from each bone specimen. All measurements were used (no outliers) and all multiple samples 

were in agreement within statistical error. Our results for the recent TIRI intercalibration (Gulliksen 

and Scott 1995) showed that the precision reflects the actual accuracy. 

https://doi.org/10.1017/S0033822200019512 Published online by Cambridge University Press

https://doi.org/10.1017/S0033822200019512


Change of Diet of the Greenland Vikings 161 

Table 2 14C dates and b'3C values for bone collagen and cloth from Norse churchyards in Greenland 

Lab Conventional Calendar AD 

number Object Sample 14C age 

(AAR-) ID number sex, age (yr BP) AD) VPDB) 

Eastern Settlement 

Herjolfsnesa (Eli], Ikigaat) 

1271 IV/KAL1106 ±45 

1290 D10606 Cloth 553 ± 45 

1269 XVIII/KAL906 F, 20-25 899 ± 84 

1289 D l0605 Cloth 480 ±43 

1270 I/KAL 1105 F, 45-50 750 ± 56 

1288 D l0581 Cloth 480 ± 60 

2201 D 106l2 "Burgundy cap" 685 ±40 

2200 D10594 Garment 650 ±40 

Brattahlidb "Tjodhilde's Church" (E29a, Qassiarsuk) 

1275 KAL1180 M,>35 1229 ±41 976 

1571 KAL1054 F, 25-30 1225 ± 51 985 

1273 KAL0380 Ox bone 1040± 80 1011 

1267 CLA-2 M, adult 1155 ±46 1020 

1268 CLA-1 M, adult 1112±51 1065-1115 

1568 KAL1041 F, 35-40 997 ±51 1165 

1272 KAL 1060 F, adult 980 ± 49 1169 

1570 KAL1059 F,>35 1092 ± 55 1172 

1569 KAL 1043 F, 35-40 985 ± 45 1175 

1276 KAL1789 M,50-55 1025 ±50 1192 

Garoare (E47, Igaliku) 

1437 KAL0915 M,30-35 1030 ± 65 1233 

1439 KAL1118 M, adult(B) 880 ± 55 1272 

1438 KAL0916 F, adult 880 ± 90 1295 

Undir Hofdad (E66, Igaliku kuljalleq) 

1442 KAL0920 M,30-35 890 ±45 1297 

1441 KAL0919 F,25-30 880 ± 55 1392 

Convente (E 149, Narsarsuaq) 

1265 II,1/KAL1002 F, 35-40 886 ± 48 1322 

1264 1,10/KAL1001 M, adult 937 ± 53 1389 

1266 I,6/KAL0999 u,15-20 852 ± 44 1399 

1263 I,7/KAL1000 M,25-30 845 ±50 1404 

Western Settlement 

Sandnesf (W5], Kilaarsarfik) 

1143 KAL0929 M,35-40 1030 ± 45 

1145 KAL0960 F, 40-45 940 ±45 

1147 KAL0959 F, 40-45 940 ±40 

1148 KAL0964 F, 25-30 970 ±40 

1146 KAL0961 F, 20-25 970 ±40 

1144 KAL0928 F, 20-25 865 ±40 

AAR-number refers to the AMS 14C dating sample. Object ID-number is the registration number of the National Museum 
of Denmark, where available (followed by slash) and the registration number of the Copenhagen Anthropological Labora- 
tory (KAL or CLA). Archaeological sites are given Norse names on the basis of an assumed identification with locations 
mentioned in Icelandic history writing and sagas. Site numbers and modern Greenlandic names are given in parentheses. F 

= female, M = male, u = unknown sex. B = skeleton of bishop. Conventional 14C ages were converted into calendar year by 
using a calibration curve interpolated between the terrestrial (tree-ring) curve and the model-calculated marine curve with 
the fraction of marine diet as an input parameter. The 813C values are with respect to the VPDB standard; the uncertainty is 
±0.05% (at 16). The percentage of marine diet is calculated by linear interpolation between the end-point values -12.5% 
(100% marine) and -21% (100% terrestrial). We estimate an uncertainty of 10% in the percentage value. Details of the sam- 
ples and sample ID numbers may be found in Lynnerup 1998. The relevant excavations have been described in: 
aNorlund 1924; Hansen 1924. b Krogh 1967. e Norlund 1930; Broste et al. 1944. a Broste et al. 1944. e Vebaek 1991. f Roussell 

1936; Fischer-Moller 1942. 
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The human bones display extreme variation in b13C values (-14.5 to -19% VPDB) (Table 2), nearly 

spanning the full range between the marine and the terrestrial values of Table 1. When the corre- 

sponding fraction of marine food consumed by each individual is calculated from the measured S13C 

value by linear interpolation between the adopted endpoint values (see above), the values fall in the 

range of 20 to 80% marine diet (Table 2). Information on the marine reservoir effect as needed for 

the 14C age calibration is available from recent model calculations of the damped response of the sea 

to the varying 14C level in the atmosphere. We have used the global marine model by Stuiver, Pear- 

son, and Braziunas (Stuiver et al. 1986), later revised (Stuiver and Braziunas 1993) and implemented 

(Stuiver and Reimer 1993) in the 14C age calibration program CALIB 3.03. This program calculates 

the calibration curve valid for a given fraction of marine food by linear interpolation between the ter- 

restrial tree-ring curve and the smoother marine curve calculated from a global model of the mixed- 

layer of the world ocean. The 100% marine curve used for interpolation is shifted relative to the 

standard curve by a constant, AR (14C years), which accommodates the deviation in reservoir age of 

the local sea from that of the model world ocean, which varies in time around a value of 400 yr. The 

AR value was determined in a calibration procedure by using 3 bone/cloth sample pairs, assumed to 

have pair-wise identical true age. 

The first 6 samples in Table 2 represent these 3 skeletons (AAR-1271, -1269 and -1270) and their 

respective grave clothes (AAR-1290, -1289 and -1288) as excavated (in 1921) from a group of buri- 

als found in a corner of the churchyard at Herjolfsnes (Norlund 1924). The bodies were positioned 

on top of each other, thus believed to be buried at nearly the same time. While the 14C dates of the 3 

cloth samples coincide within the measuring uncertainty, the dates of the bones at first sight showed 

a surprisingly large scatter (Figure 2). For example, skeleton AAR-1269, a young woman, was 420 
14C years older than her grave clothes. This apparent age difference is explained by the marine res- 

ervoir effect, since the S13C value of her bone showed that her average food during the approxi- 

mately 10-yr turnover time of carbon had been highly marine (78%), while the woolen clothes are 

expected to be purely terrestrial. In fact, this assumption is confirmed by the narrow distribution of 

the measured b13C values around an average of -22.2 ±0.2% VPDB for the 6 textiles, as hair and 

wool is expected to be approximately 1% more negative in b13C than bone collagen (Vogel et al. 

1978; van den Merwe 1989). Thus, we see no sign of seaweed feeding of sheep (see below) in this 

case and, with 1 exception (see below), the cloth dates are also consistent with the archaeological 

dating (Arneborg 1996). 

These 3 textile samples are therefore ideally suited to fix the reservoir correction parameter AR, 

especially since 1 of the associated bone samples (AAR-1269) is close to the maximum marine com- 

ponent found in the sample set. Since bone and cloth must have practically the same true age (the 

turnover time of carbon in the bone is assumed to match approximately the lifetime of the cloth), it 

is necessary to adjust the AR value of the marine calibration curve for each of the 3 bone dates until 

the calibrated ages coincide with that of the textile. The analysis is illustrated in Figure 2. Identical 

AR values of +50 yr were obtained for all 3 bone/cloth pairs, in spite of the fact that the marine frac- 

tions of the bones differ greatly. This is a crucial point that strongly supports the validity of the res- 

ervoir correction in the calibration procedure. The displacement is AR = 50 yr, corresponding to a 

reservoir age varying between 400 and 500 14C yr for the time range shown. Another important 

check on the calibration procedure is the continuation of the shifted curve to the period AD 1800- 

1910, which gives values varying between 400 and 465 years. This is in good agreement with exist- 

ing measurements of reservoir age for southern Greenland, all of which have been carried out on 

mollusks from the 19th and 20th century and yielded values in the range 400-550 yr depending on 

location. The fitted parameter AR is coupled to the choice of b13C endpoint values through the fix- 
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Figure 2 14C calibration curves. Terrestrial curve is based on 

tree-ring measurements (Stuiver and Braziunas 1993). 

Marine curve (100%) is a model calculation for the mixed 

layer of the ocean (Stuiver and Braziunas 1993). Curves 

labelled 78% and 56% marine are interpolations. The data 

points are measured 14C ages of 3 bone/cloth pairs from the 

Norse churchyard at Herjolfsnes, Greenland. The cloth data 

are plotted on the terrestrial curve. The b13C of the bone sam- 

ples showed marine fractions of 55%, 56%, and 78%. By 

assuming each bone/cloth pair to be of identical calendar age, 

the mixed-layer curve was adjusted by an upwards parallel 

shift to make the interpolated curves fit the bone data points. 

The displacement is OR = 50 yr, corresponding to a reservoir 

age varying between 400 and 50014C yr for the time range 

shown. 

points provided by the textile dates, which make the resulting calibrated 14C ages rather insensitive 
to the chosen endpoints. 

We conclude from the above that it is reasonable to use marine calibration curves thus obtained to 
derive calendar ages for the whole time period studied in this work (Table 2). All calendar ages are 
consistent with archaeological information. In the following we discuss the ages for 4 selected burial 
groups in relation to independent information. 

DISCUSSION OF 14C DATES 

According to archaeological dates, the oldest Norse bones were found at Erik the Red's farm Brat- 
tahlid in the churchyard of the so-called Tjodhilde's Church (cf. Krogh 1967; also Table 2 and Fig- 

ure 3). The date of an ox-bone fragment (purely terrestrial) found in a mass grave proved that the 
Norse people and their cattle were present at Brattahlio at precisely the time (AD 985) mentioned in 

the Icelandic sagas for Norse arrival (landnam). Two of the human bones, a male and a female 
(AAR-1275 and AAR-1571), yielded similar old ages, but only after the marine correction was 

applied. Without the marine correction the skeletons would have antedated the arrival of Eric the 
Red (AD 985) by 100-200 yr, contradicting historical evidence. The human bones from Brattahlid 
were 20-50% marine. This scatter could be explained either by social differences in subsistence or 
by new immigration. Thus, low values are expected for people newly arrived from Iceland or Nor- 
way with a more terrestrial b13C imprinted in their bones. The youngest bone dates from Brattahlid 
(AD 1100-1200) have large uncertainties associated with them due to a plateau in the calibration 
curve (see Figure 2). 

According to an account on the Nordic settlements in Greenland from the second half of the 14th 

century (Ivar Baroarsson's Greenland Description in Jonsson 1930), the Western Settlement was 
abandoned in the middle of the 14th century. From that area, we have dated 6 skeletons from the 

churchyard at the farm Sandnes. The skeletons were found (in 1930) in a stratigraphic sequence on 
top of each other, presumably buried almost simultaneously (Roussell 1936). The graves were situ- 
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ated west of the church in an area that became part of the churchyard at a late date in the history of 

the site. The calibrated 14C dates of the skeletons, having high, but different, marine food fractions, 

do not contradict the written record, but some of the uncertainties are quite large. The dates of the 5 

lowest-lying skeletons (first 5 in Table 2, Sandnes) cluster around AD 1300. 

The Norse ruins at Igaliku have been identified with Garoar, the residence of Greenland's bishop 

(Norlund 1930). The skeleton (AAR-1439) of a bishop (buried with his crosier) was found in the 

north chapel of the church ruins. Directly below the bishop lay the skeletons (AAR-1437 and 

AAR-1438) of a male and a female side by side. The bones of the bishop were only 25% marine, 

perhaps indicating that he had arrived a short time before from Norway where all the bishops of 

Greenland originated (Arneborg 1990). The low marine content of the bishop's food could also be 

explained by his high social status, presumably allowing access to beef and game. The bones of the 

male and female skeletons had considerably higher marine food fractions, 50 and 40%, respectively. 

We note that the marine corrections, although widely different, lead to coinciding calibrated ages for 

the 3 skeletons from Gardar. 

An independent means of dating the skeletons relies on analysis of the arranged arm-position of the 

buried person, a method applicable to dating graves in Scandinavia (e.g., Redin 1976, Kieffer-Olsen 

1993). Though the relative development of the positions of the arms (A: arms along the side; B: 

hands over pelvis; C: lower arms parallel over stomach; and D: hands over chest) have been more or 

less accepted, the absolute dates are still debated. In a work that involved graves from 8 churchyards 

in medieval Denmark (including Scania in South Sweden and Slesvig in Northern Germany), Kief- 

fer-Olsen (1993) concluded that arm position A dominated until ca. AD 1250, arm position B dom- 

inated ca. 1250-1350 and arm position C dominated from ca. 1350 until the mid-fifteenth century, 

after which arm position D became the most common. Evidently Norse Greenland graves follow the 

described relative development of arm positions (for more details, see Lynnerup 1998, p 55 ff); still, 

it would not be reasonable uncritically to apply South Scandinavian chronology to the Norse Green- 

land situation. Nevertheless, we note that the 3 dead persons in the north chapel of the Garoar church 

(E47) (Norlund 1930) were buried with their arms in position B (ca. AD 1250-1350), which is con- 

sistent with the calibrated ages for the 3 skeletons (AAR-1437, AAR-1439 and AAR-1438). Simi- 

larly at the convent in Narsarsuaq (E149) (Vebaek 1991), the arm position B (ca. AD 1250-1350) is 

represented in 2 cases (AAR-1265 and AAR-1264), and arm position C (ca. AD 135-1450) likewise 

in the 2 other cases (AAR-1266 and AAR-1263). 

We conclude from this discussion that the pattern of 14C dates for bones of mixed marine/terrestrial 

origin is consistent with other age evidence. We observe repeatedly that groups of skeletons, which 

are likely to have been buried at the same time, come out with identical calibrated 14C ages (within 

experimental uncertainty) even in cases where the marine reservoir corrections differ markedly. We 

also observe accordance between the archaeological dates and the calibrated 14C ages. It thus 

appears that mixed marine bone samples can be reliably dated with reservoir corrections based on 

measured collagen b13C values. 

Greenland may constitute a particularly simple system in this respect due to the absence of calcare- 

ous freshwater sources, which are known to produce high local reservoir effects of more than 1000 

yr, for example at Dutch sites (Lanting and van der Plicht 1996) and Danish fjords (Heier-Nielsen et 

al. 1995). Norse Greenland sheep and cattle may have had a small marine component from seaweed 

and fish refuse, as shown for recent times in Norway (Hoegh 1982) and Iceland (Kristjansson 1982). 

Because the corresponding 13C isotope value will be passed on to the consumer, the reservoir cor- 

rection procedure will still be valid. Questions remain about the effect of the high variability in, for 
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example, Greenland seal bone b13C values, often "less marine" than the Eskimos in Table 1, 

observed from measurements in our own laboratory and reported by other authors (e.g. Tauber 
1984). If these values in bone collagen reflect anomalous b13C values in seal meat consumed by 
humans under study, it could lead to errors in evaluated marine food fractions. A similar ambiguity 
in the calculation of human marine fractions could result from observed slightly "marine" b13C sig- 
nals, which we have observed in Greenland reindeer bones (cf. Tauber 1984), unless this turns out 
to be due to consumption of seaweed. Clarification of these details will be gained by more extensive 
isotopic measurements on archaeological bone samples of the domestic animals and game con- 
sumed by the Norse. 

The b13C in bone collagen mainly reflects the 13C composition of the protein in the diet (Ambrose 
and Non 1993), while bone apatite values may be more representative of the whole diet (see also 
Lanting and van der Plicht 1996). In the present study, the protein dietary composition may well be 
representative of the whole diet, as both the marine and terrestrial food resources of the Norse must 
have been very protein-rich. Since the Greenland climate did not allow cultivation of grain and veg- 
etables, the terrestrial diet of the Norse was limited to meat and dairy products. We therefore inter- 
pret the S13C variability in human bone collagen discussed in the following section as being directly 
representative of real differences in subsistence patterns. 

NORSE CHRONOLOGY AND DIET 

Five sample dates help us to establish the main chronological framework of the Norse in Greenland, 

even without relying on the reservoir correction procedure or archaeological dating. The ox bone 

from Brattahlid (AAR-1273) and the 3 burial textiles from Herj olfsnes (AAR-1288, -1289, -1290) 
establish the presence of Norse colonies in Greenland from around AD 1000 to the first half of the 
15th century (AD 1430 ± 15), in other words slightly later than the last written historical evidence 
(a wedding in 1408). Arguments based on stylistic evidence from the "Burgundy Cap" for Norse 
presence after AD 1500 have been refuted by the 14C date (AAR-2201, Table 2) on the cap that 
places it in the 14th century (see Arneborg 1996). 

The detailed chronology established by the 14C dates of Viking bones allows us to assess whether the 

large variation in marine food consumption may show a temporal pattern. The plot (Figure 3) of 
b13C values, the proxy for marine food fraction, versus calibrated 14C age reveals that the average 

diet of the Norse people changed from 20% marine to 80% marine during the approximately 500 
years that the settlement lasted. This trend, if representative of the Greenland Norse population as a 

whole, shows a marked shift in Norse diet from the initial settlement period to the period of depop- 
ulation. The Norse colonists adapted to marine food resources, although at 80% not quite to the 

extent of contemporaneous Eskimos. 

The marine element should derive first and foremost from seal according to the animal bone assem- 

blages found in middens in Greenland Norse settlements. Fish bones are nearly absent in the collec- 
tions. This may, however, be explained by taphonomic biases such as the well-known poor preser- 
vation of fish bone and its appeal as a food source to both birds and domestic animals like dogs. It is 

hard to believe that the Greenland Norse did not tap the very rich resources of fish in the fjords, as 

did their relatives all over the North Atlantic and in Norway. Future isotope research may shed light 

on the extent to which fish actually formed part of the Greenland Norse diet. 

The present study has provided a chronology and direct evidence for dramatic changes in the lives 

of the Norse in Greenland. The reason for the change may be deteriorating climate, which several 

authors have discussed as the main reason for the decline in population of the Norse settlements (e.g. 
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Figure 3 Measured 813C versus calendar year for Norse skeletons from Greenland. Symbols 

refer to churchyards. Sandnes is in the Western Settlement, the others are in the Eastern Settle- 

ment. Right-side ordinate axis is the marine food fraction calculated from 813C. The scatter in 

813C is due to real differences in diet of individuals. Note the terrestrial value for the ox bone. 

High social status or recent arrival from Norway could explain the low marine diet of the bishop 

buried in the Gardar cathedral. 

Stuiver et al. 1995; Barlow et al. 1997; Lynnerup 1998; see also Fricke et al. 1995). Recently, Green- 

land ice-sheet temperature data have been used for a climatic reconstruction, which is specific for 

the high-latitude North Atlantic region (Dahl-Jensen et al. 1998). The results indicate a steady 

decrease from a temperature maximum around AD 1000 to a minimum around AD 1500, which 

may have gradually forced the Greenland Norse to change their subsistence pattern. 
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